
universe

Article

Quasi-Periodic Oscillatory Motion of Particles Orbiting a
Distorted, Deformed Compact Object

Shokoufe Faraji * and Audrey Trova

����������
�������

Citation: Faraji, S.; Trova, A.

Quasi-Periodic Oscillatory Motion of

Particles Orbiting a Distorted,

Deformed Compact Object. Universe

2021, 7, 447. https://doi.org/

10.3390/universe7110447

Academic Editors: Hermano Velten,

Júlio César Fabris, Raissa F. P.

Mendes, Nelson Pinto Neto and

Gustavo Dotti

Received: 31 August 2021

Accepted: 9 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359 Bremen, Germany;
audrey.trova@zarm.uni-bremen.de
* Correspondence: shokoufe.faraji@zarm.uni-bremen.de

Abstract: This work explores the dynamic properties of test particles surrounding a distorted,
deformed compact object. The astrophysical motivation was to choose such a background as to
constitute a more reasonable model of a real situation that arises in the vicinity of compact objects
with the possibility of having parameters such as the extra physical degrees of freedom. This can
facilitate associating observational data with astrophysical systems. This work’s main goal is to
study the dynamic regime of motion and quasi-periodic oscillation in this background, depending
on different parameters of the system. In addition, we exercise the resonant phenomena of the radial
and vertical oscillations at their observed quasi-periodic oscillations frequency ratio 3:2 and show
that the oscillatory frequencies of charged particles can be adequately related to the frequencies of
the twin high-frequency quasi-periodic oscillations observed in some sources of the microquasar
observational data.

Keywords: quasi-periodic oscillations; deformed compact object

1. Introduction

Quasi-periodic oscillations (QPOs) of X-ray power spectral density have been ob-
served at low (Hz) and high (kHz) frequencies and were discovered in the eighties [1,2].
Quasi-period oscillations have also been observed in supermassive black hole light curves
and, recently, the source went through burst alert telescope (BAT) onboard Swift. Their
importance is due to the fact that QPOs, peak features in the X-rays observed from stellar-
mass BHs and neutron stars, are likely to arise from quite near the compact object itself
and exhibit frequencies that scale inversely with the black hole mass, which allows us to
probe and study the nature of accretion in highly curved space–time (for a review, see for
example [3]).

One of the first QPO models is the relativistic precession model (RPM) that identifies
the twin-peak QPO frequencies with the Keplerian and periastron frequencies. In the past
years, the RPM has served to explain the twin-peak QPOs in several LMXBs. However, this
model has some difficulties explaining the relatively large observed high frequencies of
QPO amplitudes and inferred existence of preferred orbits. To modify this model, the high
frequencies QPOs (two-picks) are considered as the resonances between oscillation modes
of the accreted fluid—the well-known ratio 3:2 epicyclic resonance model—identify the
resonant frequencies with frequencies of radial and vertical epicyclic axisymmetric modes
of disc oscillations. The correlation is a cost of resonant corrections to these frequencies.
The secret of this 3:2 ratio has still not been clearly revealed, and the oscillations occur only
in certain states of luminosity, and hardness.

In this paper, we are motivated by the success of the above models, and we assume the
QPOs are caused by the fundamental epicyclic frequencies associated with orbital motion
of the matter in the accretion disc and their combinations.

We present our work on the background of a distorted, deformed compact object
which is static and axisymmetric. This background is the simplest generalization of the so-
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called q-metric up to quadrupole moments [4]. This metric has two parameters, aside from
the central object’s mass; namely the distortion parameter and the deformation parameter,
where in the absence of one or the other, one can recover either the q-metric or distorted
Schwarzschild metric [5]. From a dynamical point of view, these parameters can be seen as
perturbation parameters of the Schwarzschild space–time. We explain this metric briefly
in Section 2. In this respect, the first static and axially symmetric solution with arbitrary
quadrupole moment are described by Weyl [6]. Later, Erez and Rosen introduced a static
solution with arbitrary quadrupole in prolate spheroidal coordinates [7]. Then, Zipoy and
Voorhees introduced an equivalent form [8,9] and, later on, by representing this metric
in terms of a new parameter q, which is known as q-metric [10]. This area of study has
been discussed extensively in the literature and generalized in many respects [11–14],
among many others.

There are several motives to study the circular motion of particles in this background.
In the relativistic astrophysical study, it is assumed that astrophysical compact objects are
described by the Schwarzschild or Kerr space–times. However, besides these setups, others
can imitate a black hole’s properties, such as the electromagnetic signature. Thus, it is also
possible that some astrophysical observations cannot be fitted within the general theory
of relativity by using the Schwarzschild or Kerr metric [15]. Moreover, the astrophysical
systems are not always isolated as they are surrounded by different kinds of matter and
radiation. In a more realistic scenario, the rotation should be taken into account; however,
the possibility of observed resonant oscillations when they occur in the inner parts of
accretion flow has been directly demonstrated, even if the source of radiation is steady and
perfectly axisymmetric [16]. Therefore, this work could serve to constitute a reasonable
model of a real situation that arises in the vicinity of this compact object, where it is not
always isolated, with the possibility of analytic analysis through exercising parameters of
the model where they can be treated as the degrees of freedom of the system and link the
model to the observations.

In this paper, we also investigate dynamics of test particles in this background. This
discussion can approximate a diluted astrophysical plasma’s complex dynamics, where
they can be located around the system.

The paper’s organization is as follows: Section 2 presents the background object and
a study of the motion of test particles in this background. Section 3 explains epicyclic
frequencies and stable circular geodesics. The parametric resonances are presented in
Section 4. Finally, the conclusions are summarized in Section 5.

Throughout this work, we use the signature (−,+,+,+) and geometric unit system
G = 1 = c, unless otherwise specified. Latin indices run from 1 to 3, while Greek ones take
values from 0 to 3.

2. Space–Time of a Distorted, Deformed Compact Object

In this work, we consider generalized q-metric, which has q-metric as the seed metric
and considers the existence of a static and axially symmetric external distribution of matter
in its vicinity up to quadrupole. By its construction, this metric is only valid locally [5].
The metric has this form

ds2 = −
(

x− 1
x + 1

)(1+α)

e2ψ̂dt2 + M2(x2 − 1)e−2ψ̂

(
x + 1
x− 1

)(1+α)
[(

x2 − 1
x2 − y2

)α(2+α)

e2γ̂

(
dx2

x2 − 1
+

dy2

1− y2

)
+ (1− y2)dφ2

]
, (1)

where t ∈ (−∞,+∞), x ∈ (1,+∞), y ∈ [−1, 1], and φ ∈ [0, 2π). M is a parameter that
can be identified as the mass of the body generating the field, which is expressed in the
dimension of length. The function ψ̂ plays the role of gravitational potential, and the
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function γ̂ is obtained by an integration of the explicit form of the function ψ̂. These are
given by

ψ̂ = − β

2

[
−3x2y2 + x2 + y2 − 1

]
, (2)

γ̂ = −2xβ(1− y2)

+
β2

4
(x2 − 1)(1− y2)(−9x2y2 + x2 + y2 − 1). (3)

This metric contains three parameters, namely the total mass, α deformation parameter,
and β distortion parameter, which are taken to be relatively small and connected to the
central object and the presence of external mass distribution, respectively. In the case of
β = 0, it turns to the q-metric, and in the case of α = β = 0, the Schwarzschild metric is
recovered. This metric may associate the observable effects to these parameters as new
physical degrees of freedom. The relation between the prolate spheroidal coordinates
(t, x, y, φ) and the Schwarzschild coordinates (t, r, θ, φ) is given by

x =
r
M
− 1 , y = cos θ. (4)

In addition, the related kinematic quantities in this background, specific energy,
angular momentum, and Keplerian orbital frequency, respectively, read as

E = e−ψ̂

√(
x− 1
x + 1

)1+α x− S
x− 2S

, (5)

L = ±e−ψ̂(1 + x)

√(
x + 1
x− 1

)α S
x− 2S

, (6)

Ω = e2ψ̂

(
x− 1
x + 1

)α
√

x− 1
(x + 1)3

S
x− S

, (7)

where
S := 1 + α + βx− βx3. (8)

Furthermore, by analyzing the effective potential, we can have general properties of
the dynamics of a particle in this background. The effective potential in the equatorial
plane is given by this relation [4]:

Veff =

(
x− 1
x + 1

)(α+1)
e2ψ̂[

ε +
L2e2ψ̂

M2(x + 1)2

(
x− 1
x + 1

)α
]

. (9)

The domain of existence of the circular orbits in the equatorial plane is plotted in
Figures 1 and 2. In Figure 1, this domain is plotted in the (x, α)-plane in terms of the
distorted parameter β, while in Figure 2 this region is plotted in the (x, β)-plane for a range
of values of the deformation parameter α.

Following the standard procedure using effective potential, possible types of orbits,
in general, dependent on the parameters ε, E , L, α, and β. However, in what follows, we
only discussed bounded timelike trajectories as we are interested in studying oscillation
of particle for a small perturbation of the orbit; however, the test particles’ motion can be
chaotic in this background for some combinations of parameters α and β.
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Figure 1. The domain of existence of circular orbits in the equatorial plane, ploted in the (x, α)-plane.
Lightlike orbits are located on the black curve, 2S− x = 0. Timelike orbits’ positions form the blue
area, which is bound by the locus of the null geodesics 2S− x = 0 and the dashed curve S = 0.

Figure 2. The domain of existence of circular orbits in the equatorial plane, ploted in the (x, β)-plane.
Lightlike orbits are located on the black curve, 2S− x = 0. Timelike orbits’ positions form the blue
area, which is bound by the locus of the null geodesics 2S− x = 0 and the dashed curve S = 0.
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Figure 3 corresponds to the existence of both initial conditions on inner and outer
boundaries, where particles trapped in some region form a toroidal shape around the
central object. The trajectories for some choices of the parameters are plotted, where a
rapid inspection shows that the trajectories of the particle noticeably change when the
parameters change.

Figure 3. Timelike geodesic for different pairs of (α, β). The trajectories in the (r, φ) section and in
the complete 3D are plotted. In the first column, both configurations have E = 0.90 and L = 25.
In the second column, both configurations have E = 0.94 and L = 22. In the central column, both
configurations have E = 0.93 and L = 12. In the fourth column, both configurations have E = 0.93
and L = 15. In the last one, both configurations have E = 0.96 and L = 9.

3. Epicyclic Frequencies and Stability of Circular Geodesics

In the accretion disc processes, a variety of oscillatory motions are generally expected.
In this regard, circular and quasi-circular orbits seem to be crucial. In the study of the
relativistic accretion disc, three frequencies are relevant. The Keplerian orbital frequency
νK = Ω

2π , radial frequency νx = ωx
2π , and the vertical frequency νy =

ωy
2π . A resonance

between these frequencies can be a source of quasi-periodic oscillations that leads to
chaotic and quasi-periodic variability in X-ray fluxes observations in many galactic objects.

In the relativistic precession model (RPM) of QPO, it is assumed that this oscillation
caused by the epicyclic frequencies associated with the quasi-Keplerian motion in the accretion
discs. In RPM, the upper frequency is defined as the Keplerian frequency νU = νK and the
lower frequency is defined as the periastron frequency, i.e., νp := νL = ±(νK − νx). Their cor-
relations are obtained by varying the radius of the associated circular orbit in a reasonable
range. Within this framework, it is usually assumed that the variable components of the
observed X-ray signal are placed in a bright localized spot or blob orbiting the compact
object on a slightly eccentric orbit. Therefore, because of the relativistic effects, the observed
radiation is supposed to be periodically modulated.



Universe 2021, 7, 447 6 of 15

To study the stability of circular geodesics in the equatorial plane, we start by consid-
ering the geodesic equation for a test particle

d2xµ

ds2 + Γµ
νρ

dxν

ds
dxρ

ds
= 0, (10)

and substitute (x = x0, y = 0) as we are in the equatorial plane. To describe the more
general class of orbits that slightly deviate from the circular geodesics in the equatorial
plane xµ, we consider this diffeomorphism x′µ = xµ + ξµ. If we write the geodesic equation
for this perturbation, by considering terms up to linear order in ξµ, we obtain [17]

d2ξµ

dt2 + 2γ
µ
η

dξη

dt
+ ξη∂ηUµ = 0, (11)

where

γ
µ
η =

[
2Γµ

ηδuδ(u0)−1
]

y=0
, (12)

Uµ =
[
γ

µ
η uη(u0)−1

]
y=0

, (13)

where the 4-velocity for the circular orbits in the equatorial plane is uµ = u0(1, 0, 0, Ω).
Then, integration of the Equation (11) for the t and φ components leads to

dξη

dt
+ γ

η
νξν = 0, (14)

d2ξx

dt2 + ω2
xξx = 0, (15)

d2ξy

dt2 + ω2
yξy = 0, (16)

where, in the first equation, η can be taken t or φ, and

ω2
x = ∂xUx − γx

ηγ
η
x, (17)

ω2
y = ∂yUy. (18)

This system of equations describes the free radial phase and vertical oscillations of a
particle around the circular geodesics1. The sign of frequencies ω2

x and ω2
y determine the

dynamics and leads to having a circular orbit that is either stable or unstable. Indeed, even
a tiny perturbation can cause a strong deviation from the unperturbed path.

In the Schwarzschild solution, these frequencies in spheroidal coordinates are given by

ω2
x =

1
(x + 1)3

(
1− 6

x + 1

)
, (19)

ω2
y =

1
(x + 1)3 . (20)

In Schwarzschild space–time, the stability of the circular orbits is determined only
by the radial epicyclic frequency, since the vertical frequency coincides with the orbital
frequency ω2

y = Ω2. As is seen from the Equation (19), the vertical epicyclic frequency
is a monotonically decreasing function of x, and we have ω2

x < ω2
y = Ω2, and there

also exists a periapsis shift for bounded quasi-elliptic trajectory, implying the effect of
relativistic precession that changes the radius of the orbit [19]. Indeed, the ordering
between frequencies contributes to the possible resonances that may occur in a given
background. Furthermore, the behavior of the frequencies helps us to distinguish possible
trajectories around a stable circular orbit.
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These epicyclic frequencies in the background of a distorted and deformed compact
object are written as

w2
x =AxΩ2, (21)

w2
y =AyΩ2, (22)

where

Ax =
e−2γ̃(1− 1/x2)−α(2+α)

(x2 − 1)[
2(2S− x)(S− x)− (x2 − 1)

S
(1 + α + 2βx3)

]
, (23)

Ay =
e−2γ̃(1− 1/x2)−α(2+α)

S
(1 + α + 2βx3), (24)

where S is given as before
S := 1 + α + βx− βx3. (25)

Note that these frequencies are measured regarding the proper time of a comoving
observer. The signs of these fundamental frequencies provide a natural condition of
having the valid domain of existence of circular and quasi-circular orbits. We explore these
frequencies and the valid region more perspicaciously on Figures 4 and 5.

Figure 4. Stability of timelike circular orbits in the (x, α)-plane. Timelike circular orbits exist in the
light blue area. This region is bounded by the thick dark line (2S− x = 0). The red curve represents
w2

x = 0. The area depicted by the blue-gray region shows the domain of stability. In the chosen range,
w2

y > 0 in the entire light blue region. Timelike orbits are stable above the red curve with respect to
vertical perturbations and radial perturbations. On the contrary, below the red curve and in the light
blue region, the timelike geodesics are stable with respect to vertical perturbations but unstable with
respect to radial perturbations.
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Figure 5. Stability of the timelike circular orbits in the (x, β)-plane. Timelike circular orbit exists in
the light blue area. This region is bounded by the thick dark line (2S− x = 0) and the dashed line
(S = 0). The blue curve represents w2

y = 0 and the red one w2
x = 0. The blue-gray region shows the

stability domain with respect to chosen parameters.

In Figure 4, the region of stability of the timelike circular geodesics is plotted in the
(x, α)-plane for different values of the distortion parameter β, and in Figure 5, in the (x, β)-
plane for different values of the deformation parameter α. In Figure 4, as the sign of radial
frequency suggests: outside the red curve and in the blue region the timelike geodesics
are unstable for radial perturbations but stable for the vertical ones. In Figure 5, both the
curves w2

y = 0 and w2
x = 0 are depicted. The dark region is then bounded by these two

curves and shows the stable domain. Comparing these two figures shows that the effect of
parameter α is more profound than β. However, increasing β tends to shrink the range of α
in the valid region.

The interesting situation in this background, contrary to the Schwarzschild case, is
the various ordering possibilities that arise among frequencies. For analyzing the order of
magnitude of these frequencies, we analyze the frequency ratio

w2
x

w2
y
=

2S(2S− x)(S− x)
(x2 − 1)(1 + α + 2βx3)

− 1. (26)

These parameters β and α are not independent of each other; fixing one of them
restricts the other’s domain. For example, for a small enough parameter α, we have this
range of orders for parameter β

• α < 0: −O(10−2) < β < O(10−3)−O(10−4)

• α > 0: −O(10−3) < β < O(10−4)−O(10−5).

In Figure 6, the different epicyclic frequencies in the (x, α)-plane for different values
and signs of the distortion parameter β are plotted. In addition, curves of w2

y = Ω2,
w2

x = Ω2 and w2
x = w2

y are specified. Moreover, in the first row, the dark area represents
where w2

x > Ω2, and in the second row, it represents where w2
x > w2

y. We illustrated both
in one panel to ensure it would be easy to compare and analyze the behavior of different
regions. In Figure 7, the different epicyclic frequencies are also presented in the (x, β)-plane
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for different values of the deformation parameter α. In fact, this ordering is influenced by
the signs and values of both parameters α and β.

Figure 6. The different epicyclic frequencies in the (x, α)-plane are examined. On all the plots,
the yellow line depicts w2

x = w2
y, the pink line shows w2

x = Ω2, and the orange line is w2
y = Ω2.

The light blue area corresponds, as in Figures 4 and 5, to the area where circular orbits exist (bounded
by the thick black line 2S − x = 0), and above the red line, the orbit is stable with respect to
perturbations in both directions. In the panel, in the first row, the darker blue area satisfies w2

x > Ω2.
In the second row, the darker blue area satisfies w2

x > w2
y. By considering the first and second rows

together, one can have different ordering for these frequencies.

Figure 7. The different epicyclic frequencies in the (x, β)-plane are examined. As in Figures 4 and 5,
the red line shows w2

x = 0 and the blue line w2
y = 0. On all plots, the yellow line depicts w2

x = w2
y,

the pink line shows w2
x = Ω2, and the orange line is w2

y = Ω2. The light blue area corresponds, as in
Figures 4 and 5, to the area where circular orbits exist (bounded by the thick black line 2S− x = 0
and the dashed line S = 0). Between the blue and the red line, when the red line is above the
blue one, orbits are stable with respect to the perturbations in both directions. In this panel, in the
first row, the darker blue area satisfies w2

x > Ω2. In the second row, the darker blue area satisfies
w2

x > w2
y. By considering the first and second rows together, one can have different ordering for

these frequencies.

By considering Figures 6 and 7, we can extract interesting information about the order
of the epicyclic frequencies in this background: in Figure 6, in the (x, α)-plane, if we are
interested in the order of the frequencies above the red line where w2

x and w2
y are both

positives, we see that the ordering change after intersections. One appears when the red
curve crossing the orange curve and the other one when the three yellow, pink, and orange
curves cross each other, namely where we have Ω2 = w2

y = w2
x.

Thus, the first possibility is above the red curve, where there is no intersection point,
then we have w2

y > Ω2. On the contrary, if a crossing point between the red and the orange
appears, both situations w2

y > Ω2 and w2
y < Ω2 are possible. However, the existence of
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the second crossing point makes the order among the three frequencies even more varied.
In the following, we present the order for different cases concerning different situations. In
the second row of Figure 6, we can extract three different orderings:

(i) from the red curve to the pink curve: w2
x < Ω2 < w2

y;
(ii) from the pink line to the yellow line: Ω2 < w2

x < w2
y;

(iii) from the yellow line to the top: Ω2 < w2
y < w2

x.

In addition, for β ≤ 0 several different regions appear:

(i) above the red curve and below the orange, three regions present:

(a) below the pink and the yellow: w2
x < w2

y < Ω2;
(b) above the yellow and below the pink (small area): w2

y < w2
x < Ω2;

(c) above the yellow and the pink: w2
y < Ω2 < w2

x.

(ii) above the red curve and the orange one, three regions appear:

(a) below the pink and the yellow: w2
x < Ω2 < w2

y;
(b) above the pink and below the yellow (small area): Ω2 < w2

x < w2
y;

(c) above the yellow and the pink: Ω2 < w2
y < w2

x.

One can conclude the same results also by using Figure 7.

4. Parametric Resonances

Before the twin-peak HF QPOs were discovered in microquasars, this existence and
ratio, also their rational ratio due to the resonances in quasi-Keplerian accretion discs,
was expected [20,21]. Apparently, this fact is well supported by observations. In addition,
this 3:2 ratio as the ratio of (νU :νL) is seen most often in the twin HF QPOs in the LMXB
containing microquasars.

In this section, we study this phenomena by means of parametric resonance and
following the standard procedure utilizing the Mathieu’s equation [? ]. This equation
is a linear second-order ODE, which differs from the one corresponding to a harmonic
oscillator in the existence of a periodic and sinusoidal forcing of the stiffness coefficient as
f (t) = f0 + f1 cos(ω2

xt), and is given by

d2ξy

dt2 + ω2
y

[
1 + ω2

yh cos(ω2
xt)
]
ξy = 0 (27)

where h = f1
f0
� 0 is the amplitude of the excitation (forcing) term, νx = ωx

2π is its excited

frequency, and νy =
ωy
2π is the natural, unexcited frequency.

It is well known that this setup performs free oscillation around the stable equilibrium
case. If the stiffness term contains the parametric excitation, i.e., f1 6= 0, the motion can
stay bounded, which is referred to as stable, otherwise the motion becomes unbounded
and is referred to as unstable.

The resonance excitation arises for special values of frequencies. In contrast to the
standard resonance epicyclic model, the oscillating test particles in this background allow
both frequency ratios νy:νx = 3:2 and νy:νx = 2:3, which can be relevant in other observed
data, such as in different twin frequencies observed in the microquasar GRS 1915+ 105 (see,
for example [23]). In Figures 8 and 9, these resonance ratio for some chosen parameters are
depicted. We can see that the 3:2 resonance in the physical range is always present, while it
is not the case for this ratio 2:3. For instance, for a positive value of β, in the possible range
for α, the 2:3 resonance ration is not possible.

The QPO models are based on the frequencies of the quasi-circular geodesic motion.
However, we should mention that considering nongeodesic effects, such as fluid pressure,
can modify these models. In QPO models, one can identify the upper and lower frequencies
(νU , νL) with different combinations of νx and νy such as (νx, νy), or (νy, νx), which can also
produce the 3:2 ratio.
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Figure 8. The light blue area depicts the region of existence of the circular orbits. This region is
bounded by the thick black curve (2S− x = 0) and the dashed line (S = 0). The blue-gray region
shows the stability of the orbit with respect to vertical and radial perturbations. This area is bounded
by the blue curve (w2

y = 0) and the red curve (w2
x = 0). In this (x, α)-plane, the lime curve shows

where we have wy
wx

= 3
2 and the light cyan curve wy

wx
= 2

3 .

Figure 9. The light blue area depicts the region of existence of the circular orbits. This region is
bounded by the thick black curve (2S− x = 0) and the dashed line (S = 0). The blue-gray region
shows the stability of the orbit with respect to vertical and radial perturbations. This region is
bounded by the blue (w2

y = 0) and the red (w2
x = 0) curves. The lime curve shows the resonance

wy
wx

= 3
2 and the light cyan curve, shows the resonance wy

wx
= 2

3 .
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In Figures 10 and 11, the location of the three ratios νU : νL ={(3:2), (4:3), (5:4)} are
plotted. In Figure 10, we consider one of the models so-called EP and study the resonance
between the vertical epicyclic frequency, νU = νy, and the radial one νL = νx with respect to
β, and for two chosen values of α, also with respect to α, and are presented for two chosen
values of β. In Figure 11, the plots present the RP model, which is one of the promising
models and shows the resonance between the Keplerian epicyclic frequency νU = νK and
the periastron frequency νL = νK − νx. In both figures, in the first row, we see that two
radii satisfy the ratios νy : νx, and νK : νK − νx. Moreover, increasing β tends to push the
radius of the resonances outward. In the second row, the behavior of the radius is not
sensitive to the value of β and is monotonically decreasing with the parameter α.

Figure 10. The first panel shows the location of three cases of resonances between vertical and radial
epicyclic frequencies with respect to β. The thick line shows α = 0.4 and the dashed line α = −0.4.
The second panel represents the location of three cases of resonances between the vertical and the
radial epicyclic frequencies with respect to α. The thick line shows β = −0.00001 and the dashed line
β = 0.00001.

Figure 11. The first panel shows the location of three epicyclic resonances between the Keplerian
epicyclic frequency and the periastron frequency as a function of β. The thick line represents α = 0.4
and the dashed line α = 0. The second one shows the location of three epicyclic resonances between
the Keplerian epicyclic frequency and the periastron frequency as a function of α. The thick line
represents β = −0.00001 and the dashed line β = 0.

In addition, in Figures 10 and 11, the ratios of epicyclic frequencies at the maximum
of ωy are depicted. We see that the curves take their minimum at different radii depending
on the choice of β. In all cases, the positive and negative values of β almost take their
maximum at the same ratios; however, further analysis reveals that this radius is smaller
for its negative values. In addition, the maximum depend on the ratio; for example, we see
that as this ratio becomes larger, the maximum shifted in the smaller radius.

We also presented the result of fitting the oscillation frequencies to the observed
frequencies data for the three microquasars GRS 1915 + 105, XTE 1550− 564 , and GRO
1655− 40 in Figure 12. While considering rotation may modify the radial profiles of the
vertical and horizontal frequencies, these preliminary results show that the fitting can be
conducted even for the fast rotating microquasar as GRS 1915 + 105 and GRO 1655− 40.
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In fact, the work in progress shows that the positive α can play the role of the corotat-
ing Kerr, and its negative value the role of counter-rotating case in the part closer to the
central object. However, we focus on the fitting in the case of a relatively slowly rotating
XTE 1550 − 564 source, which is more compatible with our setup. As it shows, the parame-
ter α is a more contributing factor. For vanishing α, the result is in good agreement with
previous studies [24,25]. Further analysis reveals that we have a better fit for α ∈ (0, 1).
In addition, we expect to have a better fit for positive values of β. As a result, in Figure 12,
we see that there is a good agreement with the data for the ratio 3:2, which is the actual
frequencies of the twin HF QPOs observed in this microquasars, and confirm the efficiency
of the model. In general, the current results are encouraging and show improved accuracy
in estimated parameters when attempting to fit the data.

Figure 12. Representation of the upper oscillation frequency νU at the resonance radius for different
ratios related to Figure 11. We compared the frequency to the mass limits of microquasars obtained
by observations. Their characteristics are given in Table 1. They are plotted for β = −0.00001, β = 0
and β = 0.00001, and different values of α. The colors represent the same ratio as Figure 11.

Table 1. Observed twin HF QPO data for the three microquasars, based on measurements indepen-
dent of the HF QPO measurements given by the spectral continuum fitting [26,27].

Source GRO 1655 − 40 XTE 1550 − 564 GRS 1915 + 105

νU 447–453 273–279 165–171
νL 295–305 179–189 108–118
M

M� 6.03–6.57 8.5–9.7 9.6–18.4

5. Summary and Conclusions

This work investigated the dynamics of particles and quasi-periodic oscillation by
studying the fundamental frequencies of circular motion around a deformed compact
object up to the quadrupole. The metric is static, axisymmetric, and contains the distortion
parameter β related to the surrounding matter and deformation parameter α linked to
the central object, which are briefly explained in Section 2. The dependency of these two
parameters is reflected in the motion and epicyclic frequencies of particles that cause strong
deviation from the corresponding quantities in the Schwarzschild case. In this respect, one
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can explore different orderings among fundamental frequencies and various possibilities to
reproduce the ratio of 3:2, as well as other ratios via different combinations of parameters,
which is not the case in either the Schwarzschild or in q-metric.

In general, the resonant phenomena of the radial and vertical oscillations at their
frequency ratio 3:2 for different parameters can be adequately related to the frequencies of
the twin 3:2 HF QPOs observed in the microquasars GRS 1915 + 105, XTE 1550− 564, and
GRO 1655− 40, especially for α ∈ (0, 1). The effect of parameters on the radial and vertical
frequencies around a stable equatorial orbit is substantial. Moreover, different combinations
can link to producing different effects of compact objects. In fact, this model may cover a
variety of exciting applications in general relativity, gravitational waves and astrophysics.

A further step of this work can be considering rotation that leads to modifying the
radial profiles of the vertical and radial frequencies, which is a work in progress. In addition,
the magnetic field can serve as a fundamental input in this system to model more real
astrophysical systems. One can also extend this work from a single particle to a complex
system, such as accretion discs. Moreover, this model could serve as the initial conditions
in future numerical simulations.
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Note
1 For an alternative definition of the epicyclic harmonic motion, see [18].
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