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Abstract: The Sharma–Mittal holographic dark energy model is investigated in this paper using
the Chern–Simons modified gravity theory. We investigate several cosmic parameters, including
the deceleration, equation of state, square of sound speed, and energy density. According to the
deceleration parameter, the universe is in an decelerating and expanding phase known as de Sitter
expansion. The Sharma–Mittal HDE model supports a deceleration to acceleration transition that is
compatible with the observational data. The EoS depicts the universe’s dominance era through a
number of components, such as ω = 0, 1

3 , 1, which indicate that the universe is influenced by dust,
radiation, and stiff fluid, while −1 < ω < 1

3 , ω = −1, and ω < −1 are conditions for quintessence
DE, ΛCDM, and Phantom era dominance. Our findings indicate that the universe is in an accelerated
expansion phase, and this is similar to the observational data.

Keywords: Sharma–Mittal HDE model; FRW universe; Chern–Simons modified gravity

1. Introduction

An intriguing and longstanding problem that became a genuine test for gravity theo-
ries emerged from the observed accelerated expansion of universe [1–3]. The astrophysical
findings have given an interesting result that approximately 95–96% of the contents of
the cosmos comprise dark matter (DM) and dark energy (DE), along with 4–5% Bayronic
matter [4,5]. More intriguingly, about 70% of the energy density is designated as “Dark
Energy” and accepted as accountable for the accelerated expansion of the universe [6]. The
present astronomical and cosmological models are dealing with these fundamental issues
separately. Both DE and DM might be truly quantum gravitational effects or simply a
modification of General Relativity (GR) at large distances.

One of the most interesting models in modified theories of gravity in the last couple
of decades has been the four-dimensional Chern–Simons modified gravity (CSMG) theory
introduced by Jackiw and Pi [7]. The Pontryagin density is the basis of this theory and
suggests a violation of parity in Einstein–Hilbert actions. In four-dimensional spacetimes,
the density of the Pontryagin term acts as a topological quantity, unless the scalar field Θ is
not considered as a coupling constant.

Alexander and Nicolas [8] explored vacuum approximation and exact solutions in
CSMG theory and discussed Cosmic Baryon asymmetry and inflation. The energy density
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of the universe was explored by Silva and Santos [9] in accordance with Ricci scalar
curvature proportionality. Cardoso and Gualtieri [10] studied the stability characteristics
and the formalism perturbation of black holes and found no effect on the polar sector of
the CS parameter; however, the axial perturbations were found to be associated with a CS
scalar field.

The 4-D space times were reassembled in a cotton and Einstein tensor with source-free
CSMG theory, and this also demonstrated how the cosmological constant disappears and
the null orthogonal hyper-surface Killing vectors became parallel to the CS scalar field [11].
Amarilla et al. [12] suggested an approach that could integrate the null geodesic equation,
and this approach explains the black hole’s cast shadow. They also discussed that, in
addition to the angular momentum of the solution, the CS term distorts the shape of the
black hole (BH) shadow.

The geodesic precession and the strong gravitational lensing were addressed by Chen
and Jing [13] for slow rotation BH in the dynamical CSMG framework. Gödel type solutions
have been explored using a prior prescribed choice of external field as a function of the
angular parameter θ, and non-static spherical symmetric metrics were examined as a
function of the radial parameter r in [14]. The compatibility of the Gödel metric was
examined by Furtado et al. [15] in the context of CSMG. Amir and Ali [16,17] studied
different holographic dark energy models in CSMG taking into account the FRW universe.
The stability of the Schwarzschild BH in f (R) gravity in the presence of a parity-violating
CS term paired with a dynamic scalar field was examined by Moon and Myung [18]. They
talked about how f (R) gravity has no effect on the Zerilli equation, while CS coupling has
an effect on the Regge–Wheeler equations.

Heavenly in-spirals are one of the best-suited sources of gravity waves for space-based
detectors, such as the Laser Interferometer Space Antenna. In particular, GR modifications
described in four-dimensional CS gravitational theory are a parameter estimation of EMRIs
performed in [19]. Yagi and fellows [20] explored binary and isolated neutron stars in the
context of dynamical CSMG theory. They also investigated post-Kepler parameter correc-
tions that were found to be very similar to the double binary pulsar data observed today.
The Einstein field equations were solved by Contreras in 2 + 1 dimensional string theory
using the minimum geometric deformation method to explore an-isotropic solution [21].
He also evaluated a standard non-regular BH solution that contains exotic or non-exotic
hair solutions depending on the cosmological constant.

A variety of entropies have been used to generate modified HDE models [22,23];
however, there is no single example of generalized entropy formalism to construct on the
holographic principle available in the literature. The generalized entropies of Rényi [24]
and Tsallis [25] are appropriate models for the accelerated universe. These are commonly
used to examine different gravitational and cosmological arrangements. Jahromi et al. [26]
studied the Sharma–Mittal holographic dark energy model (SMHDE), with the Hubble
horizon playing an IR cut-off role, and found that the components of the cosmos did not
have any mutual interactions with each other.

The SMHDE model was found to exhibit stable behavior in the case of non-interacting
universes [27]. Chen [28] introduced recent developments on holographic entanglement
entropy. Varying from regular HDE models with Bekenstein entropy, such models evolve
to a late-time accelerated universe. Sharma and Dubey [29] explored the SMHDE models
with different diagnostic tools. Nojiri with fellows [30] studied Sharma–Mittal entropic DE
and showed that it is indeed equivalent with the generalized HDE.

Dubey et al. [31] explored the accelerated expansion of a conharmonically flat space
in relation to an isotropic and spatially homogeneous FRW universe through the SMHDE
model. Recently, Younus et al. [32] studied Tsallis, Rényi, and Sharma–Mittal entropies and
found a quintessence-like nature of the universe in most of the cases. Sarfraz et al. [33,34]
studied the Rényi HDE model considering FRW and Amended FRW matrices in the context
of CSMG theory and found a transition from the deceleration to acceleration phase that
was fully consistent with the observational data.



Universe 2021, 7, 428 3 of 11

Keeping in mind the above motivations, the SMHDE model is used in this paper to
investigate the deceleration parameter, energy density, Equation of state (EoS), and square
of sound speed in CSMG. These are arranged in the following order. Section 2 discusses
the fundamental formulae of CSMG. Section 3 provides a brief overview of the SMHDE
model. This section also investigates the deceleration, energy density, and EoS parameters.
The final section contains a summary and our concluding remarks.

2. Chern–Simons Modified Gravity

The cancellation of anomalies in particle physics motivates CSMG theory, which is an
efficient extension of GR that captures first-order gravitational parity violations. The CS
theory is an intriguing deformation of GR that has Pontryagin density as a gravitational
parity-violating term in the standard Einstein–Hilbert action as given by

S =
∫

d4x
√
−g[κR +

α

4
Θ ∗RR− β

2
(gµν∇µΘ∇νΘ + 2V[Θ])] + Smat, (1)

where α & β are dimensionless parameters, κ = 1
16πG , g is the determinant of the metric,

∇µ is the covariant derivative, and integrals represent the volume executed anywhere on
the manifold v. The term ∗RR is the Pontryagin density, defined as ∗RR = ∗Ra

b
cdRb

acd,
formally, ∗RR ∝ R ∧ R, where R is the Ricci scalar curvature. The natural choice for
the potential V[Θ] of the CS coupling is the Cotton tensor. Smat represents some matter
Lagrangian density, and Θ is a pseudo-scalar field depending on the space-time coordinates.
If it is assumed to be a constant function, then the CSMG theory reduces to GR identically.
Taking the action of variation over g and the scalar field Θ in Equation (1), one obtains a
set of CSMG equations expressed as

Gpq +
α

κ
Cpq =

1
2κ

Tpq, (2)

gpq∇p∇qΘ = − α

4π
∗RR (3)

where Gpq, Cpq, and Tpq are the Einstein, Cotton, and energy-momentum tensors, re-

spectively. Tpq is a combination of the T(m)
pq and TΘ

pq matter and scalar field components
defined as

T(m)
pq = (p + ρ)UpUq − pgpq, (4)

TΘ
pq = β(∂pΘ)(∂qΘ)− β

2
gpq(∂

vΘ)(∂vΘ), (5)

The quantity C-tensor is defined mathematically as

Cpq = − 1
2
√−g

[υσεσpγα∇γRq
α +

1
2

υστεσqγαRτp
γα] + (p←→ q), (6)

where υσ = ∇σΘ, υστ = ∇σ∇τΘ, and εcde f represents the four dimensional Levi–Civita
tensor.

The CSMG theory is founded on two explicitly distinct formulations, such as non-
dynamical and dynamical formulations. The CS scalar is the aforementioned function in
the non-dynamical case, and therefore its nominal transformation consequence enhances
to a differential constriction on the space of acceptable systems. In the particular instance
of a dynamical composition, the CS term is viewed as a dynamical field, including an
effective stress–energy tensor and an evolution equation. The dynamical approach is
defined mathematically by allowing α and β to be arbitrary, but non-zero constants in
Equation (1) at the level of action. On the other hand, for the non-dynamical framework
β = 0, and α is an arbitrary value at the level of action, such that the scalar field is externally
prescribed rather than emerging dynamically.
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The curvature of spacetime through which light travels on its path to a planet’s surface
influences the appearance of structures at cosmic distances. The geometrical attributes of
the cosmos are completely described by Einstein’s theory of relativity in which the metric
is a fundamental quantity that describes the geometry of spacetime. In a homogeneous
and isotropic universe, the curvature of space may vary with time; however, its magnitude
remains unchanged at any given epoch since the Big Bang. Robertson and his colleagues
independently demonstrated in the mid-1930s that the FRW metric would be the most
generic form for representing the expansion of the universe, mathematically described as

ds2 = dt2 − a2(t)[
1

1− kr2 dr2 + r2(dθ2 + sin2 θdφ2)]. (7)

Using Equation (5) the 00-component of the energy momentum tensor is calculated as

TΘ
00 =

1
2

Θ̇2. (8)

For the FRW metric, the Pontryagin term ∗RR turned to be zero identically, and thus
the second CS field equation given in Equation (3), reduces to

gpq∇p∇qΘ = gpq
[
∂p∂qΘ− Γo

pq∂oΘ
]
= 0 (9)

The analytic solution of the above equation is

Θ̇ = ca−3 (10)

Substituting Equation (10) in Equation (8)

ρθ = Tθ
00 = ρθ0 a−6, (11)

where ρθ0 = 1
2 m2, and m is the integration constant.

3. Sharma–Mittal HDE Model

Significantly increasing and additive properties are not always preserved in systems
involving statistical mechanics and associated thermodynamics at large distances. Shan-
non’s entropy [35] serves to create interactions that have a smooth and convoluted function
based on all possibilities, such as the Pj criterion of the ∑W

j=1 Pj = 1 system with jth proba-

bility of Pj. These are generally better described systems, i.e., P1−σ
i , which are more inclined

to be σ, instead of the usual transmission of Pj, by the distribution of the probabilities. It is
consequently necessary to describe these systems through other entropy measures. Sharma
and Mittal [36,37] proposed a general entropy, such as

SSM =
1

1− γ

( W

∑
j=1

P1−σ
j

) 1−γ
σ

− 1

. (12)

In the case of BH entropy in a loop, quantum gravity ∑W
j=1 P1−σ

j = 1+ σA
4 in Equation (12)

SSM =
1
ζ

(1 +
σA
4

) ζ
σ

− 1

, (13)

where A is the horizon area, ζ = 1− γ, and γ is a free parameter. On the basis of the
holographic principle, a relation Λ4 ∝ S

L4 is constructed for L, Λ, and S, which are the IR ,
UV cut-off, and system horizon, respectively. According to the HDE hypothesis, the DE
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density ρd corresponding to the IR cut-off in the presence of H = L−1 =
√

4π
A is expressed

as

ρd = 3λ2 H4

8πζ

[(
1 + σπ

H2

) ζ
σ − 1

]
, (14)

The term 3λ2

8π stands for a proportionality constant, and λ stands for a free dimension-
less parameter. The original HDE model can also be derived choosing the appropriate limit
of ζ → σ.

Since all the components of the Cotton tensor turned to be zero identically, the first
Friedmann equation of CSMG theory for flat universe takes the form

H2 =
8π

3
(ρm + ρd + ρθ), (15)

ρm = ρoa−3 represents the matter energy density. Inserting the expression for ρm, ρd,
and ρθ in Equation (15), it looks like

H2 =
8π

3

(
ρoa−3 + ρθ0 a−6 +

3λ2H4

8πζ

[(
1 +

σπ

H2

) ζ
σ − 1

])
. (16)

For the sake of simplicity, we assume that H = Φ(z)Ho, where Ho stands for the initial
value of the Hubble parameter and in terms of the redshift parameter, the scale factor
is a(t) = [z + 1]−1. Introducing Ωm = 8π

3H2
o

ρo , Ωθ = 8π
3H2

o
ρθ0 and χ = ζ

σ , Equation (16)
becomes

Φ2(z) = Ωθ [z + 1]6 + Ωm[z + 1]3 + λ2Φ4(z)
ζ

×
[(

1 + σπ
Φ2(z)H2

o

)χ
− 1
]
. (17)

The factor λ2

ζ is constant to be solved at z = 0 and Φ(0) = 1, such that

λ2

ζ
= 1−Ωm−Ωθ(

1+ σπ

H2
o

)χ

−1
. (18)

Substituting Equation (18) in Equation (17), it becomes

Φ2(z) = Ωθ [z + 1]6 + Ωm[z + 1]3

+
1−Ωm −Ωθ(
1 + σπ

H2
o

)χ
− 1

Φ4(z)
[(

1 +
σπ

Φ2(z)H2
o

)χ

− 1
]

. (19)

The deceleration parameter q is a dimension-free parameter used to investigate the
expansion rate of the universe affected by self-gravity. The relation between q and H is
given mathematically as

q = −1− Ḣ
H2 . (20)

We assume that H(z) = HoΦ(z) and substitute Ḣ = Ho
d
dz (Φ(z)) into Equation (20) to

obtain

q = −(1 +
Ho

d
dz (Φ(z))

H2
o Φ2(z)

). (21)
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Hence, the deceleration parameter in terms of z is

q = −1 + H4
o [z + 1]7

×

 3Ωm + 6Ωθ [z + 1]3

2H2
o [z + 1]2 − 4( 1−Ωm−Ωθ(

1+ σπ

H2
o

)χ

−1
)[{(1 + σπ[z + 1]2)χ − 1}+ 2χσπ[z + 1]2(1 + σπ[z + 1]2)χ−1]

. (22)

To analyze the behavior of q, we give a graphical representation using different nu-
merical values of the parameters employed in Equation (22), such that Ωθ = 0.15, 0.17, 0.19,
Ho = 67.4, Ωm = 0.315, σ = −25 and χ = 5, corresponding to the blue, red, and green
lines, respectively. Figure 1 illustrates the decelerated phase q < 0 at z < 0 and takes a flip
over the accelerated phase for q > 0 at a high redshift. The behavior of the deceleration
parameter is observed to be fairly analogous, and our graph supports the shift from decel-
eration to acceleration, as anticipated in [2,4,17,32,38,39]. It is worth mentioning here that
the SMHDE model supports the deceleration to acceleration conversion well-matched with
the observational data.

Figure 1. q versus z.

The total density Ω0 of the universe is defined as

Ω0 =
ρ

ρc
. (23)

If Ω0 = 1, this represents a flat universe, and there is adequate matter to prevent it from
expanding but not enough to cause it to collapse. Regular baryonic matter (ΩB), DM
(ΩD), and DE (ΩΛ) are the three components of the density parameter. The DM density

parameter ρd = ΩD(z)
3H2

o
8π was used in Equation (14) to arrive at

ΩD(z)
3H2

o
8π

=
3λ2H4

o
8πζ

[(
1 +

σπ

H2

)χ
− 1
]
. (24)

In terms of the redshift parameter, it can be written as

ΩD(z) =
λ2

H2
o [z + 1]4ζ

[
(1 + σπ[z + 1])χ − 1

]
. (25)
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To analyze the stability of the Sharma–Mittal model, we adopted the technique of a
square of sound speed (v2

s ) given by

v2
s = dpd

dρd
=

dpd
dΦ(z)

dρd
dΦ(z)

. (26)

Consider a scenario in which there is no interaction between various components of
the universe, implying that the SMHDE model follows the ordinary conservation law.

pd = −
(

ρ̇d
3H + ρd

)
= −

(
ρ́d Ḣ
3H + ρd

)
, (27)

where ρ′d = dρd
dH , and dot denotes the derivative with respect to time. The second field

equation for the flat FRW metric is

H2 +
2
3

Ḣ =
−8π

3
pd. (28)

Substituting Equation (27) in (28) analytically, one obtains

pd =
ρd −

Φ(z)
2

dρd
dΦ(z)(

4π
3H2

o Φ(z)

)
dρd

dΦ(z) − 1
. (29)

By differentiation of Equations (14) and (29) w.r.t Φ(z) and substituting the corre-
sponding expressions in Equation (26), one arrives at

v2
s = −

H3
0 [z + 1]2

24π
(
−[z + 1]2πKχσ(1 + πσ[z + 1]2)χ−1 + 2(−1 + (1 + πσ[z + 1]2)χ)

)
× 1(

−H3
0 [z + 1]3 +−2− π[z + 1]2Kχσ(1 + π[z + 1]2χ)χ−1 + 2(1 + π[z + 1]2χ)

)2

× {12π[z + 1]{H2
o [z + 1]2 + π[z + 1]2Kχσ(1 + π[z + 1]2χ)χ−1

− 2(−1(1 + π[z + 1]2χ))χ}{−H3
0 π2[z + 1]5K(χ− 1)χσ2(1 + πσ[z + 1]2)χ−2

+ 5Ho(−1 + H2
o )π[z + 1]3Kχσ(1 + πσ[z + 1]2)χ−1

− 6K(−1 + (1 + πσ[z + 1]2)χ)− Ho[z + 1]{π[z + 1]2Kχσ(1 + πσ[z + 1]2)χ−1

− 2(−1 + (1 + πσ[z + 1]2)χ)}}+ {3Hoπ[z + 1]2Kχσ(1 + πσ[z + 1]2)χ−1

− 6Ho(−1 + (1 + πσ[z + 1]2)χ)− 4π[z + 1]K{−2H3
0 π2[z + 1]3(χ− 1)χσ2

× (1 + πσ[z + 1]2)χ−2 + 5Ho(H2
o − 1)π[z + 1]3χσ(1 + πσ[z + 1]2)χ−1

− 6(−1 + (1 + πσ[z + 1]2)χ)}}{3π[z + 1]2Kχσ(1 + πσ[z + 1]2)χ−1

− 6(−1 + (1 + πσ[z + 1]2)χ) + 8H2
o π[z + 1]4ρd}}. (30)

For the sake of simplicity, we assume ( 1−Ωm−Ωθ(
1+ σπ

H2
o

)χ

−1
) = K in Equation (30). Now, we

plot a graph of v2
s versus the red shift parameter.

In Figure 2, we produced a graph of v2
s vs z with the values Ho = 67.4, Ωm = 0.315,

σ = 20, ρ = 0.8, χ = −10,−20,−40, and Ωθ = 0.15, 0.17, 0.19, corresponding to the blue,
red, and green lines, respectively. It is definitely a positive function that shows a decreasing
tendency for some −1 < z < −0.6 for the future but remains positive today.

The expression of EoS for an ideal fluid is given by

ω =
pd

ρm + ρd + ρθ
. (31)
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-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

z

V
s2

Figure 2. ν2
s versus z.

The EoS is a mathematical model that is used to investigate the effects of various
quantities on the cosmos. For example ω = 0 represents that the universe is influenced by
relativistic matter. The radiation era has an effect on the decelerated phase of the universe
if 0 < ω < 1

3 . The phantom, cosmological constant, and quintessence erases are found at
ω < −1, ω = −1, and ω < − 1

3 , respectively.
The expression for the EoS is evaluated as

ω = −1 +
2
3

H4
o [z + 1]7

×
[

3Ωm + 6Ωθ [z + 1]3

2H2
o [z + 1]2 − 4K[{(1 + σπ[z + 1]2)χ − 1}+ 2χσπ[z + 1]2(1 + σπ[z + 1]2)χ−1]

]
. (32)

To analyze the behavior of the EoS parameter with respect to the redshift, a graph is
plotted.

In Figure 3, a graph is plotted for ω versus z taking into account the parametric values
of Ho = 67.4, Ωm = 0.315 , σ = 3, χ = 16, and Ωθ = 0.15, 0.17, 0.19, corresponding to
blue, red, and green, respectively. The graphical representation reveals that the universe is
influenced by DE, as EoS anticipates the accelerated expansion phase [16,17,22,26–28,32].

WΘ = 8.001, 0.005, 0.01<

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.9

-0.8

-0.7

-0.6

z

w

Figure 3. ω versus z.

In the absence of χ or σ, the EoS is given as

ω = −1 + 3H4
o

[
3[z + 1]Ωm +

6Ωθ

[z + 1]4

]
. (33)
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The ω−ω′ plane is used to investigate the universe’s dynamical features. It has two
zones: one for thawing and one for freezing. The EoS parameter (ω) was negative in the
thawing zone and turned positive in the evolutionary case; however, the value of the EoS
parameter (ω) stayed negative in the freezing region.

The term ω′ is a derivative of EoS with respect to z of (32), and simplification gives

ω′ = 1
{2H2

o [z+1]2+2πKχσ(1+πσ[z+1]2)χ−1−4K(−1+(1+πσ[z+1]2)χ)}2

× {12H2
o [z + 1]6{5H2

o [z + 1]2Ωm − 2π2Kχσ2Ωm(χ− 1)[z + 1]4(1 + πσ[z + 1]2)χ−2

+ 9πKχσ[z + 1]2(1 + πσ[z + 1]2)χ−1 − 14KΩ(−1 + (1 + πσ[z + 1]2)χ)

+ 24πKσΩθ [z + 1]5(1 + πσ[z + 1]2)χ−1 − 40KΩθ [z + 1]3(−1 + (1 + πσ[z + 1]2)χ)

+ 16H2
o Ωθ [z + 1]5 − 4π2Kσ2χ(χ− 1)Ωθ [z + 1]7(1 + πσ[z + 1]2)χ−2}}. (34)

In Figure 4, the graph is plotted for ω′ vs z at Ho = 67.4, Ωm = 0.315, σ = −40, χ = 3,
and Ωθ = 0.15, 0.17, 0.19 corresponding to blue, red, and green, respectively. The term ω′

shows negative behavior depending on the choice of χ > 0 and σ > 0.

-1.0 -0.5 0.0 0.5 1.0

0.000

0.005

0.010

0.015

0.020

z

ω

Figure 4. ω′ and z.

4. Discussion of the Results and Conclusions

The SMHDE model was studied in this manuscript within the framework of CSMG
theory while taking into account the FRW universe. We studied the deceleration parameter,
EoS, the square of sound speed, and the energy density as cosmological parameters. We
predicted that the universe is in a decelerating and expanding phase known as de Sitter
expansion. At a high redshift, the graphical behavior depicted the decelerated phase q < 0
and flipped over the accelerated phase for q > 0.

We concluded that deceleration parameter was identical in all three cases, and we
propose that the conversion from deceleration to acceleration is coherent with those
of [2,4,7,17,22,32,38,39]. It is important to note that the SMHDE model endorses a de-
celeration to acceleration transition that is congruent with the observational data. Various
values of EoS, for example ω = 0, 1

3 , 1, indicate that the universe is influenced by dust,
radiation, and stiff fluid, while (ω = − 1

3 and −1 and ω < −1) stand for quintessence,
ΛCDM, and Phantom erases, respectively. Our findings demonstrated that the universe
is being influenced by DE as the EoS anticipated accelerated expansion phases similar to
those of [16,17,22].

The density parameter of the SMHDE model is well defined for all values of χ and
σ > 0. It is clear that the density parameter showed decreasing behavior and asymptotically
converged to zero, implying that the cosmos approaches a De Sitter universe with eternally
accelerated expansion. The square speed of sound was positive for all parameter values
that predict system stability. The dynamical properties of the universe were studied using
the ω′ in terms of the thawing and freezing regions. The EoS parameter ω turned negative
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in the thawing region and positive in the evolutionary case, whereas the significance of the
EoS parameter remained negative in the freezing region.
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