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Abstract: One of the post-Keplerian (PK) parameters determined in timing analyses of several binary
pulsars is the fractional periastron advance per orbit kPK. Along with other PK parameters, it is
used in testing general relativity once it is translated into the periastron precession ω̇PK. It was
recently remarked that the periastron ω of PSR J0737–3039A/B may be used to measure/constrain
the moment of inertia of A through the extraction of the general relativistic Lense–Thirring precession
ω̇LT, A ' −0.00060◦ yr−1 from the experimentally determined periastron rate ω̇obs provided that
the other post-Newtonian (PN) contributions to ω̇exp can be accurately modeled. Among them, the
2PN seems to be of the same order of magnitude of ω̇LT, A. An analytical expression of the total
2PN periastron precession ω̇2PN in terms of the osculating Keplerian orbital elements, valid not only
for binary pulsars, is provided, thereby elucidating the subtleties implied in correctly calculating it
from k1PN + k2PN and correcting some past errors by the present author. The formula for ω̇2PN is
demonstrated to be equivalent to that obtainable from k1PN + k2PN by Damour and Schäfer expressed
in the Damour–Deruelle (DD) parameterization. ω̇2PN actually depends on the initial orbital phase,
hidden in the DD picture, so that −0.00080◦ yr−1 ≤ ω̇2PN ≤ −0.00045◦ yr−1. A recently released
prediction of ω̇2PN for PSR J0737–3039A/B is discussed.

Keywords: gravitation; general relativity; relativistic mechanics; neutron stars

1. Introduction

Recently, Hu et al. [1] performed a detailed analysis of the perspectives of measuring,
or effectively constraining, the moment of inertia (MOI) IA of the pulsar PSR J0737–
3039A [2,3] by the end of the present decade by exploiting the general relativistic spin-orbit
Lense–Thirring periastron precession ω̇LT, A [4] induced by its spin angular momentum
SA. Among the competing dynamical effects acting as potential sources of systematic
uncertainty, Hu et al. [1] included also the periastron precession ω̇2PN to the second post-
Newtonian (2PN) order which, along with the much larger1 1PN precession

ω̇1PN =
3 nK µ

c2 a (1− e2)
, (1)

depends only on the masses MA, MB of both the neutron stars which the Double Pulsar
PSR J0737–3039A/B is made of. In Equation (1), c is the speed of light in vacuum, µ

.
= GM

is the gravitational parameter of the Double Pulsar given by the product of the Newtonian
constant of gravitation G times the sum of the masses M .

= MA + MB, a and e are the
osculating numerical values of the semimajor axis and eccentricity, respectively, at the same
arbitrary moment of time t0 [5], while

nK .
=

√
µ

a3 (2)
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is the osculating Keplerian mean motion. In particular, Table 1 in Hu et al. [1] reported

ω̇2PN = 0.000439◦ yr−1 = 1.58 ′′ yr−1, (3)

for the 2PN periastron precession which would, thus, be prograde. In Equation (3), ′′

stands for arcseconds. Equation (3) is to be compared with the retrograde Lense–Thirring
periastron rate which, if calculated with the latest determination of IA by Silva et al. [6],
would be of comparable magnitude 2

ω̇LT, A ' −0.0006◦ yr−1 = −2.16 ′′ yr−1. (4)

An accurate prediction of the 2PN periastron precession, or of the experimental
quantity related to it, which is actually determined in real data analyses, is of the utmost
importance since, according to Equation (3), it may cancel Equation (4) to a large extent.
To this aim, it is important to stress that, although seemingly unnoticed so far in the
literature, a certain amount of uncertainty should be deemed as still lingering on that
matter because, perhaps, of how ω̇ is routinely expressed in most of the papers devoted to
binary pulsars. Indeed, as it will be shown here, the way usually adopted in the literature
to write the total 2PN periastron precession hides its dependence on the initial conditions
which, indeed, is buried in the parameterization used. Such a distinctive feature does not
occur at the 1PN level whose averaged orbital precessions such as Equation (1) and the
Lense–Thirring one ω̇LT are independent of the orbital phase at a reference epoch. Thus,
while the predictions of the 1PN precessions are valid for any starting time, it is not so
for the 2PN ones, despite their—purely formal—independence of the initial conditions
in certain parameterizations. Moreover, there is some confusion about the periastron
precession and how to correctly calculate it from the fractional periastron advance per orbit.
Finally, in numerically calculating ω̇2PN, the fact that also the formal 1PN term contributes
it in a subtle way is often overlooked yielding incomplete results.

The paper is organized as follows. In Section 2, the total 2PN3 periastron rate is calculated
(see Equation (18)) by using the osculating Keplerian orbital elements from existing expres-
sions in the literature for the fractional PN periastron shift per orbit k1PN + k2PN. In particular,
Equation (21) by Iorio [11] is used as starting point in Section 2.1, where an error by Iorio [11]
in obtaining the true total 2PN periastron rate is disclosed and corrected. In Section 2.2,
Equation (18) is obtained starting from Equation (5.18) by Damour and Schäfer [4], expressed
in the DD parameterization, after a proper conversion from the latter to the osculating Kep-
lerian orbital elements. In Section 3, Equation (18) is confirmed by numerically integrating
the PN equations of motion up to the 2PN order for a fictitious binary system. The results of
Section 2 are applied to other astrophysical and astronomical systems of interest in Section 4.
The case of PSR J0737–3039A/B is dealt with in Section 4.1, where Equation (3) is discussed
as well. Section 4.2 treats Mercury, the spacecraft Juno orbiting Jupiter, the Earth’s artifi-
cial satellites LAGEOS II, and the S-star S4711 around Sgr A∗. Section 5 summarizes the
findings obtained and offers concluding remarks.

2. How to Correctly Calculate the 2PN Periastron Precession from the Fractional
1PN + 2PN Periastron Shift per Orbit Using the Osculating Keplerian
Orbital Elements

In pulsar timing analyses, one of the so-called post-Keplerian (PK) parameters that
are determined is the fractional periastron shift per orbit kPK [4,12,13] defined as

kPK .
=

〈
∆ωPK〉

2π
. (5)

In Equation (5), ω is the argument of periastron, ∆ωPK is the time-dependent shift of
periastron induced by some PK dynamical extra-acceleration with respect to the Newtonian
inverse-square one, and the angular brackets 〈· · · 〉 denote the average over the orbital
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period PPK which, in presence of PK accelerations, has to be meant as the anomalistic
period PPK

ano, i.e., the time span between two successive crossings of the (moving) perias-
tron position. Nonetheless, it is common practice to deal with the averaged4 periastron
precession ω̇PK which is connected to kPK through

kPK =
ω̇PK

nPK , (6)

where
nPK .

=
2π

PPK (7)

is the PK mean motion. In general, Equation (7) differs from Equation (2).

2.1. Starting from the Formula by Iorio in Osculating Keplerian Orbital Elements

As far as the 2PN periastron advance is concerned, Equation (21) in Iorio [11] correctly
calculated k2PN, up to the scaling factor nK entering Equation (21) of Iorio [11], with the
Gauss perturbing equations in terms of the osculating Keplerian orbital elements (see
Equation (9)) by showing that his expression agrees with those obtained by Kopeikin and
Potapov [14] with the same perturbative technique but a different calculational strategy,
and by Damour and Schäfer [4] who, instead, used the Hamilton-Jacobi method and
the Damour–Deruelle (DD) parameterization [15] which is nowadays routinely used in
standard pulsar timing analyses [12,13]. Iorio [11], after having scaled k2PN by Equation (2),
erroneously claimed that the resulting expression for nK k2PN is the total 2PN pericentre
precession, which is not the case, as it will be shown below. Here, the explicit expressions of
k1PN, k2PN in terms of the osculating Keplerian orbital elements are reported. They are

k1PN =
3 µ

c2 a (1− e2)
, (8)

k2PN =
3 µ2 [2− 4 ν + e2 (1 + 10 ν) + 16 e (−2 + ν) cos f0

]
4 c4 a2 (1− e2)

2 , (9)

where f0 is the osculating numerical value of the true anomaly f at some arbitrary moment
of time t0, and

ν
.
=

MA MB

M2 . (10)

To correctly calculate the total 2PN pericentre precession ω̇2PN, some characteristic time
interval playing the role of “orbital period” has to be worked out to the 1PN order. In the
present case, the anomalistic period, i.e., the time interval between two successive crossings
of the (moving) pericentre position, fulfils such a requirement. To the 1PN order, it can be
written as

P1PN
ano = PK + ∆P1PN

ano , (11)

where the osculating Keplerian period is

PK .
=

2π
nK = 2π

√
a3

µ
, (12)

and the 1PN correction, calculated according to the strategy followed by Iorio [16], turns
out to be

∆P1PN
ano =

π
√

a µ

2 c2 (1− e2)
2 T

1PN
ano , (13)
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with

T 1PN
ano

.
= 36 + e2 (42− 38 ν) + 2 e4 (6− 7 ν)− 8 ν+

+ 3 e
{[

28 + 3 e2 (4− 5 ν)− 12 ν
]

cos f0 − e (−10 + 8 ν + e ν cos f0) cos 2 f0

}
. (14)

In the point particle limit corresponding to ν → 0, Equation (14) reduces to Equa-
tion (72) of Iorio [16]. The 1PN mean motion is, thus,

n1PN .
=

2π
P1PN

ano
=

nK

1 + µ

4 c2 a (1−e2)
2 T 1PN

ano
. (15)

Note that Equation (21) of Iorio [11], i.e., the product of Equation (2) times Equation (9)

nK k2PN =
3 µ5/2 [2− 4 ν + e2 (1 + 10 ν) + 16 e (−2 + ν) cos f0

]
4 c4 a7/2 (1− e2)

2 , (16)

has just formally the dimensions of a pericentre precession of the order of O
(
c−4), but,

contrary to what mistakenly claimed by Iorio [11], it is not the total 2PN pericentre rate
ω̇2PN. Indeed, the correct analytical expression for it can only be obtained by retaining
the term of the order of O

(
c−4) in the expansion in powers of c−1 of the product of

Equation (15) times the sum of Equations (8) and (9). If, on the one hand, replacing nK with
Equation (15) does not affect Equation (16) in the power expansion to the 2PN order, on the
other hand, it does matter when it is Equation (8) that is multiplied by Equation (15) and
power-expanded to the order of O

(
c−4). Indeed, from Equations (8) and (15) one has

n1PN k1PN
∣∣∣
2PN

=
3 µ5/2

4 c4 a7/2 (1− e2)
3

(
−36 + 8 ν + 2 e4 (−6 + 7 ν) + e2 (−42 + 38 ν)+

+ 3 e
{[

4 (−7 + 3 ν) + 3 e2 (−4 + 5 ν)
]

cos f0+

+ e (−10 + 8 ν + e ν cos f0) cos 2 f0}), (17)

which, added to Equation (16), yields

ω̇2PN =
3 µ5/2

8 c4 a7/2 (1− e2)
3

{
−68 + 8 ν + e4 (−26 + 8 ν) + 2 e2 (−43 + 52 ν)+

+ e
[
8 (−29 + 13 ν) + e2 (−8 + 61 ν)

]
cos f0+

+ 3 e2 [4 (−5 + 4 ν) cos 2 f0 + e ν cos 3 f0]
}

. (18)

This is the right analytical expression for the full 2PN pericentre precession expressed
in terms of the osculating Keplerian orbital elements. In the limit e→ 0, Equation (18) is
independent of f0.

Recapitulating, on the one hand, Equation (21) in Iorio [11] correctly worked out the
2PN fractional pericentre shift per orbit k2PN up to nK as scaling factor. On the other hand,
Iorio [11] mistakenly claimed that the resulting expression for nK k2PN was the total 2PN
pericentre precession, missing a further contribution from the power expansion to the 2PN
order of the product n1PN k1PN.
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2.2. Starting from the Formula by Damour and Schäfer in the Damour–Deruelle Parameterization

Equation (18) is in agreement also with the expression for the total 2PN pericentre
precession, written in terms of the osculating Keplerian orbital elements, which can be
extracted from Equation (5.18) in [4]

k1PN + k2PN =
3 (µ nDD)

2/3

c2
(
1− e2

T
) [1 +

(µ nDD)
2/3

c2
(
1− e2

T
) (39

4
x2

A +
27
4

x2
B + 15 xA xB

)
−

− (µ nDD)
2/3

c2

(
13
4

x2
A +

1
4

x2
B +

13
3

xA xB

)]
. (19)

In Equation (19),

xA
.
=

MA

M
, (20)

xB
.
=

MB

M
= 1− xA, (21)

while eT and nDD are members of the Damour–Deruelle (DD) formalism [15] which, in
the limit c→ ∞, reduce to the Keplerian eccentricity e and mean motion nK, as it will be
shown below.

The “proper time” eccentricity eT reads p. 272 in [12]

eT = et (1 + δ) + eθ − er, (22)

where Equation (3.8b) in [15]

et =
eR

1 + µ

c2 aR

(
4− 3

2 ν
) , (23)

Equation (4.13) in [15]

eθ = eR

(
1 +

µ

2 c2 aR

)
, (24)

Equation (6.3b) in [15]

er = eR

[
1− µ

2 c2 aR

(
x2

A − ν
)]

, (25)

and Equation (20) in [12]

δ =
µ

c2 aR

(
xA xB + 2 x2

B

)
. (26)

In Equations (23)–(26), aR is another member of the DD parameterization. According
to Equations (23)–(26), Equation (22) can be expressed in terms of only aR, eR as

eT

eR
=

1 + µ

2 c2 aR
[4 + 3 (xA − 2) xA] +

µ2

4 c4 a2
R
(8− 3 ν) x2

A

1 + µ

2 c2 aR
(8− 3 ν)

. (27)

The DD mean motion is Equation (3.7) in [15]

nDD
.
=

√
µ

a3
R

[
1 +

µ

2 c2 aR
(−9 + ν)

]
. (28)
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Equations (27) and (28) are both functions of aR, eR which, in turn, can be expressed
in terms of the osculating Keplerian semimajor axis a and eccentricity e by means of
Equations (28) and (29) in [5]

aR = a− da0 −
µ

c2 (1− e2)
2

[
−3 + ν + e2

(
−13 + e2 + 7 ν + 2 e2 ν

)]
, (29)

eR = e− de0 −
e µ

2 c2 a (1− e2)

[
−17 + 6 ν + e2 (2 + 4 ν)

]
, (30)

with Equation (14) in [5]

da0 =
e µ

4 c2 (1− e2)
2

{[
8 (−7 + 3 ν) + e2 (−24 + 31 ν)

]
cos f0+

+e [4(−5 + 4 ν) cos 2 f0 + e ν cos 3 f0]}, (31)

and Equation (16) in [5]

de0 =
µ

8 c2 a (1− e2)

{[
8 (−3 + ν) + e2 (−56 + 47ν)

]
cos f0+

+e [4(−5 + 4ν) cos 2 f0 + e ν cos 3 f0]}. (32)

Note that Equations (29)–(32) are written for general relativity; their general expres-
sions for a given class of alternative theories of gravitation can be found in Klioner and
Kopeikin [5]. The final expressions for aR, eR are

aR
a

= 1− µ

c2 a (1− e2)
2

[
−3 + ν + e4 (1 + 2 ν) + e2 (−13 + 7 ν)

]
+

+ e
µ

4 c2 a (1− e2)
2

{[
56 + e2 (24− 31 ν)− 24 ν

]
cos f0+

+e [4 (5− 4 ν) cos 2 f0 − e ν cos 3 f0]}, (33)

eR
e

= 1− µ

2 c2 a(1− e2)

[
−17 + 6 ν + e2 (2 + 4 ν)

]
+

− µ

8 c2 a e (1− e2)

{[
8 (−3 + ν) + e2 (−56 + 47 ν)

]
cos f0+

+ e [4 (−5 + 4 ν) cos 2 f0 + e ν cos 3 f0]}. (34)

By using Equations (33) and (34), Equations (27) and (28) can be finally expressed, to
the order of O

(
c−2), as
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8 c2 a (e− eT)
(
1− e2)

µ
=
[
8 (−3 + ν) + e2 (−56 + 47 ν)

]
cos f0+

+ e (4 {−13 + 3 ν− 3 (−2 + xA)xA+

+e2 [−2 + 7 ν + 3 (−2 + xA)xA]
}
+

+4 (−5 + 4 ν) cos 2 f0 + e ν cos 3 f0), (35)

(nDD

nK − 1
) 8 c2 a

(
1− e2)2

µ
= 8 (−9 + 2 ν) + 4 e4 (−6 + 7 ν) + e2 (−84 + 76 ν)+

+ 3 e
{[

8 (−7 + 3 ν) + e2 (−24 + 31 ν)
]

cos f0+

+e [4 (−5 + 4 ν) cos 2 f0 + e ν cos 3 f0]}. (36)

A power expansion to the order ofO
(
c−4) of the product of Equation (28) by Equation (19),

calculated with Equations (35) and (36), yields just Equation (18).
About the fractional periastron shift per orbit, Iorio [11] demonstrated the equivalence of

his Equation (21), up to the scaling factor nK, with the total explicit components of the order of
O
(
c−4) of Equation (19) and of an analogous formula by Kopeikin and Potapov [14], once

the proper translation of the latter ones into the osculating Keplerian orbital elements was
appropriately carried out.

3. Numerically Integrating the 1PN + 2PN Equations of Motion

The correctness of Equation (18), and also its general applicability to whatsoever
binary system for which the PN approximation is deemed applicable, can be numerically
demonstrated in the following way. For the sake of clarity, a fictitious two-body system
made of, say, two supermassive black holes with MA = 1× 106 M�, MB = 2× 106 M�
orbiting along a highly eccentric (e = 0.75) orbit in 0.05 yr is considered. For a given
set of initial conditions, parameterized in terms of the5 Keplerian orbital elements, the
equations of motion, in rectangular Cartesian harmonic coordinates, including the PN
accelerations [17] (see, e.g., Equation (4.4.28), p. 154); [18] (Equation (A2.6), p. 166); [19]
(Equation (10.3.7), p. 381)

A1PN =
µ

c2 r2

{[
(4 + 2 ν)

µ

r
+

3
2

ν v2
r − (1 + 3 ν) v2

]
r̂ + (4− 2 ν) vr v

}
, (37)

and [17] (see, e.g., Equation (4.4.29), p. 154); [20] (Equation (2.2d), p. 825); [21] (Equation (B11), p. 10)
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A2PN =
µ

c4 r2

{[
ν (−3 + 4 ν) v4 +

15
8

ν (−1 + 3 ν) v4
r + ν

(
9
2
− 6 ν

)
v2 v2

r + ν

(
13
2
− 2 ν

)
µ

r
v2+

+
(

2 + 25 ν + 2 ν2
) µ

r
v2

r −
(

9 +
87
4

ν

)
µ2

r2

]
r̂ +

[
ν

(
15
2

+ 2 ν

)
v2 − ν

(
9
2
+ 3 ν

)
v2

r−

−
(

2 +
41
2

ν + 4 ν2
)

µ

r

]
vr v

}
(38)

in addition to the Newtonian monopole

AN = − µ

r2 r̂, (39)

are numerically integrated over 1 yr with and without Equations (37) and (38) in each
run, and time series of ω(t) are correspondingly calculated. In Equations (37)–(39), r is
the relative distance between A and B, r̂ is the versor of the relative position vector, v is
the velocity vector of the relative motion, and vr

.
= v · r̂ is the radial velocity. Then, the

difference between the Newtonian and the PN time series for ω(t) is taken to extract the
time-dependent PN shift ∆ωPN(t). By construction, it includes both the full 1PN and 2PN
contributions along with other terms of higher order due to the interplay between the
1PN and 2PN accelerations, not of interest here. To single out just the total 2PN effect (up
to other PN contributions of higher order) ∆ω2PN(t), the 1PN linear trend, analytically
calculated by multiplying k1PN of Equation (8) times nK t, is subtracted from the time series
∆ωPN(t). The same procedure is repeated by varying the true anomaly at epoch f0 leading
to a change of the initial conditions. The resulting time-dependent signatures for ∆ω2PN(t)
are displayed in the upper panel of Figure 1. A linear fit to each of them is performed, and
the resulting straight lines are superimposed. Their slopes, in ◦ yr−1, can be compared
with the lower panel of Figure 1 displaying the plot of Equation (18) as a function of f0;
the agreement is neat.

0.0 0.2 0.4 0.6 0.8 1.0

-20

-15

-10

-5

0

t (yr)

ω
2
P
N
(t
)

(°
)

2PN periastron shift

f 0 = 0°

f 0 = 60°

f 0 = 120°

f 0 = 180°

f 0 = 240°

f 0 = 300°

Figure 1. Cont.
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0 50 100 150 200 250 300 350

-20

-15

-10

-5

0

f 0 (°)

ω
2
P
N
(°
y
r-
1
)

2PN periastron precession

Figure 1. Upper panel: time-dependent signatures ∆ω2PN(t) (see text for details on their generation) obtained by numerically
integrating 1PN + 2PN equations of motion for a fictitious two-body system with MA = 1 × 106 M�, MB = 2 ×
106 M�, Pb = 0.05 yr, e = 0.75 for different values of true anomaly at epoch f0. Superimposed straight lines are linear fits to
corresponding ∆ω2PN(t). Units are ◦. Lower panel: plot of 2PN periastron precession, in ◦ yr−1, analytically calculated for
same binary system with Equation (18) as a function of f0.

4. Application to Double Pulsar and Other Systems
4.1. The Case of PSR J0737–3039A/B

In the case of PSR J0737–3039A/B, Equation (18) yields

− 0.00080◦ yr−1 ≤ ω̇2PN ≤ −0.00045◦ yr−1, (40)

as shown by Figure 2, or, equivalently,

− 2.8 ′′ yr−1 ≤ ω̇2PN ≤ −1.6 ′′ yr−1. (41)

0 50 100 150 200 250 300 350

-0.00080

-0.00075

-0.00070

-0.00065

-0.00060

-0.00055

-0.00050

-0.00045

f 0 (°)

ω
2
P
N
(°
y
r-
1
)

2PN periastron precession of PSR J0737-3039A/B

Figure 2. Plot of total 2PN periastron precession of PSR J0737–3039A/B, in ◦ yr−1, analytically
calculated with Equation (18) as a function of f0.
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Equations (40) and (41) correct the wrong range for ω̇2PN which one would obtain for
the Double Pulsar by summing the values in Equation (20) and Equation (21) of6 Iorio [11].
From Figure 2, the 2PN periastron precession of PSR J0737–3039A/B is always retrograde
and does not vanish for any value of f0.

About Equation (3) quoted by Hu et al. [1] (Table 1), it was obtained as follows. By tak-
ing the product of Equation (28), or, in this case, also of Equation (2), times the sum of
only the second and the third term in7 Equation (19) and expanding the resulting expres-
sion to the order of O

(
c−4), one gets the following quantity which is dimensionally a

2PN precession

ψ̇2PN =
nK µ2 {78− 28 ν + e2 [3 + 2 (23− 5 xA) xA]

}
4 c4 a2 (1− e2)

2 = 0.000439◦ yr−1, (42)

in agreement with Equation (3). This demonstrates that the prediction for the 2PN pe-
riastron precession by Hu et al. [1] (Table 1) is, in fact, incomplete since it neglected the
contribution to ω̇2PN of the product of Equation (28) times the first term in Equation (19),
which is formally of the order of O

(
c−2).

4.2. Other Astronomical Systems

For the Sun and Mercury, Equation (18) yields

− 18µas cty−1 ≤ ω̇2PN ≤ −4µas cty−1, (43)

while for the spacecraft Juno currently orbiting Jupiter, it is

− 4µas yr−1 ≤ ω̇2PN ≤ 0µas yr−1. (44)

The 2PN perigee precession of the Earth’s artificial satellite LAGEOS II is as little as

− 0.0108µas yr−1 ≤ ω̇2PN ≤ −0.0100µas yr−1. (45)

In Equations (43)–(45), µas stands for microarcseconds.
Larger values occur, e.g., for the recently discovered S-star S4711 [22] orbiting the

supermassive black hole in the Galactic Center at Sgr A∗; it revolves around its primary in
7.6 yr along an orbit with an eccentricity as large as e = 0.768. Its 2PN periastron precession
range turns out to be

− 1.4 ′′ yr−1 ≤ ω̇2PN ≤ 0.074 ′′ yr−1. (46)

5. Summary and Conclusions

Calculating correctly the total 2PN periastron precession ω̇2PN from the fractional
periastron advance per orbit kPN = k1PN + k2PN requires to multiply the latter one by the
1PN mean motion n1PN instead of the osculating Keplerian one nK, as incorrectly done
by Iorio [11], and to expand the resulting expression to the order of O

(
c−4). Adopting

the osculating Keplerian orbital elements allows to obtain Equation (18) for ω̇2PN. It has
a general validity, being straightforwardly applicable to whatsoever two-body system
whose data are not analyzed within the DD framework, and clearly shows that the total
2PN periastron precession does depend on the initial conditions, as confirmed also by the
numerical integration of the 1PN + 2PN equations of motion for a fictitious binary displayed
in Figure 1. Also, the formula for k1PN + k2PN by Damour and Schäfer [4], written in terms
of the DD parameters, yields Equation (18) if properly multiplied by the DD version of
the 1PN mean motion and after appropriate conversion from the DD parameters to the
osculating Keplerian ones.

For PSR J0737–3039A/B, ω̇2PN is retrograde for any value of the initial orbital phase,
as shown by the plot of Equation (18) in Figure 2. Since it turns out that −0.00080◦ yr−1 ≤
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ω̇2PN ≤ −0.00045◦ yr−1, it adds up to the spin-orbit Lense–Thirring precession
ω̇LT, A ' −0.0006◦ yr−1.

The value ω̇2PN = 0.000439◦ yr−1 by Hu et al. [1] comes from having neglected to
multiply k1PN by the 1PN mean motion and to expand the resulting product to the order
of O

(
c−4).

For some astronomical systems in the Solar System of potential interest, the 2PN
pericenter precession is negligible, while for the S-star S4711 orbiting Sgr A∗ it amounts to
−1.4 ′′ yr−1 ≤ ω̇2PN ≤ 0.074 ′′ yr−1.

Funding: This research received no external funding.
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Notes
1 Also ω̇LT is formally a 1PN effect because it is proportional to c−2.
2 In principle, also the neutron star’s quadrupole mass moment [7] induces a competing periastron precession [8] which, however,

turned out to be fairly negligible for PSR J0737–3039A/B [1,9].
3 A recent calculation up to the 4PN order can be found in Blümlein et al. [10].
4 In the following, the brackets 〈· · · 〉 around ω̇PK will be omitted to make the notation less cumbersome.
5 Actually, such a choice is, by no means, necessary, being any other one yielding a bound trajectory equally valid; in any case, by

suitably varying the initial conditions, the resulting time series for the periastron evolution would change their slopes.
6 Also the remaining numerical results in Iorio [11] (Section 2, p. 6) are wrong, and should be calculated with Equation (18) for each

of the other binary systems considered.
7 Equation (2) of Hu et al. [1], up to the spin-orbit term, is just the product of Equation (19), written in terms of some “orbital

frequency” nb, times nb itself. In particular, fO entering Equation (2) of Hu et al. [1] is not to be confused with the true anomaly at
epoch f0.
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