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Abstract: We discuss the linear gravitoelectromagnetic approach used to solve Einstein’s equations
in the weak-field and slow-motion approximation, which is a powerful tool to explain, by analogy
with electromagnetism, several gravitational effects in the solar system, where the approximation
holds true. In particular, we discuss the analogy, according to which Einstein’s equations can be
written as Maxwell-like equations, and focus on the definition of the gravitoelectromagnetic fields in
non-stationary conditions. Furthermore, we examine to what extent, starting from a given solution of
Einstein’s equations, gravitoelectromagnetic fields can be used to describe the motion of test particles
using a Lorentz-like force equation.

Keywords: gravitomagnetism; relativity; gravity

1. Introduction

Einstein’s theory of gravitation, General Relativity (GR), completely changed our
view and understanding of space and time, as well as the interplay between them. For
these reasons, soon after its publication, GR deeply influenced scientific and philosophical
thought, even if only few and non-highly accurate observational evidences were available.
As emphasised by Will [1], several events, pertaining to both the development of the
theoretical framework and observations, contributed to establish the basis of experimental
gravitation, starting from the beginning of the 1960s. At first, the great majority of the
experimental tests were performed within the solar system; subsequently, observations
involving sources outside the solar system were available; in the latter case, we often
deal with extreme events producing huge perturbations in the fabric of space–time. On
the contrary, in the solar system, the gravitational field is weak but, nonetheless, GR
successfully predicts the existence of new phenomena, for which Newtonian gravity
is inadequate.

Einstein’s equations in the solar system can be adequately solved in weak-field ap-
proximation (small masses, low velocities); in particular, these equations can be written in
analogy with Maxwell’s equations for the electromagnetic fields, where the mass density
and current play the role of charge density and current, respectively [2,3]. As a conse-
quence, a gravitomagnetic field arises, due to mass currents; more generally, every theory
that combines Newtonian gravity with Lorentz invariance predicts the existence of these
gravitomagnetic effects. Interestingly enough, the existence of a magnetic-like part of the
gravitational field was already suggested by Heaviside, at the end of 1800, on the basis
of the similarity between Newton’s law of gravitation and Coulomb’s law of electrostatic
force (see McDonald [4] and references therein). This analogy can be exploited to explain
GR effects, in terms of electromagnetic ones; this is the case, for instance, of the famous
Lense–Thirring gyroscope precession [5], which can be explained in analogy with the
precession of a magnetic dipole in a magnetic field.

However, we must always remember that GR is a non-linear theory, so the use of the linear
gravitoelectromagnetic (GEM) analogy has some limitations, which need to be emphasised.
To this end, it is useful to remember that it is also possible to develop an exact gravitoelectro-
magnetic analogy in full GR (see, e.g., Cattaneo [6], Costa and Herdeiro [7], Mashhoon et al. [8]

Universe 2021, 7, 451. https://doi.org/10.3390/universe7110451 https://www.mdpi.com/journal/universe

https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-1844-5863
https://doi.org/10.3390/universe7110451
https://doi.org/10.3390/universe7110451
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/universe7110451
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe7110451?type=check_update&version=3


Universe 2021, 7, 451 2 of 11

Ramos and Mashhoon [9], Costa and Natario [10], Chicone and Mashhoon [11], Rizzi and Rug-
giero [12], Jantzen et al. [13], Lynden-Bell and Nouri-Zonoz [14] and also the recent publication
by Costa and Natário [15]). The purpose of this paper is to discuss, in full detail, the
linear GEM analogy and its limitations. In particular, in Section 2, we discuss, in some
detail, the customary approach which, starting from Einstein’s equations in weak-field and
slow-motion approximation, leads to the definition of the gravitoelectromagnetic fields. In
Section 3, we consider the geodesic equation for a given solution of Einstein’s equations
and discuss under which hypotheses it can be formally expressed, in terms of a Lorentz-like
force equation for test masses; then, we focus on an application of this formalism to the
spacetime of a plane gravitational wave. Discussion and conclusions are given, eventually,
in Section 4.

2. Linear Gravitoelectromagnetic Form of Einstein Equations

Let us start from Einstein’s equations:

Gµν =
8πG

c4 Tµν. (1)

In the weak-field approximation, the gravitational field can be considered a pertur-
bation of flat spacetime, described by the Minkowski tensor ηµν. 1 As a consequence, the
metric tensor can be written in the form gµν = ηµν + hµν, where hµν is a weak perturbation:
|hµν| � 1. If we introduce h̄µν = hµν − 1

2 ηµνh, where h = h µ
µ , Einstein’s Equations (1)

become (see, e.g., Straumann [16]):

−ut h̄µν − ηµν h̄ ,αβ
αβ + h̄ α

µα,ν + h̄ α
να,µ =

16πG
c4 Tµν. (2)

The gauge freedom can be exploited setting the Hilbert gauge condition:

h̄µν
,ν = 0. (3)

The above condition is also known as the Einstein, de Donder, Fock, or Lorentz gauge [17];
in particular, the latter name refers to the analogy with the correspondent condition used
in electromagnetism (see below). Then, from (2), we get:

ut h̄µν = −16πG
c4 Tµν, (4)

Notice that the condition (3) can be always achieved by a gauge transformation; in
fact, Einstein’s equations are invariant, with respect to the infinitesimal transformations:

hµν → hµν + ξµ,ν + ξν,µ (5)

which, in terms of h̄µν, becomes:

h̄µν → h̄µν + ξµ,ν + ξν,µ − ηµνξα
,α (6)

So, if h̄µν
,ν 6= 0, it is sufficient to choose ξµ to be a solution of ut ξµ = −h̄µν

,ν.
Equation (4) is in clear analogy with Maxwell’s equations for the electromagnetic four-

potential; so, they can be solved in the same way (see, e.g., Ruggiero and Tartaglia [2], Mash-
hoon [3], Mashhoon et al. [18], Mashhoon [19], and Padmanabhan [20]). In fact, neglecting
the solution of the homogeneous wave equations associated with (4), the general solution
is given, in terms of retarded potentials:
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h̄µν =
4G
c4

∫
V

Tµν(ct− |x− x′|, x′)
|x− x′| d3x′ , (7)

where integration is extended to the volume V, containing the source. We may set
T00 = ρc2 and T0i = cji, in terms of the mass density ρ and current ji of the source,
so that jµ =

(
cρ, jig

)
= (cρ, j) is the mass-current four vector of the source. Since, in linear

approximation, Tµν
,ν = 0, we obtain the continuity equation:

∂ρ

∂t
+∇ · j = 0 (8)

If we assume that the source consists of a finite distribution of slowly moving matter,
with |v| � c, then Tij ' ρvivj + pδij, where p is the pressure; from (7), we see that
h̄ij = O(c−4), and in the linear GEM approach, we neglect in the metric tensor terms that
are O(c−4).

Consequently, from (7), we get:

h̄00 =
4G
c2

∫
V

ρ(ct− |x− x′|, x′)
|x− x′| d3x′ , (9)

h̄0i = −
4G
c3

∫
V

ji(ct− |x− x′|, x′)
|x− x′| d3x′ . (10)

The other components of h̄µν are zero at the given approximation level.
In analogy with the corresponding solutions of electromagnetism, it is possible to intro-

duce the gravitoelectromagnetic potentials, namely the gravitoelectric Φ and gravitomagnetic
Ai potentials are defined by:

h̄00
.
= 4

Φ
c2 , h̄0i = −2

Ai
c2 , (11)

which, taking into account Equations (9) and (10), take the form:

Φ = G
∫

V

ρ(ct− |x− x′|, x′)
|x− x′| d3x′ , (12)

Ai =
2G
c

∫
V

ji(ct− |x− x′|, x′)
|x− x′| d3x′ . (13)

Eventually, the spacetime metric, describing the solutions of Einstein’s equation in
weak-field approximation, is written in the form [2,3]:

ds2 = −c2
(

1− 2
Φ
c2

)
dt2 − 4

c
Aidxidt +

(
1 + 2

Φ
c2

)
δijdxidxj. (14)

Now that we have defined the gravitoelectromagnetic potentials, it is possible to
reconsider the Hilbert gauge condition (3) and express it, in terms of Φ and Ai. From (3),
we obtain, indeed, two conditions; setting µ = 0, we get:

h̄00
,0 + h̄0i

,i = 0→ 1
c

∂Φ
∂t

+
1
2
∇ ·A = 0, (15)

which is the same as the Lorenz gauge condition for electromagnetic fields. If we consider
the space part (µ = i) of the gauge condition (3), we obtain:

h̄i0
,0 + h̄ij

,j = 0→ 2
c3

∂Ai

∂t
+ h̄ij

,j = 0. (16)
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Indeed, even if the terms h̄ij are not displayed in the metric (14) for being O(c−4),
they are not necessarily exactly zero. As a consequence, Equation (16) does not imply a
time-independent gravitomagnetic potential A.

The issue of the time-independence of the gravitomagnetic potential has been dis-
cussed in several papers in the past, still with no general agreement. For instance, Bakopou-

los and Kanti [21] explicitly considered h̄ij = 0; hence, from (16), they deduced
∂A
∂t

= 0,

while Harris [22] maintained that
∂A
∂t

= O(c−2). Similar conclusions about the time indepen-
dence of the gravitomagnetic field were obtained by Clark and Tucker [23]. For further insights
on this topic, we refer to the papers by Costa and Herdeiro [7] and Pascual-Sanchez [24].

According to the approach used by Mashhoon [3], Mashhoon et al. [18], Mashhoon [19],
and Ruggiero and Tartaglia [2], the gravitoelectric E and gravitomagnetic B fields are
defined by:

E = −∇Φ− 1
2c

∂A
∂t

, B = ∇ ∧A, (17)

and both fields can be time-dependent. In addition, taking Einstein’s Equation (4) into account,
we may write the equations for the gravitoelectromagnetic fields in the form:

∇ · E = 4πGρ, (18)

∇ ∧ E = −1
c

∂

∂t

(
B
2

)
, (19)

∇ ·
(

B
2

)
= 0, (20)

∇ ∧
(

B
2

)
=

4πG
c

j +
1
c

∂E
∂t

. (21)

In particular, from Equations (18) and (21) the continuity Equation (8) is obtained. We
notice the factor 1

2 near the gravitomagnetic field B, with respect to the original Maxwell’s
equations for the electromagnetic fields. This is due to the tensorial character of the
gravitational field in GR (see Mashhoon et al. [18]).

It is interesting to point out that if we apply a different gauge condition we obtain
different equations for the gravitoelectric and gravitomagnetic fields, as discussed, for
instance, by Costa and Natario [10], Bertschinger [25], Damour et al. [26], Carroll [27].

We want to emphasise here an important point: the definition (17) of the gravitoelectric
field does not agree with the corresponding one:

E = −∇Φ− 2
c

∂A
∂t

, (22)

which we are going to obtain in Section 3, writing the geodesic equation in weak-field and
slow-motion approximation. Actually, if we use the definition (22), the source’s equations for
the gravitoelectromagnetic fields are modified. As emphasized by Costa and Natario [10], it
is not possible to obtain a one-to-one gravitoelectromagnetic analogy both for the geodesic
equation and field equations, since, in any case, non-Maxwellian terms appear. Using the
definition (22), a different form of the induction law (19) is obtained, which is the same as the
one obtained by Bini et al. [28], starting from the gravitoelectromagnetic force acting on a test
particle (see next section).
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3. Gravitoelectromagnetic Description of the Motion of Test Masses

Let us suppose that the spacetime metric is written in a quite general form:

ds2 = g00c2dt2 + 2g0icdtdxi + gijdxidxj. (23)

By setting:
Φ
c2 =

g00 + 1
2

Ψ
c2 =

gij − 1
2

Ai
c2 = − g0i

2

where |Φc2 | � 1, | Ψc2 | � 1, | Ai
c2 | � 1, the above metric can be written in the form:

ds2 = −c2
(

1− 2
Φ
c2

)
dt2 − 4

c
Aidxidt +

(
1 + 2

Ψ
c2

)
δijdxidxj , (24)

We do not require that the starting metric (23) be obtained by solving Einstein’s
equations in weak-field approximation. In other words, we assume that a given solution of
the field equations can be written in this form, and it represents a small perturbation of flat
spacetime. In particular, the gravitoelectromagnetic potentials can be time-dependent. The
relation between Φ and Ai and the sources can, of course, be obtained by writing the field
Equation (2). For instance, this approach was used by Bini et al. [28]; the authors start from
a spacetime, in the form (24), assume that the gravitomagnetic potential describes the field
of a source whose angular momentum changes with time, and calculate effective sources
for the spacetime metric.

Let us start from the line element (24) and calculate the geodesic equation up to linear
order in βββ = v/c. From:

d2x
dτ2

µ

+ Γµ
αβ

dxα

dτ

dxβ

dτ
= 0, (25)

we obtain for the space components:

dvi

dt
=

∂Φ
∂xi − 2(βββ× B)i + 2

∂Ai
c∂t
− βi ∂(2Ψ + Φ)

c∂t
(26)

(see, e.g., Costa and Natario [10], as well as Bini et al. [28], where the case Φ = Ψ is
considered). Then, if we define the gravitoelectromagnetic fields as:

B = ∇ ∧A, E = −∇Φ− 2
c

∂A
∂t

, (27)

and the above Equation (26) becomes:

dvi

dt
= −Ei − 2(βββ× B)i +

2
c

∂Ai
∂t
− βi ∂(2Ψ + Φ)

c∂t
. (28)

As a consequence, it is not warranted that the geodesic equation takes a Lorentz-like
form if the fields are not static, due to the presence of the last term in (28). In order to
evaluate its impact, we need to compare it with the gravitomagnetic terms 2(βββ× B)i and
2
c

∂Ai
∂t

. As discussed, for instance, by Thorne and Hartle [29] and Costa and Natário [15],
the gravitomagnetic field can be originated by the translation of a source and its spin. In
particular, the order of magnitude of the gravitomagnetic field, due to the translation of a
source with mass M moving with speed vs, at distance r, is:

|Btrans| '
Mvs

cr2 . (29)
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As for the gravitomagnetic field of a spinning source, with angular momentum S,
radius R, and peripheral speed vrot, we have:

∣∣Bspin
∣∣ ' S

cr3 '
MvrotR

cr3 . (30)

Hence, we see that:

|βββ× B|trans '
Mvvs

c2r2 , |βββ× B|spin '
MvvrotR

c2r3 . (31)

For a source like the Earth, the spin contribution is much lower than the translational
one, since, typically, R� r and vrot � vs. We can do similar estimates for the time variation
of the vector potential A, and we obtain:∣∣∣∣∂Ai

c∂t

∣∣∣∣
trans
' Mv2

s
c2r2 ,

∣∣∣∣∂Ai
c∂t

∣∣∣∣
spin
' MvsvrotR

c2r3 . (32)

As for the last term in (28), we have:∣∣∣∣βi ∂(2Ψ + Φ)

c∂t

∣∣∣∣ ' Mvvs

c2r2 . (33)

Accordingly, we see that the latter contribution is of the same order as of the trans-
lational contribution in (31). It can be neglected, if we assume that the source is at rest
or, keeping the spin contribution, when rvs � vrotR. In addition, we see that, even for a

source at rest, in general, the term
2
c

∂Ai
∂t

cannot be neglected.
The interaction of test masses with the gravitational field can be studied using a

variational principle δ
∫

Ldt = 0, starting from the Lagrangian L = −mcds/dt, which,
according to the Equation (24), is given by:

L = −mc2
[

1− v2

c2 −
2
c2

(
1 +

v2

c2

)
Φ +

4
c3 vi Ai

]1/2

, (34)

which, up to linear order in Φ and A, and taking the lowest order terms v/c multiplying
the gravitoelectromagnetic potentials, we obtain:

L = −mc2
(

1− v2

c2

)1/2

+ mΦ− 2m
c

vi Ai. (35)

The term added to the free-particle Lagrangian, mΦ− 2m
c

vi Ai, describes the interac-
tion of the test particle with the field. Again, we see that the gravitomagnetic charge is twice
the gravitoelectric one. Furthermore, we see that the canonical momentum P = ∂L/∂v is

given by P = mv− 2m
c

A.
As we are going to show, the geodesic equation takes the form of a Lorentz-like

equation when we use Fermi coordinates. The latter are defined starting from the world-
line of an observer, and they allow us to show that what an observer measurement depends
both on the background field, where she/he is moving. Fermi coordinates are important
in the measurement process because they have a concrete meaning, since they are the
coordinates an observer would naturally use to make space and time measurements in the
vicinity of her/his world-line. This is particularly relevant when dealing with gravitational
waves. They are usually studied in the transverse traceless (TT) gauge coordinates (see
Flanagan and Hughes [30]), which do not have a physical meaning. An approach to the
study of gravitational waves using Fermi coordinates is discussed in Ruggiero [31]. More
in general, Fermi coordinates allow us to define a gravitoelectromagnetic analogy in full
GR, on the basis of the properties of the Riemann curvature tensor [3,7–11]. In particular,
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using Fermi coordinates (cT, X, Y, Z), for geodesic observers. The spacetime metric can be
written (see, e.g., Ruggiero and Ortolan [32] and references therein) in the form given by
Equation (24), with:

Φ(T, Xi) = − c2

2
R0i0j(T)XiX j, (36)

Ai(T, Xi) =
c2

3
R0jik(T)X jXk, (37)

Ψij(T, Xi) = −2c2

3
Rikjl(T)XkXl . (38)

Notice that Rαβγδ = Rαβγδ(T) is the Riemann curvature tensor, evaluated along the
reference geodesic, where Xi = 0, and it depends on T only, which is the observer’s proper
time. Then, keeping only terms to first order in Xi, we obtain the following expression for
the gravitoelectromagnetic fields:

Ei(T, Xi) = c2R0i0j(T)X j, (39)

and

Bi(T, Xi) = − c2

2
εijkRjk

0l(T)Xl . (40)

In this case, the third term in Equation (28) vanishes, as it is second order in Xi, and
the geodesic equation takes the form:

m
dV
dt

= −mE− 2m
V
c
× B. (41)

Notice that, in this case, V is the relative velocity, with respect to a test particle on the
reference world-line.

As we discussed in our previous papers, Ruggiero and Ortolan [32] and Ruggiero [31],
this approach can be applied to the study of the spacetime around a world-line of an
observer in the field of a plane gravitational wave. Fermi coordinates were first applied, by
Bini et al. [33], to the study of a plane gravitational wave. In particular, if we consider a
plane gravitational wave solution, propagating along the x axis with frequency ω, the line
element in TT coordinates is given by:

ds2 = −c2dt2 + dx2 + (1− h+)dy2 + (1 + h+)dz2 − 2h×dydz , (42)

where
h+ = A+ sin(ωt− kx), h× = A× cos(ωt− kx). (43)

In the above formulae A+, A× are the amplitude of the wave in the two polarization
states, while k is the wave number. Starting from these definitions, and taking into account
the fact that, in weak field approximation (up to linear order in the flat spacetime perturba-
tions hµν), the Riemann tensor is invariant, with respect to coordinate transformations, from
the definition of the gravitoelectromagnetic fields (39) and (40), we obtain the following
expressions in Fermi coordinates:
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EX = 0, (44)

EY = −ω2

2
[
A+ sin(ωT)Y + A× cos(ωT)Z

]
, (45)

EZ = −ω2

2
[
A× cos(ωT)Y− A+ sin(ωT)Z

]
, (46)

BX = 0, (47)

BY = −ω2

2
[
−A× cos(ωT)Y + A+ sin(ωT)Z

]
, (48)

BZ = −ω2

2
[
A+ sin(ωT)Y + A× cos(ωT)Z

]
. (49)

Notice that the above expressions and, in particular, the gravitomagnetic field, are
explicitly time-dependent.

Using this formalism, it is possible to describe a new example of the action of the
gravitomagnetic field of a wave on a moving test mass, determined by the time-dependent
gravitomagnetic field. We suppose that a particle is moving on the YZ plane, and hence,
orthogonally to the propagation direction of the wave. Since the gravitomagnetic force is
FB = −2m V

c × B, the only component of this force is in the X direction. To fix the ideas, let
us suppose that, before the passage of the wave, the particle is moving with constant speed
V0, along the trajectory:

X(T) = 0, Y(T) = 0, Z(T) = V0T. (50)

Also, we suppose that A× = 0. Notice that we neglect the effects of the gravitoelectric
field, which are confined to the YZ plane. As a consequence, the only significant equation
of motion turns out to be:

d2X
dT2 = −

V2
0
c

ω2 A+[sin(ωT)T], (51)

Taking into account the initial conditions, we obtain the following solution:

X(T) = −
V2

0
c

A+

[
− sin(ωT)T +

2
ω
(1− cos(ωT))

]
. (52)

We see that the passage of the wave provokes a motion of the particle out of the YZ
plane. The same qualitative result can be obtained for an arbitrary direction of the particle
in the YZ plane and considering the other polarization. A sketch of the motion induced by
the wave is in Figure 1. The oscillations have increasing amplitude, but they are physically
limited, since they are present only during the passage of the wave. It is interesting to
point out that the effects that are measured by current intereferometers are on the YZ plane,
which is orthogonal to the wave propagation direction, since they are provoked by the
gravitoelectric part of the wave field. On the other hand, this is effect (like other ones
considered in Ruggiero and Ortolan [32,34]) is purely gravitomagnetic. As we have seen,
it is simply described using this gravitoelectromagnetic approach, but it would be more
complicated to understand in the framework of the TT gauge coordinates that are usually
employed to describe gravitational waves.
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Figure 1. The behavior of the particle coordinate parallel to the wave propagation direction; we set

α =
V2

0
c A+.

4. Discussion and Conclusions

Many observational tests of general relativity are performed in the so-called weak-
field and slow-motion approximation. In other words, the gravitational field can be
dealt with as a perturbation of flat spacetime and, moreover, both the sources and test
masses have slow speed, compared to the speed of light. In this framework, Einstein’s
equations and their solutions can be written in analogy with electromagnetism, and a linear
gravitoelectromagnetic formalism can be used. In solving Einstein’s equations, in this
approximation, the Hilbert gauge condition is often used. We pointed out that, even if in
the solutions for the metric tensor we neglect terms that are O(c−4), the gravitomagnetic
potential and field are not necessarily stationary. Different choices of the gauge conditions
lead to a different form for the Maxwell-like equations for the gravitoelectromagnetic fields.

In addition, we considered a general solution of Einstein’s equations that can be
written, in terms of a gravitelectric and gravitomagnetic potentials, and used the linear
gravitoelectromagnetic analogy to study the motion of test masses. In particular, we dis-
cussed under which hypotheses the space components of the geodesic equation have a
Lorentz-like form, and showed that this is possible when the sources of the gravitational
field are at rest or are very slowly moving. If this is not the case, an extra non Maxwellian-
like term is present. This is not surprising. In fact, general relativity and electromagnetism
are obviously different theories, and the fact that, in given conditions, there is a similarity,
cannot be used to say that gravitation in the weak-field limit is completely analogous to
electromagnetism. Moreover, we showed that we recover the Lorentz-like form for the
geodesic equation in the framework of Fermi coordinates, to first order in the displacements
from the reference world-line. As an application, we used this formalism to study the mo-
tion of test masses in the field of a gravitational wave, and showed that, in doing so, purely
gravitomagnetic effects arise that are more complicated to understand, in the framework
of transverse traceless coordinates, which are often used to study gravitational waves.

We believe that what we have discussed in this note can be useful both to better
understand the limitations of the gravitoelectromagnetic analogy and exploit its capability
to simplify the description of gravitational phenomena, in its range of applicability.
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