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Abstract: We present a proposal to relate the de Sitter conjecture (dSC) with the time dependence of
fluxes via the covariant entropy bound (CEB). By assuming an early phase of accelerated expansion
where the CEB is satisfied, we take into account a contribution from time-dependent flux compactifi-
cation to the four-dimensional entropy which establishes a bound on the usual slow-roll parameters
ηH and εH . We also show an explicit calculation of entropy from a toroidal flux compactification,
from a transition amplitude of time-dependent fluxes which allows us to determine the conditions
on which the bounds on the slow-roll parameters are in agreement to the dSC.

Keywords: fluxes; entropy; swampland; multi-field inflation

1. Introduction

The Swampland program has reached great advances in the last few years in its
pursuit of characterize those features distinguishing effective theories that can be consis-
tently completed into a quantum gravity theory (Landscape) from those which do not
(Swampland) [1–4]. The boundary between the Landscape and Swampland is usually
defined by a series of bounds on quantities of the proper effective theory which, in turn,
are expressed in terms of the Planck mass Mp. In the limit where gravity decouples, i.e.,
Mp → ∞, the Swampland constraints vanish. A question to be answered is whether these
boundaries can be traced back to some essential microscopic physics in the Quantum
Gravity Theory, or accordingly, to some fundamental constraints in the 10-dimensional
String Theory formulation.

Many different bounds have been proposed as Swampland conjectures, although it is
expected that all of them are related in some way through more fundamental principles
(see review [3] and lectures [4] for references). Some of them are based on solid grounds,
such as the distance conjecture and the weak gravity conjecture, while others, as the de
Sitter conjectures, were initially motivated by some empirical evidence based on string
models [5,6], and appropriately refined into its final form in order to be compatible with
some well known effective scenarios such as the Higgs potential [7] among others. The
refined version of the conjecture was motivated by stability of de Sitter extrema [8], by
cosmological arguments through the slow-roll parameter ηV [9], as well as by entropy
arguments together with the distance conjecture on the dS space [10]. Many logic and
solid arguments have been followed in the literature [11–20] so far with the purpose to
give stronger ground basis to this conjecture. A matter of particular interest to us is
the series of arguments supporting the de Sitter conjecture (dSC) based on the laws of
thermodynamics [21–24]. Relating the dSC to thermodynamic principles, such as a positive
temperature phase and the concavity of the entropy functional, respectively, have also been
considered in the literature. Furthermore, as stochastic effects become relevant, it is found
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by thermodynamic arguments that slow-roll conditions either violate the second law or the
swampland dSC [25,26].

In its original form, the de Sitter conjecture states that

|∇V|
V
≥ c or

min∇i∂jV
V

≤ −c′ , (1)

with c and c′ positive constants of order one in Planck units and V the effective scalar
field potential. In addition to the well known implication of discarding the existence of dS
minima, dSC also have implications on single and multi-field inflationary scenarios [27,28]
which have been proven to be a matter of great interest [29–41].

In this paper, we are interested in studying the implications of the CEB [42–45] on
the inflationary slow-roll parameters. We shall show that a time dependence of entropy
(which in turn we propose it comes from a time-dependent flux compactification) leads to
the presence of bounds on ηH and εH . Our goal is to determine if such bounds are related
to the dSC inequalities.

However, it is important to emphasize that we are not generating an expanding
(inflationary or not) four-dimensional Universe through fluxes. The source of an expanding
Universe from a string theory point of view is beyond the scope of this paper. Our interest
focuses on the compatibility of an inflationary Universe with the CEB1.

The paper is organized as follows. In Section 2, we briefly review some basics re-
garding the CEB and establish a relation between the change of entropy over time and the
slow-roll parameter εH Equation (9). In Section 3, we use this relation to study its implica-
tions on single field and multi-field inflationary scenarios. Our main result is that we are
able to reproduce the inequalities of the dSC, as well as the mutual exclusion between them
in terms of the time variation of entropy sourced from physics in extra dimensions, as well
as the explicit form of the constants c and c′ in terms of entropy and time derivatives of it.
A simple example concerning a toroidal flux compactification is presented to show how
fluxes contribute to the four-dimensional entropy. Finally, we discuss our conclusions and
some final comments.

2. Covariant Entropy Bound and Inflation 2

The covariant entropy bound (CEB) is a well tested conjecture in many gravitationally
scenarios, including cosmology [42–45]. Basically, it states that for a codimension 2 surface
B, there exist at least two light-sheets L, defined as the codimension 1 null hypersurfaces
orthogonal to B spanned by light-type trajectories terminating at a singularity or a caustic,
with a negative expansion rate. These light-sheets can be future or past-directed. The
general statement is that the entropy associated to the light-sheet S(L[B]), at a given time,
is bounded by the area A of the surface B as2

S(L[B]) ≤ A(B)
4

. (2)

In [10] the association of the CEB with an expanding de Sitter (dS) Universe establishes
a bound for the entropy given by,

S ≤ πR2
AH , (3)

where RAH is the radius of the apparent horizon (AH). Appealing to the distance conjecture
(DC), it is discussed the case in which entropy increases with the field moduli distance
through the appearance of towers of massless modes φ. Since in a dS space R2

AH ∼ 1/V,
where V is the scalar potential, the CEB implies that3

∂φS ≤ −
∂φV
V2 . (4)



Universe 2021, 7, 423 3 of 16

Due to the fact that the potential V decreases as the number of massless modes grows,
∂φV < 0. By taking ∂φS ∼ c/V, with c a number of order 1 in Planck units, the slow-roll
parameter εV acquires a bound given by

2εV =
|∂φV|2

|V|2 ≥ c2. (5)

As noticed in [9], εV is not necessarily of order 1 if

ηV ≤ −c′, (6)

with c′ another constant of order 1 in Planck Units. This was also concluded in [10] by
constraining the scalar potential fluctuations to remain within the AH. In this context,
the refined de Sitter conjecture (dSC) follows from the dependence of entropy, and of the
apparent horizon radius, on the tower of massless modes.

In this work we are interested in a slightly different—but equivalent—approach by
demanding that entropy and RAH increases as time runs, via an effective scalar field φ
derived from a string compactification with fluxes depending on time.

We now proceed to elaborate our proposal. In a flat 4-dimensional expanding Universe
described by the Friedmann–Robertson–Walker (FRW) metric:

ds2
4 = −dt2 + a2(t)(dr2 + r2dΩ2), (7)

It is possible to define the radius of the AH at a time t as RAH = 1/H, with H the Hubble
constant defined as H = ȧ/a, where ȧ denotes the time derivative with respect to the
proper time t. As the Universe expands, the comoving Hubble radius RAH/a shrinks and
the AH comoving area given by

AAH = 4πR2
AH =

4π2

H2 (8)

increases. Following [45], an infinitesimal variation of time helps us to rewrite the CEB in
the form4.

γ ≡ HṠ
2π
≤ εH , (9)

with εH = −Ḣ/H2 the usual slow-roll inflationary parameter satisfying εH � 1, implying
that φ̇2 and φ̈ are much smaller than V. Notice that according to our anzatz, as the AH
radius increases we also expect an increase on entropy, thus our model is valid only for
Ṡ > 0.

In the following we shall assume that a variation of entropy in time comes from extra
dimensions within a string theory based scenario. In this context, we expect that entropy
must be a function of the Hubble parameter H, time and other string parameters which we
shall ignore to our present purpose.

3. Inflation and Effective Field Theory

Let us consider an N-field scenario. As shown in [57], it is more convenient to switch
to the kinematic −Frenet–Serret− frame to compute the equations of motion of an effective
theory in the presence of a scalar potential V = V(φa) with a = 1, . . . N. See Appendix A
for more details.

The equations of motion can be written in terms of the unitary tangential vector ê1,
the normal ê2 and the (N − 2) binormal êi, as

(φ̈ + 3Hφ̇ + V1)ê1 + (−φ̇Ω1 + V2)ê2 + Vi êi = 0, (10)
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with i = 3, . . . , N, φ̇ is the norm of the vector field ~̇φ = (φ̇1, . . . , φ̇n) and Ω1 is the curvature
defined as Dt ê1 = −Ω1 ê2. Since the Frenet–Serret frame {ê1, ê2, êi} is an orthonormal basis,
we find that

φ̈ + 3Hφ̇ + V1 = 0, (11)

−φ̇Ω1 + V2 = 0, (12)

Vi = 0. (13)

Notice all projections of ~∇V along normal vectors êi, denoted by Vi, vanish for i =
3, . . . , n, implying that we can focus only on the field trajectory on the osculating plane.

Now, together with the Einstein–Friedmann equation

3H2 =
φ̇2

2
+ V, (14)

and by the usual definitions of the slow-roll parameters,

εV ≡
1
2

(
~∇V
V

)2

= ε̃V + ε̂V , (15)

with

ε̃V =
1
2

(
V1

V

)2
, ε̂V =

1
2

(
V2

V

)2
, (16)

we can construct a relation between εH and ε̂V given by

ε2
H − (6 + α)εH + 9 = 0, (17)

where

α =
Ω2

1
H2ε̂V

=
2V2

H2φ̇2 , (18)

with ε̂V 6= 0. Notice that α→ 0 implies εH → 3 for which an accelerated expansion—and
therefore inflation—is ruled out. An almost zero α means two things: one is that the kinetic
energy is much bigger than V; the second possibility involves ε̂V growing faster than the
ratio Ω1/H.

By using εH as a function of ε̂V from (17) we obtain from inequality (9)

γ ≤
(

3 +
α

2

)
±
√(

3 +
α

2

)2
− 9. (19)

For γ ≤ 3 + α
2 (otherwise εH > 1) we can establish a bound for εV as follows. From

Equation (19) we have

ε̂V ≥
Ω2

1
H2

γ

(γ− 3)2 . (20)

Then a lower bound for εV follows in the form of

1
2
|∇V|2
|V|2 = ε̃V + ε̂V ,

≥ ε̃V +
Ω2

1
H2

γ

(γ− 3)2 , (21)

implying that



Universe 2021, 7, 423 5 of 16

|∇V|2
|V|2 ≥ 2εH +

Ω2
1

H2
2γ

(γ− 3)2 , (22)

where according to our initial anzatz we have taken the slow-roll limit, εH ∼ ε̃V .
Notice that for γ ∼ εH � 1, the above expression reduces to

εV ∼ εH

(
1 +

Ω2
1

9H2

)
. (23)

Therefore, in a multi-field scenario, inflation is allowed with εV of order 1, while
γ < εH � 1. This is precisely the statement by Achúcarro and Palma in [28]. A stringy
example in which it is possible to fulfill the Swampland constraint in a multi-field scenario
by considering fat inflations was studied in [58]. Observe that for single field inflation, i.e.,
with Ω1 = 0, expression (22) allows εV to be smaller than 1.

3.1. Refined Swampland de Sitter Conjecture

Our initial anzatz assumes the validity of γ ≤ εH � 1. However, from Equation (22),
a very small value for γ opens up the possibility for εV be smaller than O(1). It is then
of interest to construct a bound for ηH , which according to the dSC, must be of the form
ηH < −c′. First of all, let us assume that γ is defined in a way such that we can write

γ̇ ≤ O(1)ε̇H . (24)

This is a reasonable assumption since γ must be smaller than εH during a finite time
interval in which an exponential accelerated expansion occurs. Since we are assuming
γ/εH ≤ 1, we can restrict to a time interval during which

γ̇/γ ≤ ε̇H/εH . (25)

According to [10] this means that fluctuations of the scalar potential must remain
inside the AH. Actually this is equivalent to take a double time derivative on the CEB while
preserving the inequality, i.e.,

S̈ ≤ 2π
d
dt

( εH
H

)
. (26)

Hence, using the expression for ηH in terms of the Hubble constant as ηH = −Ḧ/(2HḢ),
expression (25) reduces to

ηH ≤ −
S̈

4πεH
+

3
2

εH . (27)

On the other hand, by taking the derivative of the Einstein–Friedmann equations of
motion5, it is found that

ηH + εH =
DtV1

3H2φ̇
, (28)

which together with

DtV1

φ̇
= Q1 −Ω2

1 (29)
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where Q1 is a quadratic form given by Q1 = Vabea
1eb

1 with ea
1 = φ̇a/φ̇ (see Appendix A), it

follows that

ηV ≈
λmin −Ω2

1
V

≤ − 1
4π

S̈
εH

+
5
2

εH .
(30)

In this last expression, we have used that under the condition of orthonormality
∑a |ea

1|2 = 1, the quadratic form Q1 has a minimum value given by the smallest eigenvalue
λmin of the Hessian matrix Vab in the basis {ea

i }, as well as that 3H2 ≈ V.
Notice the following:

1. S̈ ≤ 0 if, and only if, ηV ≥ 5
2 εH . Therefore, ηV < 0 only if S̈ > 0;

2. For a single field effective theory, i.e., Ω1 = 0, λmin can be positive only if S̈ < 10πε2
H .

Since εH � 1, S̈ can be a (less than one) positive number or a negative number. For
S̈ ≥ 10πε2

H the minimal squared mass is negative;
3. For Ω1 6= 0, it is possible to have a negative ηV of order 1 even though λmin is positive

if Ω1 � 1. On the other hand, λmin would be negative only if S̈ >
4πεHΩ2

1
V .

In summary, it is the profile of S̈ which would determine whether the dSC would be
satisfied or not in both single and multi-field scenarios.

3.2. Lyth’s Bound and the Swampland Distance Conjecture

It has been found that, for a canonical single-field slow-roll model of inflation, gen-
erally the overall field displacement ∆ϕ experienced by the inflation during the quasi-de
Sitter phase must satisfy a lower bound, which is known as the Lyth bound [59]

∆φ '
√

2εH∆N, (31)

where ∆N is the effective number of e-folds during inflation needed to be at least 60. So,
we can rewrite (31) as,

∆φ '
√

2 · 60
√

εH = κ
√

εH , (32)

where κ is a number of O(10). Hence, during inflation field displacement is expected to be
of order 1 in Planck units, although larger orders have been considered in the literature and
known as trans-Planckian distances. However, recently it has been conjectured (see [3,4]
and references therein) that field displacements have an upper bound, probably connecting
to other Swampland conjectures, as the Distance conjecture.

Now, in the case of multifield inflation, the field excursion ∆φ has an extra contribution
coming from non-trivial angular motion Ω1 and entropy mass M [28],

∆φ & κ

√
εH
β

(33)

where β is a function depending on Ω1 and M. Now following [28], if the fluctuating mode
crosses the horizon in the linear regime, i.e., if the condition (1− c2

s )H < cs M is satisfied,
then β ' cs, where cs is the propagating speed of adiabatic perturbation also known as the
speed of sound, given by

cs =

(
1 +

4Ω2
1

M2

)−1/2

(34)
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where M2 is given by,

M2 = Q2 + εH H2R−Ω2
1, (35)

with the quadratic form Q2 given by

Q2 =ea
2eb

2Vab, (36)

where ea
2 are the normal unitary directions in the Frenet–Serret frame, andR = Rabcdea

1eb
2ec

1ed
2 .

Notice that, the maximum and minimum values of Q2 are given by the eigenvalues of the
Hessian matrix Vab denoted λmin or λmax, with Rabcd and R the Riemann tensor and Ricci
scalar of the scalar field manifold.

Hence the Lyth bound (33) can be written as,

∆φ ≥ κ
√

εH

(
1 +

4Ω2
1

M2

)1/4

= κ
√

εH

(
1 +

4Ω2
1

λ−Ω2
1 + εH H2R

)1/4

, (37)

where λ ∈ [λmin, λmax].
Let us also comment on different scenarios, by considering the CEB (9),

1. If cs ' 1, it looks like the bound can be made even stronger than in (31). This is
because cs = 1 implies that either Ω1 = 0 −which holds for the case of a single field−
or M2 � Ω2

1. For εH � 1 the last case implies that λ cannot be negative, indicating
that the second inequality of the dSC does not hold and that λ� Ω2

1. Additionally,
for inflation to take place, we need γ � 1 which makes the bound for ∆φ stronger
compared to the bound fixed by εH ;

2. If cs < 1, Ω1 cannot be zero. This case then applies to multi-field scenarios. Notice that
the bound on ∆φ is now weaker than the bound for single field models (31) if λ < Ω2

1.
As shown in [60], if ∆φ ≥ 10 in Planck units, there is still room to satisfy the dSC.
So now we have to see under which conditions the ratio

√
γ/cs remains unaltered,

allowing the dSC to be satisfied. If λ−Ω2
1 > 0 the bound can become stronger.

Summing up, we have presented an anzatz in which a contribution to entropy al-
legedly from string theory, leads us to the possibility to reproduce both inequalities in the
dSC. We now proceed to consider a simple toy example in which the entropy contribution
from a flux string scenario is computed.

3.3. Entropy from a Flux Compactification on T6/Z2

In this section, we shall present a very simple example in which we show that a
contribution to the 4-dimensional entropy from string compactification is a possibility to
be considered. Before explicitly describing our model, it is important to contextualize it
within different scenarios already studied in the literature. The first thing to have in mind
is that we are interested in models with an implicit time dependence.

A possible simple scenario may consist of an internal metric with a time-dependent
warping factor. However, as shown in [61], those scenarios are in conflict with cosmological
models with an inflationary stage. Concretely a single scalar field with a non-stabilized
modulus constructed from a theory with extra dimensions is not compatible with inflation
if null energy conditions (NEC) are fulfilled.

We shall take into account another option6, which has not been vastly explored in the
literature by allowing the fluxes to depend on time during a quantum transition. For this,
we start from a well-known scenario in which NS–NS and RR 3-form fluxes are turned
on while fulfilling the usual constraints as tadpole cancellation, Bianchi identities, and
Dirac quantization. Given a flux configuration specified by a specific set of RR and NS–NS
fluxes some of the moduli are fixed at their specific vevs while the Kähler moduli remain a
runaway direction. Therefore, in this case we have a single field inflationary scenario7.
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Now, we allow the potential forms to behave as quantum fields in order to compute
the transition amplitude of a given flux configuration into itself during a time interval.
Throughout this transition, the fluxes can get any value, which does not necessarily obey
any of the aforementioned restrictions inherent to the consistent stringy scenario (one
can think about these fluxes as virtual ones). The amplitude is then given in terms of the
associated path integral

Z ∼
∫
D[F(t)]e−iSIIB(F) (38)

where F(t) denotes all possible flux configurations in the type IIB action depending on
time and [D(F)] denotes the Feynman’s measure along all possible trajectories for different
flux configurations, modulo those which are equivalent by the same tadpole contribution.

In the following, we shall compute the partition function Z for a simple toy model
and, in consequence, we shall compute the entropy contribution as a function of time,
which, in turn, will lead us to estimate the value of Ṡ and S̈. In this context, we shall be able
to test the possibility to obtain the dSC according to our initial anzatz, this is, by proposing
that the source of the bounds come from time-dependent internal fluxes.

3.4. A Toy Model: Isotropic Toroidal Compactification with Fluxes in Type IIB

Our model consists on a compactification on an isotropic six-dimensional torus T6

threaded by fluxes with an orientifold O3-plane. We are not considering the presence of
D3-branes for which we are taking RR potential C4 = 08. We will follow the notation of [63]
in this subsection.

Consider a factorizable torus T6 = T2 × T2 × T2 with coordinates as in Figure 1, and
let us take the ten-dimensional metric given by

ds2
10 = ds2

4 + ∑
i
(dyi)2 , (39)

where ds2
4 is the homogeneous and isotropic FRW metric (7). Since we are interested in

computing an amplitude transition of a given flux configuration of N units of RR flux F3
and M units of NS–NS flux H3 which satisfy the supergravity equations of motion and the
stringy constraints, we shall consider that during transition the fluxes are time dependent.
Let us start by considering a specific example in which the closed string potentials C2 and
B2 depending on time, are given by

C2 = f (t)Ny6dy2 ∧ dy4, and B2 = f (t)My5dy1 ∧ dy3, (40)

because the function f (t) depends on time. The corresponding action in the string frame

Aflux = −1
2

∫
d10x

√
−g10

(
F2

3 + e−2φH2
3

)
, (41)

reduces to

A =
1
2

∫
d10x a3(t)

[
N2( ḟ (t)2(y6)2 − f 2) + M2e−2φ( ḟ (t)2(y5)2 − f 2)

]
(42)

where the 3-form fluxes are defined as

F3 = N( ḟ y6dt + f dy6) ∧ dy2 ∧ dy4,

H3 = M( ḟ y5dt + f dy5) ∧ dy1 ∧ dy3, (43)
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y1

y2y2

y3

y4×

y5

y6×

Figure 1. Coordinates of the compact space.

Since we are considering the isotropic case, we take all the internal coordinates yi on
equal footing (y), and the above integral can be written as

Aflux =
1
2

∫
d10x a3(t)(N2 + e−2φ M2)

(
( ḟ (t))2y2 − f (t)2

)
, (44)

which mimics the behavior of a harmonic oscillator in a compact space. Thus, the partition
function related to the above action can be found explicitly. The first step is to integrate
over the internal coordinates from 0 to 2πR and external space coordinate r from 0 to r∗,
for some finite r∗ from which one obtains

Aflux = −
∫ t∗

0
dt f (t)D̂ f (t), (45)

where

D̂ = α(t)
(

d2

dt2 + 3H
d
dt

+ ω2
0

)
, (46)

with ω2
0 = 3/(2πR)2 and

α(t) =
(2π)9R8r3

∗
9

a3(t)(N2 + e−2φ M2), (47)

with the boundary condition f (0) = f (t∗), which states that at time t = 0 there is a given
distribution of fluxes with N units of RR flux and M units of NS–NS flux. Between time 0
and t∗ this distribution of fluxes changes such that at time t∗, the original distribution of
fluxes is recovered. It is important to notice that α(t) is finite due to the tadpole cancellation
condition and the fact that the dilaton has been fixed by the fluxes9.

Therefore, the partition function can be given by:

Z(N,M)(0, t∗) =
∫
D[ f (t)]e−

i
2
∫ t∗

0 dt α(t) f (t)D̂ f (t), (48)

which can be used to compute the transition amplitude between an initial flux configuration
(N, M) and the final one specified by the same flux configuration. After performing the
integral of (48) (and replacing t∗ by t), and by taking the case in which Ω2 = 9H2

4 −ω2
0 < 0,

one obtains

Z(N,M)(0, t) =
(
−iα(t)Ω

2πsin(Ωt)

)1/2

. (49)

Notice that, our model behaves like a harmonic oscillator with a time-dependent mass
α(t). For Ω2 > 0 a similar expression is obtained by replacing sin(Ωt) by sinh(Ωt).

Let us concentrate on the first case. After using standard methods in Euclidean time,
it is possible to compute the entropy S(t) from Z(N,M) which reads

S(t) =
1
2

log
[
− i

2π
α(t)Ωcsc(Ωt)

]
+

1
2
(
Ω̇t + Ω

)
t cot(Ωt)− t

2

(
α̇

α
+

Ω̇
Ω

)
(50)
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where
α̇

α
= 3H, and

Ω̇
Ω

=
9
4

HḢ
Ω2 = −

(
3H
2Ω

)2
HεH , (51)

while time variation of S is given by

Ṡ = −1
2
[ΛHεHt− 1]2Ω2t csc2(Ωt)

+ΛεH H
[

H
2
((εH + 2ηH)−ΛεH)t− 1

]
Ωt cot(Ωt)

+
1
2
[3εH + ΛεH(2ΛεH − εH − 2ηH)]H2t, (52)

where Λ =
(

3H
2Ω

)2
. Notice that entropy S and its derivatives with respect to time, Ṡ and S̈,

are now functions of the slow-roll parameters ηH and εH , for which the inequalities (9) and
(27) implicitly depend on them.

In this case, the volume of the internal manifold is bounded as

R6 ∼ Vol(T6) .
1

27π6H6 ∼ R6
AH , (53)

implying that the AH radius is always greater than the size of the internal torus. This
suggests that, if correct, the internal volume is smaller than the observable universe when
inflation takes place. For the second case, with Ω2 > 0 we have that

R6 ∼ Vol(T6) &
1

27π6H6 ∼ R6
AH . (54)

Notice that the above bounds for the internal volume do not imply a stabilization
for the Kähler modulus, but only characterize the validity of our analysis: if the internal
volume is too small, smaller than R6

AH , we must take into account the case in which Ω2 < 0
and see if the flux contribution to entropy is important enough and conversely for an
internal volume larger than R6

AH .

Swampland Implications

With the purpose to verify whether inequalities (9) and (27) (which we rewrite here
for accessibility)

Ṡ(εH , ηH) ≤
2π

H
εH

S̈(εH , ηH) ≤ 4πεH(
3
2

εH − ηH) ,

hold for positives10 Ṡ and S̈, we present in Figure 2 the contour plots for selected times
for which (9) and (27) are satisfied11. The red contours represent the regions where Ṡ < 0
whereas the blue ones are those for which Ṡ > 0.
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Figure 2. Plots for different times showing the values of ηH and εH for which inequalities (9) and
(27) are fulfilled with S̈ > 0. Red regions are discarded since they are related to a negative value for Ṡ
whereas blue regions are related to positive Ṡ. In both cases we take H = 2.5× 10−3 [64]. (a) Ω2 < 0
(with Ω2 = −10−2), (b) Ω2 > 0 (with Ω2 = 3× 10−4).

As it is observed, there are conditions in time for which the inequalities are satisfied,
but since our expressions for Ṡ and S̈ implicitly depend on ηH and εH , we find that not
always it is possible to find conditions for which ε � 1 and ηH < 0. Specifically, we
observe that,

1. For Ω2 < 0, at late times, it is possible to fulfill the dSC with the constant c′ of order
0.5 or less. This implies that, at least for this simple model, there is a contribution to
the effective four-dimensional entropy from time-dependent fluxes which allows the
dSC to be satisfied. For this to happen, the size of the AH radius must be larger than
each of the torus radius. For initial times all the inequalities are satisfied only if Ṡ < 0.
As time evolves the regions where all the inequalities are satisfied are reduced in size.
It is interesting to note that for t� 1 the regions where all inequalities are satisfied
exclude small values of ηH for ε < 0.3. In summary, this model is consistent with the
RdS conjecture only for late times;

2. For Ω2 > 0 we also find that at late times there are conditions for the inequalities to
be fulfilled but with positive values for ηH which are not in agreement with the dSC.
However, this case implies that the radius of the AH is smaller than the internal torus.
It is possible that this is not an available condition during inflation.

4. Conclusions and Final Comments

We have proposed a relation between the de Sitter conjecture (dSC) with the time
dependence of fluxes through the covariant entropy bound (CEB). As an alternative of con-
sidering the appearance of towers of massless modes via the distance conjecture, we have
focused on the possibility that a string time-dependent flux compactification contributes
to entropy, such that the CEB also leads us to a bound on the slow-roll parameters of an
expanding four-dimensional Universe.

For that we have assumed that εH � 1 and that −as a result of the CEB− the time
variation of entropy is positive and precisely bounded by it (9). Under these assumptions,
we look for conditions on which the entropy profile (as a function on time) determines a
bound on the second slow-roll parameter ηH . We have performed this analysis in a single
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and multi-field inflationary scenarios. For the latter we have reproduced the result by
Achúcarro and Palma in [28] by which it is possible to fulfill the first inequality of the dSC
while allowing the small-roll parameter εV to be of order one in Planck units. We also have
constructed a bound for ηV in terms of the second time derivative of entropy (27), and
studied the implications on the Lyth’s bound were we have observed that in general the
bound becomes stronger. It is important to notice that for a null variation on the entropy
from extra dimensions, the bounds on εV and ηV allow them to have values much less than
one. Whether the dSC can be fulfilled by non-zero contributions of Ṡ and S̈ or not, will be
determined by a specific model.

Finally, in order to have a concrete example, we have presented a simple toy model
where we have computed the contribution to entropy from a time dependent flux compact-
ification on a six-dimensional isotropic torus. By treating fluxes as quantum fields, we have
computed the transition amplitude of a given flux configuration fulfilling all constraints
as the Tadpole cancellation condition, Bianchi identities, and Dirac quantization. As a
result, there is an entropy contribution as a function of time. In this case, entropy S and its
derivatives with respect to time, depend on H, εH and ηH . We have plotted values for the
slow-roll parameters for different values of time in order to test whether the dSC conjecture
is fulfilled, meaning that if εH � 1 then ηH < 0.

We have found that for the case in which the internal toroidal volume is smaller than
R6

AH , where RAH is the size of the apparent horizon during inflation, there are conditions
to satisfy the dSC. Further study is required to consider more realistic scenarios in which a
time dependence of fluxes can be considered.
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Appendix A. Frenet–Serret Frame

In order to have a more general description we shall consider N fields. For that, let us
define a map

~φ : I→ Rn, (A1)

such that
~φ(t) = (φ1(t), . . . , φn(t)) (A2)

where the entries are given in terms of a time independent basis ûa, i.e.,

~φ(t) = φa(t)ûa, (A3)

with
||~φ(t)||2 = φaφbhab = φ2, (A4)

where hab is the metric of the moduli space we are assuming to be explicitly independent
of time.
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As time runs, the trajectory in the field space has a tangential vector defined as

ê1(t) =
~̇φ

φ̇
=

φ̇a

φ̇
ûa = Taûa, (A5)

with ~̇φ(t) = φ̇a(t)ûa and ||~̇φ(t)||2 = φ̇aφ̇bhab = φ̇2. The normal unitary vector can be
constructed as follows. Consider

~̈φ(t) = φ̈a(t)ûa, (A6)

and the normal vector~e2(t) given by

~e2(t) = ~̈φ(t)− 〈~̈φ(t), ê1〉ê1(t). (A7)

After some calculations, the normalized normal vector is given by

ê2(t) = Naûa, (A8)

with

Na =
φ̇2φ̈a − φ̇aφ̇bφ̈b

φ̇(φ̇2φ̈2 − (φ̇bφ̈b)2)1/2 . (A9)

Now, in terms of an orthonormal basis at each point of the curve ~φ(t), i.e., the FS
frame, we have that

Dt



ê1
ê2
ê3
...

ên−1
ên


=



0 −Ω1 0
Ω1 0 −Ω2
0 Ω2 0 −Ω3

. . .
Ωn−2 0 −Ωn−1

0 Ωn−1 0





ê1
ê2
ê3
...

ên−1
ên


(A10)

and, in consequence, Dt ê1 = −Ω1 ê2. From the corresponding equations of motion

Dtφ̇
a + 3Hφ̇a + Va = 0, (A11)

we can deduce the expression for Ω1, where

Dtφ̇
a = φ̈a + Γa

bcφ̇bφ̇c, (A12)

Va = ~∇V · ûa. (A13)

and ûa is a time independent basis for the N-dimensional field space.
The N equations can be written in a vector notation as

(φ̈ + 3Hφ̇)ê1 + φ̇(Dt ê1) + ~∇V = 0, (A14)

where ê1 is the unitary tangent vector to the field trajectory. Since Dt ê1 = −Ω1 ê2, where ê2
is the unitary normal vector to the trajectory, we have

(φ̈ + 3Hφ̇)ê1 − φ̇Ω1 ê2 + ~∇V = 0, (A15)

Now we want to express components of ~∇V in terms of the FS basis, this is

~∇V · êj(t) = Vaea
j = Vj, (A16)

where we have used a as an index for the basis ûa and j for the index in the FS system.
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Notes
1 The source of entropy in extra dimensions may rely on some basic and fundamental quantities in string theory, such as the

presence of NS-NS and R-R fluxes. They play a crucial role in many phenomenological applications such as generating the correct
hierarchies of scales in four-dimensional effective field theories by warping the geometry and particularly in inflationary model
building [46–50] among others. The Tadpole constraint also leads to important implications on effective scenarios [51–56].

2 In terms of universal constants, S ≤ c3κB
4h̄G A. In this paper, we take all constants -including MPl to be equal to 1.

3 For any area, bigger or smaller than AAH = 4πR2
AH , it is conjectured that the CEB will always be fulfilled. In particular, since we

are considering an expanding Universe, smaller areas are past-directed and the corresponding light-sheets are represented by the
expansion rate θ−,±, with expansion rates denoted by θ(±,±) = ±ȧ± (1/r). Hence, for t1 < t2, the area A(t2) is connected to a
smaller area A(t1) by a light-sheet with θ−,± which are referred to as an anti-trapped surface [42]. The CEB can be strengthened
by considering the entropy associated to the light-sheet between the surfaces A(t2) and A(t1), as shown in [45], with the entropy
production bounded as ∆S ≤ (A(t2) − A(t1))/4, and where ∆S is thought to be the von Neumann entropy related to the
difference between matter associated to light-sheet and the entropy of vacuum. Following [45], let us consider the AH surface at
different times, t2 and t1 with t2 > t1. We then have the entropy production between that interval, satisfying the bound

∆S ≤ AAH(t2)− AAH(t1)

4
,

where ∆S is the difference between the entropy at time t2 and t1. This implies that, in this case, the function (S− AAH)(t) is a
monotonically decreasing function. Therefore, an infinitesimal variation of time helps us to rewrite this bound as dS

dt ≤
1
4

dA
dt . By

parametrizing the scalar potential in terms of moduli, whose number changes over time, the above condition holds only if the
moduli increase accordingly, allowing that ∂φS ≤ ∂φ AAH/4. This is actually what distance conjecture claims.

4 Although the CEB was proved to be consistent only for scenarios in which the null energy condition (NEC) holds, it was shown
in [45] that Buosso bound can also be satisfied independently of the NEC.

5 This expression is consistent with the well known result, ηH + εH ≈ ηV for ηH = − φ̈
Hφ̇

and ηV = DtV1
3H2φ̇

. In the single field

scenario, ηH ≈ − 1
2

(
∂φV

V

)2
+

∂2
φV
V .

6 Non-constant fluxes depending on moduli, were studied in [62].
7 As remarked in the introduction, we are not driving inflation by the fluxes we are turning on. Our purpose is to compute their

contribution to the entropy.
8 Since we work on a no-scale model, Kähler modulus is not stabilized. Therefore, the value of the RR potential C4 and the internal

volume are not fixed. This implies that our choice of having no D3-branes, or equivalently taking C4 = 0 does not correspond to
a stable point in the scalar potential since it is flat along this Kähler direction. Then, corrections due to the presence of D3-branes
are expected.

9 The contribution from the 3-form fluxes to d ∗ F5 is given by

H3 ∧ F3 = −MN
2

d f ∧ dy1 ∧ dy2 ∧ dy3 ∧ dy4 ∧
(

y5dy6 − y6dy5
)
−MN f 2dVol6,

where d Vol6 = dy1 ∧ dy2 ∧ dy3 ∧ dy4 ∧ dy5 ∧ dy6. In the case of an isotropic torus all internal coordinates have equal footing for
which the factor

(
y5dy6 − y6dy5) vanishes. Then, the tadpole contribution from the fluxes, N f lux = −MN f 2 must be cancelled

by the O3-plane. By Dirac quantization, this restricts the function f (t) to be integer valued at t = 0 and t = t∗. For other type of
compactifications, fulfilling the Bianchi identity for F5 would impose an extra constraint on the function f (t).

10 As remarked in Section 2, our anzatz is only valid under the assumption of a positive Ṡ.
11 We have taken η̇H = 0.
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