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Abstract: A numerical model description of a hot Jupiter extended envelope based on the approxi-
mation of multi-component magnetic hydrodynamics is presented. The main attention is focused on
the problem of implementing the completed MHD stellar wind model. As a result, the numerical
model becomes applicable for calculating the structure of the extended envelope of hot Jupiters
not only in the super-Alfvén and sub-Alfvén regimes of the stellar wind flow around and in the
trans-Alfvén regime. The multi-component MHD approximation allows the consideration of changes
in the chemical composition of hydrogen–helium envelopes of hot Jupiters. The results of calculations
show that, in the case of a super-Alfvén flow regime, all the previously discovered types of extended
gas-dynamic envelopes are realized in the new numerical model. With an increase in magnitude of
the wind magnetic field, the extended envelope tends to become more closed. Under the influence
of a strong magnetic field of the stellar wind, the envelope matter does not move along the ballistic
trajectory but along the magnetic field lines of the wind toward the host star. This corresponds to an
additional (sub-Alfvénic) envelope type of hot Jupiters, which has specific observational features.
In the transient (trans-Alfvén) mode, a bow shock wave has a fragmentary nature. In the fully
sub-Alfvén regime, the bow shock wave is not formed, and the flow structure is shock-less.

Keywords: numerical simulation; magnetic hydrodynamics (MHD); hot Jupiters

1. Introduction

Hot Jupiters are giant exoplanets with masses on the order of Jupiter’s mass, located
in the immediate vicinity of a host star [1]. The first hot Jupiter was discovered in 1995 [2].
Due to the close location to the host star and the relatively large size, gas envelopes of
hot Jupiters can overfill their Roche lobes, resulting in intense gas outflows both at the
night side (near the Lagrange point L2) and at the day side (near the inner Lagrange
point L1) of the planet [3,4]. The presence of such outflows is indirectly indicated by
the excessive absorption of radiation in the near ultraviolet range observed in some hot
Jupiters during their transit across the disk of their host star [5–11]. These conclusions are
confirmed by direct numerical calculations in the framework of one-dimensional aeronomic
models [1,12–15].

In this case, the matter of expanding the upper atmosphere of hot Jupiter is no
longer collision-less, and a gas-dynamic approximation can be used to describe it. Such an
exosphere is more correctly called the extended envelope of a hot Jupiter. These are located
above the exobase, have a fairly large size, relatively high density, and are characterized
by significant deviations from a spherical shape. The structure of an extended envelope
and its physical properties are determined by the fact that several other forces act on each
element of the flow in the envelope in addition to the planet gravity: the gravitational
force of the star, the orbital centrifugal force, the orbital Coriolis force, as well as the forces
determined by interaction with the stellar wind, the radiation of the star, and the magnetic
field. Therefore, the study of the structure of gas envelopes of such objects is one of the
most urgent problems of modern astrophysics [16].
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In the three-dimensional approximation, the gas-dynamic structure of the extended
envelope of hot Jupiters was studied in [17–22]. In these works, it is shown that, depending
on the model parameters, structures of three main types can be formed during the interac-
tion of stellar wind with the expanding envelope of a hot Jupiter [17]. If the atmosphere of
a planet is completely located inside its Roche lobe, then a closed envelope is formed. If the
flow of matter from the inner Lagrange point L1 is stopped by the dynamic pressure of
stellar winds, then a quasi-closed envelope is formed. Finally, if the dynamic pressure of the
stellar wind is not sufficient to stop outflow from the Lagrange point L1, an open envelope is
formed. The type of forming envelope significantly determines the mass loss rate of the
hot Jupiter [17]. On the other hand, in the works [23–27], noticeable dependence of the
mass loss rate by the planet on the strength of stellar wind wasn’t found, while the type of
envelope changed from the open type to the closed one.

Hot Jupiters may have their own magnetic field, which can influence the process of
their flow around by stellar wind. However, estimates of the intrinsic magnetic fields of
hot Jupiters show that it is most likely quite weak. The characteristic value of the magnetic
moment of hot Jupiters, apparently, is 0.1–0.2 µJ, where µJ = 1.53× 1030 G·cm3 is the Jupiter
magnetic moment. This value is in a good agreement with both observational [28–31] and
theoretical [32] estimates.

The relatively low value of the dipole moment is explained by the inefficiency of
the dynamo process of magnetic field generation in the bowels of these planets. This is
due to the fact that hot Jupiters are located close to the host star; therefore, due to strong
tidal disturbances, the proper rotation of a typical hot Jupiter should pass into a state of
synchronization with its orbital motion over a period of about several million years [33].
In the state of synchronous rotation, the efficiency of dynamo generation of magnetic field
drops sharply.

The process of dynamo-generation of magnetic field occurs in the bowels of the planet
and is largely determined by its internal structure (see, for example, [34,35]). However, it
should be noted that the magnetic field of hot Jupiters can be generated not only in the
bowels but also in the upper layers of atmosphere. The estimates made in [21] show that
the upper atmosphere of hot Jupiters consists of almost completely ionized gas. This is due
to the processes of thermal ionization and hard radiation of the host star.

Therefore, the upper part of hot Jupiter atmosphere can be called the ionospheric
envelope. It is shown in [36] that the proper magnetic field of hot Jupiter should influence
the formation of large-scale (zonal) currents in its atmosphere. Detailed three-dimensional
calculations [37,38] demonstrate a complex picture of the distribution of winds in the upper
atmosphere in which magnetic fields play an important role.

In particular, electromagnetic forces can shift the hot spot forming at point facing the
host star to the west. This effect can also be manifested on the light curves of hot Jupiters.
For example, a comparison of the observed light curves with those calculated for the
planet HAT-P-7b allows estimation of the characteristic magnetic field in the atmosphere
of 6 G [39]. Most likely, this estimate is greatly overvalued. Recall that, at the level of the
Jupiter cloud layer, the magnitude of the magnetic field is 4–5 G.

It is important to note one more circumstance. Due to their close location to the
host star, hot Jupiters can have a quite strong magnetic field induced by the stellar wind
magnetic field. As the calculations presented in [40] show, the corresponding magnetic
moment of such a field can be from 10% to 20% of the Jupiter magnetic moment. Summing
up all these comments, we can conclude that the question of magnitude and configuration
of magnetic field in hot Jupiters is still open.

Analysis of the influence of stellar wind magnetic field on the process of its flow
around the atmosphere of hot Jupiter [41] shows that in the case of hot Jupiters, this effect
can be extremely important. This is due to the fact that almost all hot Jupiters are located
in the so-called sub-Alfvén zone of stellar wind of the host star, where the wind speed is
less than the Alfvénic one. Taking into account the orbital motion of the planet, the flow
velocity turns out to be close to the Alfvénic one.
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Therefore, depending on the specific situation (the major semi-axis of the planet
orbit, the spectral class of host star, the proper rotation period of star, the features of
stellar wind), both super-Alfvén and sub-Alfvén flow regimes can be realized. Note that
in the super-Alfvén regime, the magnetosphere of hot Jupiter will contain all the main
elements (the bow shock wave, the magnetopause, the magnetospheric tail at the night side,
and others) present in the magnetospheres of planets of the Solar system [42,43]. In the
case of sub-Alfvén flow regime, the bow shock wave will be absent in the magnetosphere
structure [44].

The problem of the magnetic field influence on the dynamics of extended envelopes of
hot Jupiters is of constant great interest to the scientific community. In recent years, several
attempts have been made to account for the magnetic field in one-dimensional [45–48],
in two-dimensional [49] and in three-dimensional [47,50,51] numerical aeronomic models
of hot Jupiter atmospheres. However, in these studies, only the immediate vicinity of
the planet was considered, and estimates of the mass loss rate were performed without
considering the presence of extended envelopes.

An exception is the work [51], in which the authors performed three-dimensional
numerical modeling in a wide spatial domain and obtained MHD solutions for exoplanets
with open and quasi-closed envelopes. In our recent work, we investigated the influence of
both the planet own magnetic field [52,53] and the wind field [41,54–57] on the envelope
dynamics of hot Jupiters. The results of these investigations are presented in the review [16].

In this paper, we consider the further development of our numerical MHD codes.
The main attention in the paper is focused on obtaining a numerical model that is self-
consistent with the stellar wind and includes additional physical effects due to the complex
chemical composition of the hydrogen–helium envelopes of hot Jupiters. Taking into
account the self-consistent model with the wind allows, in particular, to more correctly
determine the position of the Alfvén point.

In our previous numerical models, this parameter was either estimated approximately
from the condition of constancy in the computational domain of the radial wind speed,
or was set separately. Another important development direction is the creation of a
numerical model of multi-fluid (multi-component) magnetic hydrodynamics for describing
the structure of hot Jupiter extended envelope. In the paper, we did not consider specific
processes that lead to local changes in the concentration of components (chemical reactions,
ionization, etc.), as well as the corresponding heating–cooling processes, since the main
goal was to include the stellar wind model.

However, in the future, this will allow for not only consideration of the chemical com-
position of the hydrogen–helium envelopes of hot Jupiters but also to trace the distributions
and dynamics of components of particular interest (e.g., biomarkers). The multi-fluid MHD
model described in this paper was developed on the basis of already existing single-fluid
MHD model for describing the structure of a hot Jupiter extended envelope [16].

The paper is organized as follows. Section 2 describes the MHD model of stellar
wind we used. Section 3 describes the three-dimensional numerical model of a multi-
component MHD. Section 4 describes the numerical model of the hot Jupiter extended
envelope based on multi-component MHD. Section 5 presents the results of calculations.
The main conclusions of the study are summarized in Section 6. Finally, some computation
method details are described in the Appendix A.

2. Stellar Wind Model
2.1. Basic Equations

To describe the structure (including the magnetic field) of stellar wind in the vicinity
of hot exoplanets in our numerical model, we will rely on the well-studied properties
of the solar wind. As shown in numerous ground- and space-based investigations (see,
for example, the review of [58]), the picture of magnetic field of the solar wind is fairly com-
plex. Schematically, this structure is illustrated in Figure 1 (see, e.g., our paper [41]). In the
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corona region, the magnetic field is mainly determined by the Sun intrinsic magnetism,
and therefore it is essentially non-radial.

At the boundary of the corona, which is located at a distance of several radii of the
Sun, magnetic field becomes purely radial with high accuracy. Beyond this region is the
heliospheric area, the magnetic field that is significantly determined by the properties of
the solar wind. In this region, the magnetic field lines with a distance from the center
gradually twist in the form of a spiral due to rotation of the Sun, and therefore (especially
at large distances) the magnetic field of the wind can be described with good accuracy
using a simple Parker model [59].

Figure 1. Schematic representation of the solar wind structure in the ecliptic plane. The Sun cor-
responds to a small colored circle in the center. The arrow shows the direction of rotation of the
Sun. The boundary of the middle circle indicates the region of the corona, at the edge of which
the magnetic field becomes purely radial. The shaded gray areas correspond to the zones of the
heliospheric current sheet (shown by dotted lines running from the corona to the periphery), which
separates the solar wind magnetic field with different directions of magnetic field lines (from the
Sun or to the Sun). The orbit of a hot exoplanet is shown by a dotted circle, which is located in the
heliospheric region.

However, the observed magnetic field in the solar wind is not axisymmetric but has a
manifested sector structure. This is due to the fact that at different points of the spherical
surface of the corona, the field may have different polarity (the direction of field lines
relative to the direction of normal vector), for example, due to the inclination of magnetic
axis of the Sun to its rotation axis.

As a result, two clearly distinguished sectors with different directions of the magnetic
field are formed in the solar wind in the ecliptic plane. In one sector, the magnetic field
lines are directed towards the Sun, and in the opposite sector, away from the Sun. These
two sectors are separated by the heliospheric current sheet, which rotates together with the



Universe 2021, 7, 422 5 of 43

Sun and therefore the Earth, during its orbit around the Sun, crosses it many times per year,
passing from the solar wind sector with one magnetic field polarity to the neighboring
sector with the opposite magnetic field polarity.

In our calculations, we neglect the possible sector structure of the wind magnetic field,
as well as the presence of a heliospheric current sheet in it, focusing on the influence of
its global parameters. We reasonably assume that the orbit of a hot exoplanet is located
in the heliospheric region beyond the boundary of the corona. In Figure 1, it is shown as
a dotted circle. To describe the structure of the wind (including its magnetic field) in the
heliospheric region, an axisymmetric (or even a spherically-symmetric) model [60] can be
used as the first approximation.

We will consider the wind model in an inertial reference frame in spherical coordinates
(r, θ, ϕ). We assume that the center of the spherical coordinate system coincides with the
center of the star. At the same time, we can ignore the dependence of the wind parameters
on the angle θ, since we are interested in the flow structure only near the orbit plane of a
hot exoplanet. Therefore, for simplicity, we will assume that all values depend only on the
radial coordinate r.

The stationary structure of the wind under such conditions is determined by the
continuity equation

1
r2

d
dr

(
r2ρvr

)
= 0, (1)

the equation of motion for the radial vr and azimuthal vϕ components of the velocity
vector v

vr
dvr

dr
−

v2
ϕ

r
= −1

ρ

dP
dr
− GMs

r2 −
Bϕ

4πρr
d
dr
(
rBϕ

)
, (2)

vr
dvϕ

dr
+

vrvϕ

r
=

Br

4πρr
d
dr
(
rBϕ

)
, (3)

the equation of induction
1
r

d
dr
(
rvrBϕ − rvϕBr

)
= 0 (4)

and the Maxwell equation (∇ · B = 0)

1
r2

d
dr

(
r2Br

)
= 0. (5)

Here, ρ represents the density, P is the pressure, G is the gravitational constant, and Ms is
the mass of the central star. Density, pressure, and temperature satisfy the equation of state
for an ideal polytropic gas,

P = Kκρκ =
2kB

mp
ρT, (6)

where Kκ is the constant, κ is the polytropic index, kB is the Boltzmann constant, and mp
is the proton mass. The average molecular weight of the wind matter is considered to be
equal to 1/2, which corresponds to a fully ionized hydrogen plasma consisting only of
electrons and protons.

From the Maxwell Equation (5), we find

r2Br = BsR2
s , (7)

where Rs is the radius of the star, and Bs is the magnitude of field at the star surface.
From the continuity Equation (1), we can obtain an integral of motion corresponding to the
law of mass conservation,

4πr2ρvr = Ṁs, (8)
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where the integration constant Ṁs determines the mass loss rate by star due to the outflow
of matter in the form of a stellar wind. The Equation (2) can be rewritten as:

d
dr

(
v2

r
2

+
c2

s
κ − 1

− GMs

r
+

B2
ϕ

4πρ

)
−

v2
ϕ

r
− rBϕ

d
dr

(
Bϕ

4πρr

)
= 0, (9)

where the square of the speed of sound

c2
s =

κP
ρ

= κKκρκ−1. (10)

We can multiply the Equation (3) by vϕ and divide by vr. Then, it can be represented as:

d
dr

(
v2

ϕ

2
−

BrB2
ϕvϕ

4πρvr

)
+

v2
ϕ

r
+ rBϕ

d
dr

(
Brvϕ

4πρrvr

)
= 0. (11)

Summing the Equations (9) and (11), we find:

d
dr

(
v2

r
2

+
v2

ϕ

2
+

c2
s

κ − 1
− GMs

r
+

B2
ϕ

4πρ
−

BrB2
ϕvϕ

4πρvr

)

+rBϕ
d
dr

(
Brvϕ

4πρrvr
−

Bϕ

4πρr

)
= 0.

(12)

The last term on the left side of this equation turns to zero, because

d
dr

(
Brvϕ

4πρrvr
−

Bϕ

4πρr

)
=

1
Ṁs

d
dr
(
rBrvϕ − rBϕvr

)
= 0. (13)

Here, we used the law of conservation of mass (8) and the equation of induction (4).
This circumstance allows us to derive the integral of motion corresponding to the law of
energy conservation,

v2
r

2
+

v2
ϕ

2
+

c2
s

κ − 1
− GMs

r
+

B2
ϕ

4πρ
−

BrBϕvϕ

4πρvr
= Qs, (14)

where the constant Qs determines the density of energy flux in the stellar wind, the value
of which is ṀsQs.

Note that, from (7) and (8) follows

Br

4πρvr
=

BsR2
s

Ṁs
= const. (15)

This circumstance allows from the Equations (3) and (4) to find two another integrals
of motion:

rvϕ −
Br

4πρvr
rBϕ = L, (16)

rvrBϕ − rvϕBr = F. (17)

The first integral determines the law of conservation of angular momentum. The second
integral is related to the vertical component of the electric field Eθ , since it is obvious that
F = cEθr, where c is the speed of light. For the convenience of further calculations, we
introduce the following notation:

ar =
Br√
4πρ

, aϕ =
Bϕ√
4πρ

. (18)
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Then, from Equations (16) and (17), it can be obtained that:

(
v2

r − a2
r

)
vϕ =

1
r

(
v2

r L +
arF√
4πρ

)
, (19)

(
v2

r − a2
r

)
aϕ =

vr

r

(
arL +

F√
4πρ

)
. (20)

The value of the constant F in the last integral of motion (17) can be found from the
boundary conditions at some point r = r0. However, in the reference frame rotating with
the Sun, the value of this constant should be equal to zero. This is due to the fact that,
in this frame of reference, the vector of the magnetic field B′ must be collinear with the
velocity vector v′ of the ideally conducting wind plasma: v′ × B′ = 0. For non-relativistic
motion, the magnetic field B′ = B, and the velocity

v′r = vr, v′ϕ = vϕ −Ωsr, (21)

where Ωs is the angular velocity of the proper rotation of the star. Therefore,

F = −Ωsr2Br = −ΩsR2
s Bs. (22)

Substituting the expression (22) into the Equations (19) and (20), we find:(
v2

r − a2
r

)
vϕ =

1
r

(
v2

r L− a2
r Ωsr2

)
, (23)

(
v2

r − a2
r

)
aϕ =

vrar

r

(
L−Ωsr2

)
. (24)

In the obtained expressions, there is a singularity at some point r = rA, where the
radial wind velocity vr becomes equal to the Alfvén one

uA = |ar| =
|Br|√
4πρ

, (25)

that corresponding to the radial component of magnetic field Br. Let us call this special
point as a Alfvén point. Near the surface of the star, the radial wind velocity vr should be less
than the Alfvén one uA. At large distances, the radial velocity vr, on the contrary, exceeds
the Alfvén one uA. At the Alfvén point r = rA, there is a transition from the sub-Alfvén flow
regime to the super-Alfvén one. Therefore, the region r < rA can be called the sub-Alfvén
zone of the stellar wind, and the region r > rA, respectively, the super-Alfvén zone.

The azimuthal components of the velocity vϕ and the magnetic field Bϕ in the
expressions (23) and (24) must remain continuous at the Alfvén point. Therefore, in order
to satisfy this condition, it is necessary to set the value of the integration constant

L = Ωsr2
A. (26)

As a result, we find the final solution

vϕ =
Ωs

r
v2

r r2
A − a2

r r2

v2
r − a2

r
, (27)

aϕ =
Ωs

r
vrar

r2
A − r2

v2
r − a2

r
. (28)
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Let us introduce the Alfvén Mach number for the radial components of the velocity
and the magnetic field,

λ =

√
4πρvr

Br
. (29)

It is not difficult to make sure that

λ2 =
vrr2

vAr2
A
=

ρA
ρ

, (30)

where vA and ρA are the values of the radial velocity and wind density at the Alfvén point.
For numerical modeling, a convenient record of expressions for the azimuthal components
of the velocity and magnetic field are

vϕ = Ωsr
1− λ2r2

A/r2

1− λ2 , (31)

Bϕ = Br
Ωsr
vr

λ2 1− r2
A/r2

1− λ2 . (32)

Note that in the sub-Alfvén zone of the stellar wind λ < 1, while in the super-Alfvén
zone λ > 1. At the Alfvén point, λ = 1. The obtained relations, considering the inte-
grals of mass (8) and energy (14), allow us to algebraically find the distributions of all
magnetohydrodynamic quantities describing the wind structure.

2.2. Method of Solution

From the Equations (1)–(5) using simple manipulations, it can be derived that(
v2

r − u2
S

)(
v2

r − u2
F

) r
vr

dvr

dr
=
(

v2
r − a2

r

)(
2c2

s + v2
ϕ −

GMs

r

)
+ 2vrvϕaraϕ, (33)

where

u2
S,F =

1
2

[
c2

s + a2 ∓
√
(c2

s + a2)2 − 4c2
s u2

A

]
, (34)

a2 = a2
r + a2

ϕ. (35)

The quantities uS and uF determine the values of slow and fast magnetosonic velocities,
respectively. It can be seen from the Equation (33) that there are two special points in the
solution: slow magnetosonic r = rS, in which the speed vr = uS, and fast magnetosonic r = rF,
in which the speed vr = uF. At these points, the coefficient for the derivative dvr/dr turns
to zero. In order for the solution to remain smooth, the right side of the Equation (33)
at these points must also vanish. However, as we saw above, the Alfvén point r = rA,
in which the wind speed vr = uA, is also a solution critical point. This circumstance can be
expressed directly by substituting the relations (27) and (33) into the Equation (28). As a
result, we find:(

v2
r − u2

A

)2(
v2

r − u2
S

)(
v2

r − u2
F

) r
vr

dvr

dr
=
(

v2
r − u2

A

)3
(

2c2
s −

GMs

r

)
+

Ω2
s

r2

(
v2

r r2
A − u2

Ar2
)(

v4
r r2

A + u4
Ar2 − 3v2

r u2
Ar2 + v2

r u2
Ar2

A

)
.

(36)

Further, we have(
v2

r − u2
S

)(
v2

r − u2
F

)
= v4

r − (c2
s + u2

A)v
2
r + c2

s u2
A − a2

ϕv2
r

=
(

v2
r − c2

s

)(
v2

r − u2
A

)
− a2

ϕv2
r .

(37)
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Therefore, considering (28)

(
v2

r − u2
A

)2(
v2

r − u2
S

)(
v2

r − u2
F

)
=
(

v2
r − c2

s

)(
v2

r − u2
A

)3
− Ω2

s
r2 v4

r u2
A(r

2
A − r2)2. (38)

Now, the equation for the radial velocity (33) can be written as:[(
v2

r − c2
s

)(
v2

r − u2
A

)3
− Ω2

s
r2 v4

r u2
A(r

2
A − r2)2

]
r
vr

dvr

dr

=
(

v2
r − u2

A

)3
(

2c2
s −

GMs

r

)
+

Ω2
s

r2

(
v2

r r2
A − u2

Ar2
)(

v4
r r2

A + u4
Ar2 − 3v2

r u2
Ar2 + v2

r u2
Ar2

A

)
.

(39)

It is known from observations that in the solar wind, the radial velocity monotonically
increases with the distance from the Sun. Therefore, we are interested in a solution with an
accelerating wind, when the radial velocity gradient has a positive value at any distance
from the star, dvr/dr > 0. This means that in the Equation (33), the coefficient for the
derivative in the left part must change sign simultaneously with the right part.

Let us study the asymptotic behavior of the solution of interest to us at small distances
in the limit at r → 0. Suppose that the radial velocity changes in this case according to the
power law vr = Arσ, where A is a certain coefficient. Consider the case when the radial
velocity vr is much smaller than any of the characteristic velocities uS, uF and uA. Then,
the coefficient for the derivative on the left side of the Equation is (33)(

v2
r − u2

S

)(
v2

r − u2
F

)
= u2

Su2
F = c2

s u2
A. (40)

From the relations (27) and (28) at our limit, we find

vϕ = Ωsr, aϕ = −ar
Ωsr
vA

. (41)

It follows that the right-hand side of the Equation (33) is approximately equal to

u2
A

GMs

r
− 2vru2

A
Ω2

s r2

vA
≈ u2

A
GMs

r
. (42)

As a result, neglecting non-essential terms, we come to the equation:

c2
s

r
vr

dvr

dr
=

GMs

r
. (43)

Taking into account the law of mass conservation (8) and the expression for the speed of
sound (10), we find the values of constants

σ =
3− 2κ

κ − 1
, A =

Ṁs

4π

[
3− 2κ

κ − 1
κKκ

GMs

] 1
κ−1

. (44)

Since in such a solution the index of σ must be positive, then the index of polytrope κ < 3/2.
Thus, the solution with an accelerating wind (a positive value of the radial velocity gradient,
dvr/dr > 0) is realized only in the case of polytropic index κ < 3/2. This value is less than
the adiabatic index γ = 5/3. Therefore, effective sources of heating must be present in the
stellar wind.
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In fact, the entropy of an ideal gas s = cV ln(P/ργ), where cV is the specific heat
capacity at a constant volume. Therefore, the full derivative

ds
dt

= cV

(
d
dt

ln P− γ
d
dt

ln ρ

)
. (45)

Taking into account the polytropic equation of state (6), we can write

T
ds
dt

= −cV T(γ− κ)
1
ρ

dρ

dt
. (46)

The expression on the right-hand side of this equation determines the heating function
Γ. Since the specific internal energy of an ideal gas ε = cV T, then using the continuity
Equation (1), we obtain:

Γ = (γ− κ)ε
1
r2

d
dr

(r2vr). (47)

We can see that in the case of an accelerating wind (dvr/dr > 0) and κ < γ this value is
positive. Effective heating in the solar wind is determined by the fundamental driving
mechanism. An overview of possible wind driving mechanisms for stars of various types
can be found in [61].

As boundary conditions in our wind model, we will use the values of density ρ0,
radial velocity v0 and temperature T0 at some point r0. Using these values, we can calculate
the speed of sound

c0 =

√
2kBT0

mp
(48)

and the integration constant
Ṁs = 4πr2

0ρ0v0. (49)

The last expression follows from the law of mass conservation (8). The value of polytropic
index κ, which lies in the range 1 < κ < 3/2, is considered as unknown. Its specific value
must be such that the boundary conditions are satisfied.

The law of mass conservation (8) also implies the relation

Ṁs = 4πr2
AρAvA. (50)

We find from here

ρA =
1

4π

(
Ṁs

r2
0B0

)2

, (51)

where by

B0 = Bs

(
Rs

r0

)2
(52)

the value of the radial magnetic field at the point r0 is indicated. We introduce dimension-
less quantities xA = rA/r0 and yA = vA/v0. It is not difficult to verify that they satisfy
the relation

yA =
β

x2
A

, (53)

where is the dimensionless parameter

β =
ρ0

ρA
=

B0

v0
√

4πρA
. (54)

To solve the equations describing the wind structure, it is convenient to rewrite them
in a dimensionless form. To do this, we denote the dimensionless variables ξ = r/rA and
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η = vr/vA. In this case, the Alfvén Mach number (29) turns out to be equal to λ = ξ
√

η.
In addition, we denote

z =

(
ρ

ρ0

) κ−1
2

=
(

βλ2
) 1−κ

2 . (55)

In dimensionless variables, the Equation (33) takes the form

ξ

η

dη

dξ
=

Y
X

, (56)

where
X = (λ2 − 1)3

(
y2

Aη2 − αz2
)

ξ2 −ωλ4x2
A(ξ

2 − 1)2, (57)

Y = (λ2 − 1)3
(

2αξz2 − µ

xA

)
ξ + ωx2

A(λ
2 − ξ2)

(
λ4 − 3λ2ξ2 + λ2 + ξ2

)
, (58)

α =
c2

0
v2

0
, µ =

GMs

r0v2
0

, ω =
Ω2

s r2
0

v2
0

. (59)

As was noted above, the slow magnetosonic (ξ = ξS, η = ηS) and fast magnetosonic
(ξ = ξF, η = ηF) points are critical solution points. However, the Alfvén point (ξ = 1,
η = 1) is also critical, since in it the values X and Y also simultaneously turn to zero.

The expression determining the conservation of energy (14) in dimensionless variables
can be written as follows:

Z =
y2

Aη2

2
+

αz2

κ − 1
− µ

xAξ
+

ωx2
A

2ξ2(λ2 − 1)2

[
λ4 + (2λ2 − 1)(ξ2 − 2)ξ2

]
− q = 0, (60)

where it is denoted
q =

Qs

v2
0

. (61)

At the point r0 we have ξ0 = 1/xA, η0 = 1/yA, λ0 = 1/
√

β, z0 = 1. Therefore, at this
point, Equation (60) takes the form:

Z0 =
1
2
+

α

κ − 1
− µ +

ω

2(λ2
0 − 1)2

[
λ4

0x4
A + (2λ2

0 − 1)(1− 2x2
A)
]
− q = 0. (62)

We will use ξS, ηS, ξF, ηF, xA, q and κ as unknown quantities in solving the problem.
In total, we have 7 unknowns. The system includes four equations X = 0, Y = 0 at
the points ξS and ξF, two Equation (60) written at the points ξS and ξF, as well as the
Equation (62). This system of non-linear algebraic equations can be solved numerically
by iterations. The algorithm for constructing the solution is as follows. First, we numer-
ically solve the system of equations for the wind parameters ξS, ηS, ξF, ηF, xA, q and
κ. After these parameters are determined, for each value of ξ, we numerically solve the
Equation (60) and find the dependence η(ξ) corresponding to the curve passing through
all three critical points.

2.3. Calculation Example

Let us consider the results of a demonstration calculation of the stellar wind structure.
The model parameters were the values of density n0 = 1400 cm−3, velocity v0 = 130 km/s,
and temperature T0 = 7.3× 105 K at a distance of r0 = 10R� from the star [62]. For example,
let us take a typical hot Jupiter HD 209458b, which is used in our numerical simulations
described below. The host star is characterized by the following parameters: spectral
class G0, mass Ms = 1.1M�, and radius Rs = 1.2R�. The period of star proper rotation
Prot = 14.4 days, which corresponds to the angular velocity Ωs = 5.05× 10−6 s−1 or the
linear velocity at the equator vrot = 4.2 km/s.
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The major semi-axis of the planet orbit A = 10.2R�, which is close to the selected
boundary point r0 and corresponds to the period of rotation around the star Porb = 84.6 h.
The magnetic field at the stellar surface was set to Bs = 0.5 G, which approximately
corresponds to the value of average magnetic field at the surface of the Sun in a quiet state
B� = 1 G, if we compare the corresponding magnetic fluxes, BsR2

s ≈ B�R2
�.

It should be noted that the parameter Bs corresponds to the average value of magnetic
field on the star surface only formally. The solution under consideration is valid only in
the heliospheric area (see Figure 1). In the corona region, the star intrinsic magnetic field
plays a decisive role. Therefore, strictly speaking, the value of Bs is obtained from the
average value of the radial magnetic field Bc at the corona boundary r = Rc, recalculated
by considering the conservation of the magnetic flux by the star radius, BsR2

s = BcR2
c .

On the other hand, it is known that the magnetic fields of solar-type stars can lie in the
range from about 0.1 to several Gauss [63,64]. In addition, the host stars for hot Jupiters
can be not only of the solar type, since their spectral classes lie in the wide range from
class F to class M. In addition to the radial component, the azimuthal component of the
magnetic field is also present in the stellar wind, which is due to the star proper rotation.
The angular velocity of the star proper rotation Ωs, in turn, also depends on the spectral
class [64]. These remarks significantly expand the set of possible models of the stellar wind
in vicinity of hot Jupiters.

Hence, the following parameter values are obtained: mass loss rate Ṁs = 1.85× 1011 g/s
= 2.94× 10−15 M�/year, density at the Alfvén point ρA = 2.25× 10−22 g/cm3, dimension-
less parameters α = 0.713, β = 10.424, µ = 1.241, ω = 0.0725. Note that the magnitude
of the mass loss rate of the star Ṁs in our stellar wind model is only one of its parameters.
It does not coincide with the real mass loss rate, since we solved the problem only in the plane
of planet orbit. The real wind does not have spherical symmetry, and therefore these values
can differ several times.

The results of calculations of the wind structure are shown in Figure 2. A family of
integral curves corresponding to different types of solutions is shown. Some of these curves
pass through the critical points, the positions of which are indicated by circles. In this
case, the Alfvén critical point in the plane of the variables ξ, η has coordinates (1, 1). As a
solution corresponding to the stellar wind, it is necessary to use an integral curve passing
through all three critical points. The corresponding curve in Figure 2 is shown as a bold line.

Figure 2. Integral curves corresponding to various types of solutions for the magnetohydrodynamic
stellar wind. Critical points are shown as circles. The Alfvén critical point has coordinates (1, 1).
The bold line corresponds to the solution passing through all three critical points. The right diagram
shows the vicinity of the Alfvén point.



Universe 2021, 7, 422 13 of 43

The numerical solution of a system of non-linear algebraic equations describing the
stellar wind structure gives the following coordinates of magnetosonic singular points:
ξS = 0.328, ηS = 0.514, ξF = 1.067, ηF = 1.025. On the left panel of Figure 2, it can
be seen that a slow magnetosonic point is a critical point of the “saddle” type. The fast
magnetosonic point is located near the Alfvén point, the vicinity of which is shown on an
enlarged scale on the right panel of Figure 2.

It can be seen that a fast magnetosonic point is also a critical point of the “saddle” type.
The Alfvén critical point has a more complex topology, since it has a higher singularity
order. For the Alfvén point, the value xA = 2.511 is obtained, which corresponds to the
radius rA = 25.114R�. The polytropic index turned out to be κ = 1.055, and the parameter
q = 12.774. The polytropic index is close to unity. Therefore, the stellar wind in vicinity of
hot Jupiter can be considered almost iso-thermal. This result is in good agreement with
the observations.

It is known that, at short distances from the Sun (r < 15R�), the effective adiabatic
index γ = 1.1 [65,66]. At large distances r > 25R�, the effective adiabatic index can be
estimated by the value γ = 1.46 [67]. Since the orbits of hot Jupiters are located at close
distances from the host star in the region of wind acceleration r < 20R�, the wind structure
in vicinity of the planet is found to be almost iso-thermal with good accuracy.

The calculation results are shown in Figures 3 and 4. Figure 3 shows the distributions
of the radial velocity vr (solid line), the speed of sound cs, the Alfvén velocity uA, as well
as the slow uS and fast uF magnetosonic velocities depending on the radius r. The fast
magnetosonic point is located close to the Alfvén point, slightly exceeding it. The slow
magnetosonic point coincided with the sound point at which the radial wind speed vr = cs.
The latter circumstance is due to the fact that in this region, because of the small contri-
bution of the azimuthal component of the magnetic field, the slow magnetosonic velocity
uS ≈ min(uA, cs) = cs.

Figure 4 shows the radial profiles of the particle number density n(r), temperature
T(r), azimuthal velocity vϕ(r), as well as the radial Br(r) (dotted line) and azimuthal Bϕ(r)
(solid line) components of the magnetic field. The dependence vϕ(r) is non-monotonic.
The maximum values of the azimuthal velocity are reached approximately in the area of
the hot Jupiter’s location 13R�. However, the characteristic values of 15 km/s are small
compared to the radial velocity of 130 km/s.
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Figure 3. Distributions of the radial velocity vr (solid line), the speed of sound cs, the Alfvén velocity
uA, as well as the slow uS and fast uF magnetosonic velocities depending on the radius r.
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Figure 4. Particle number density profiles n(r) (top left), temperature profiles T(r) (top right),
azimuthal velocity vϕ(r) (bottom left), as well as the radial Br(r) (dotted line) and azimuthal Bϕ(r)
(solid line) components of the magnetic field (bottom right).

3. Multi-Component Magnetic Hydrodynamics

Let us consider an approximation of multi-component (multi-fluid) magnetic hydro-
dynamics, which uses equations for mass quantities, the induction equation, as well as
the continuity equations for individual plasma components. The individual components
(electrons, ions, and neutrals of various kinds) of plasma will be marked with the index s.
Denote by v the average mass velocity of matter. Then, the continuity equations for each
component of the kind s can be written as:

∂ρs

∂t
+∇ · (ρsv) = Ds + Ss. (63)

where ρs is the density of the component s, the value

Ds = ∇ · (ρsws) (64)

determines diffusion, ws = v− vs is the diffusion velocities. The last term in the right hand
side of (63) takes into account the source function, which describes changes in the number
of particles of the kind s due to chemical reactions, as well as the processes of dissociation,
ionization, and recombination. For the total density

ρ = ∑
s

ρs (65)

due to the conditions
∑

s
ρsws = 0, ∑

s
Ss = 0, (66)

we have the usual continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0. (67)
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Let us introduce the values ξs that describe the mass fraction of the component s and
satisfy the relations:

ρs = ξsρ, ∑
s

ξs = 1. (68)

Then, from the Equation (63), we can find

∂

∂t
(ρξs) +∇ · (ρξsv) = Ds + Ss. (69)

Note that one of the values ξs can be excluded, since it can always be expressed in terms of
the others using conditions (68). It is convenient to consider electrons as such a component.
We will use a separate index for it, and, for the other components, we assume that s runs
through the values from 1 to N. Therefore, all values ξs can be considered independent.
The mass fraction of electrons in this case is equal to

ξe = 1−∑
s

ξs. (70)

Since the mass of electrons is much smaller than the mass of ions and neutrals, ξe turns out
to be a value close to zero.

The equations of motion and energy for mass quantities can be written in the
following form:

ρ

[
∂v
∂t

+ (v · ∇)v
]
+∇P +

B×∇× B
4π

= ρ f − Dv, (71)

ρ

[
∂ε

∂t
+ (v · ∇)ε

]
+ P∇ · v = Dε + ρQ, (72)

where P is the pressure, B is the magnetic field, f is the specific external force, the values

Dv = ∑
s
∇ · (ρswsws), (73)

Dε = ∑
s
[∇ · (ρsεsws) + Ps∇ ·ws] (74)

are determined by the diffusion velocities ws, and the value of Q describes the heating–
cooling sources. In the expression (74), the notations Ps and εs are used for the partial
pressures and specific internal energies of the components. To these equations, we should
add the induction equation describing the evolution of the magnetic field,

∂B
∂t
−∇× (v× B) = −∇× (η∇× B) +∇× (vD × B). (75)

Here, the first term in the right hand side describes the ohmic diffusion of the magnetic
field, where η is the corresponding magnetic viscosity. The second term determines the
effect of ambipolar diffusion occurring in an incompletely ionized plasma. The vector vD
represents the speed of ambipolar diffusion. Our numerical code takes into account the
effects caused by both magnetic viscosity and ambipolar diffusion. However, in this paper
we do not consider them, and we will assume that the values η = 0, vD = 0.

The density ρ, pressure P, internal energy ε, and temperature T satisfy the equation of
state for an ideal gas

P =
kB

µmp
ρT, ε =

kBT
µmp(γ− 1)

, (76)
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where kB is the Boltzmann constant, mp is the proton mass, γ is the adiabatic index.
The average molecular weight µ is determined by the expression ρ = µmpn, where n is the
total number density. Let us write down the condition of quasi-neutrality of plasma

− ene + ∑
s

esns = 0, (77)

where e is the elementary charge, ne is the electron number density, es is the charge of
particles of the kind s, and ns is the number density of the component s. Hence, the number
density of electrons

ne = ∑
s

Zsns, (78)

where Zs = es/e is the charge number of particles of the kind s (for neutrals it is zero).
Taking into account this expression, we find

1
µmp

= ∑
s
(1 + Zs)

ξs

ms
, (79)

where ms is the mass of particles of the kind s.
The numerical method we use to solve the equations of multi-component magnetic

hydrodynamics is described in the Appendix A.

4. Model for Envelope of Hot Jupiter
4.1. Model Description

The structure and dynamics of plasma flow in the vicinity of hot Jupiter will be
described in the approximation of multi-component (multi-fluid) magnetic hydrodynam-
ics, which was discussed in the previous Section 3. In this approximation, it is possible,
in particular, to take into account the complex chemical composition of the extended en-
velope of hot Jupiter. It is convenient to explicitly distinguish the background magnetic
field [16,41,52,68,69], when the total magnetic field B is represented as a superposition of
the background magnetic field H and the magnetic field b induced by electrical currents in
plasma itself, B = H + b. This approach allows us to significantly minimize the numerical
errors that occur during arithmetic operations with large numbers, provides greater stabil-
ity of the scheme, and improves the quality of calculations in rarefied regions with a strong
magnetic field—for example, in the magnetosphere of hot Jupiter.

In our formulation of the problem, the background field is created by sources dis-
tributed inside the star (or, more precisely, inside the corona), as well as in the bowels of
the planet. Therefore, these sources are absent in the computational domain, and hence
the background field should satisfy the potentiality condition,∇× H = 0. This allows it to
partially exclude from the equations of magnetic hydrodynamics [70,71].

In general case, the background magnetic field is not stationary, ∂H/∂t 6= 0. However,
our model assumes that this property is possessed by the magnetic field of the planet. The
proper rotation of hot Jupiter, due to strong tidal interactions from a closely located host
star, turns out to be synchronized with the orbital rotation. As a result, the period of planet
rotation around its proper axis will be equal to its orbital period, and, consequently, a hot
Jupiter will always face the same side to its host star.

Therefore, in a rotating frame of reference associated with the orbital motion of the
planet, the orientation of its own magnetic field will not change over time. On the other
hand, the magnitude of field (for example, the magnetic moment) changes on much larger
time scales compared to the orbital period and, in our calculations, this change can be
ignored. The same comments can be made about the induced magnetic field of the planet.

As theoretical estimates show (see, e.g., [1,17]), a hydrodynamic approach is applicable
to describe the flow of matter near a typical hot Jupiter. This is due to the fact that the
extended envelope of hot Jupiter has a sufficiently high density and therefore, its matter is
not collision-less. In addition, due to the processes of thermal ionization and hard radiation
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of the host star, the upper atmosphere and the extended envelope of hot Jupiters consists
of almost fully ionized gas [21].

Taking into account the complex chemical composition of the extended envelope, this
makes it possible to use the multi-component magnetic hydrodynamics approximation.
On the other hand, the analysis of the characteristic collision frequencies [13,46,47,72] of
the components in the hydrogen–helium envelope of hot Jupiter allows us to neglect the
diffusion effects [48] with fairly good accuracy and assume that the average velocities
of all components are equal to the average mass velocity of matter, vs = v. We can also
assume that all the components are in thermodynamic equilibrium, and therefore their
temperatures are equal to the temperature of matter, Ts = T.

Considering the above circumstances, the equations of multi-component magnetic
hydrodynamics can be written as

∂ρ

∂t
+∇ · (ρv) = 0, (80)

∂v
∂t

+ (v · ∇)v = −∇P
ρ
− b×∇× b

4πρ
− H ×∇× b

4πρ
+ f , (81)

∂b
∂t

= ∇× (v× b + v× H)− ∂H
∂t

, (82)

∂ε

∂t
+ (v · ∇)ε + P

ρ
∇ · v = Q, (83)

∂

∂t
(ρξs) +∇ · (ρξsv) = Ss, s = 1, . . . , N. (84)

To close this system of equations, the equation of state for an ideal gas (76) with the
adiabatic index γ = 5/3 is used. In this paper, we focus on a more correct accounting
of the stellar wind. Therefore, in the simulations described below, we assumed that the
source functions Ss due to chemical reactions, processes of ionization, recombination and
dissociation of molecules, as well as the corresponding contributions to the heating function
Q are equal to zero. This implies that various plasma components that we considered
as passive admixtures transported together with the matter. In addition, for the same
reason, in this work, we did not take into account the effects of magnetic viscosity and
ambipolar diffusion.

We assume that the planet orbit is circular. Therefore, in a non-inertial reference frame
rotating together with a binary system with an angular velocity Ω, the locations of the star
and the planet centers do not change. In this case, the specific external force is determined
by the expression

f = −∇Φ− 2(Ω× v). (85)

Here, the first term on the right hand side describes the force due to the gradient of the
Roche potential

Φ = − GMs

|r− rs|
−

GMp

|r− rp|
− 1

2
[Ω× (r− rc)]

2, (86)

where Ms is the mass of the star, Mp is the mass of the planet, rs is the radius vector of
the star center, rp is the radius vector of the planet center, rc is the radius vector of the
center of mass of the system. The second term in the right hand side of (85) describes the
Coriolis force.

In this numerical model, the stellar wind is taken into account according to the same
scheme as for the purely gas-dynamic case [17]. However, this does not use a constant
value of the radial wind velocity but the profile vr(r) obtained from the wind model
(see Section 2). Profiles for the remaining values are calculated using this profile: ρ(r),
vϕ(r), Bϕ(r). This allows finding the wind parameters at any point r = (x, y, z) of the
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computational domain. At the same time, in a non-inertial reference frame, the magnetic
field of the wind does not change, and the wind velocity is recalculated using the formula

vw = uw −Ω× (r− rc), (87)

where uw is the wind velocity in the inertial reference frame. These distributions are used
to set initial conditions in the region occupied by the stellar wind, as well as to implement
boundary conditions. The wind model used assumes a polytropic equation of state (6).
The Equations (80)–(84) use the model of adiabatic magnetic hydrodynamics with the
adiabatic index γ. This means that, from the point of view of the adiabatic model, there
are effective heating processes in the stellar wind. In order to reconcile these two models,
the corresponding function (47) [25] is added to the energy Equation (83)

Qw = (γ− κ)εw∇ · vw, (88)

where εw is the specific internal energy of the wind matter. This takes into account the
expression (87) wind velocity divergence

∇ · vw = ∇ · uw =
1
r2

d
dr

(
r2vr

)
. (89)

Since the stellar wind accelerates (the velocity vr increases with the distance r from the
star), the divergence of its velocity turns out to be positive. Consequently, the function
Qw > 0.

4.2. Upper Atmosphere

At the initial moment of time, a spherically symmetric iso-thermal atmosphere was set
around the planet, the density distribution in which was determined from the hydrostatic
equilibrium condition:

ρ = ρa exp
[
−

GMp

Rp AgasTa

(
1−

Rp

|r− rp|

)]
. (90)

Here, ρa is the density at the photometric radius of hot Jupiter Rp, Ta is the atmospheric
temperature, Agas = kB/(µmp) is the gas constant, µ is the average molecular weight.
A similar expression can be written for the pressure P. For the hot Jupiter HD 209458b
dimensionless parameter,

η =
GMp

Rp AgasTa
= 10.3 µ

(
Ta

104 K

)−1
. (91)

The initial thickness of the atmosphere was determined from the pressure equilibrium
condition with the matter of the stellar wind. The total wind pressure

Ptot = Pw + ρwv2
w +

B2
w

8π
. (92)

Therefore, from the equality of pressure at the point of a frontal impact, we find the initial
radius of the atmosphere

Ra =

(
1− 1

η
ln

Pa

Ptot

)−1
Rp. (93)

The value Ra is determined to a greater extent by the atmosphere parameters ρa and Ta and
to a lesser extent by the magnetic field of the wind Bw. In particular, the ratio between the
initial radius of the atmosphere Ra and the size of the Roche lobe of the planet determines
the type of extended envelope of the hot Jupiter (closed or open).
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We assume that the hydrogen–helium atmosphere of hot Jupiter has a homoge-
neous chemical composition. In any allocated volume of the atmosphere, the parameter
χ = [He/H], equal to the ratio of the helium nuclei number to the hydrogen one number,
remains constant. The following significant components of the atmosphere are taken into
account [16,73]: molecular hydrogen H2, atomic hydrogen H, ionized hydrogen H+, atomic
helium He, once ionized helium He+. The mass fraction of hydrogen X and helium Y are
determined by the expressions:

X =
ρ(H2) + ρ(H) + ρ(H+)

ρ
= ξ(H2) + ξ(H) + ξ(H+), (94)

Y =
ρ(He) + ρ(He+)

ρ
= ξ(He) + ξ(He+). (95)

From here, we can find: Y/X = 4χ. Taking into account the equality X + Y = 1, we find

X =
1

1 + 4χ
, Y =

4χ

1 + 4χ
. (96)

Let us consider the degree of hydrogen ionization x1, the degree of dissociation of
molecular hydrogen x2, and the degree of helium ionization x3,

x1 =
ρ(H+)

ρ(H+) + ρ(H)
, x2 =

ρ(H)

ρ(H) + ρ(H2)
, x3 =

ρ(He+)
ρ(He+) + ρ(He)

. (97)

Then, for the mass fractions of the components, it can be written:

ξ(H2) =
(1− x1)(1− x2)

1− x1 + x2x2
X, (98)

ξ(H) =
(1− x1)x2

1− x1 + x2x2
X, (99)

ξ(H+) =
x1x2

1− x1 + x2x2
X, (100)

ξ(He) = (1− x3)Y, (101)

ξ(He+) = x3Y. (102)

Using these definitions, from the expression (79) for the average molecular weight, we find

1
µ
=

1
2

X
(

1 +
x2 + 2x1x2

1 + x1 − x1x2

)
+

1
4

Y(1 + x3). (103)

The total degree of ionization of atmospheric matter

ξ = ξ(H+) + ξ(He+) =
x1x2

1− x1 + x1x2
X + x3Y. (104)

In the simulations of the flow structure in the vicinity of the hot Jupiter HD 209458b
given below, we set the following parameters of the chemical composition of the atmo-
sphere: χ = [He/H] = 0.05 [25], x1 = x2 = x3 = 0.9. From here, we find the mass fraction
of hydrogen X = 0.83 and helium Y = 0.17. These parameters correspond to the mass
fractions of the components ξ(H2) = 0.009, ξ(H) = 0.08, ξ(H+) = 0.74, ξ(He) = 0.02,
ξ(He+) = 0.15. At the same time, the average molecular weight of the atmospheric matter
is µ = 0.69, and the total degree of ionization is ξ = 0.89.
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The boundary conditions (density ρa, temperature Ta and velocity va) at the photomet-
ric radius were set based on the results of calculations carried out within the framework of
one-dimensional aeronomic models considering supra-thermal particles [16,73]. Therefore,
in a certain sense, our numerical model is hybrid. It follows from aeronomic calculations
that a planetary wind is formed in the upper atmosphere of hot Jupiter under the influence
of star hard radiation, which determines the mass loss rate Ṁa ≈ 109–1010 g/s. Taking into
account the expression Ṁa = 4πR2

pρava from here, we can find the speed of atmospheric
outflow va at the photometric radius.

4.3. Magnetic Field

The background magnetic field can be set as a superposition of several separate fields:

H = Hs + Hw + Hp + Ha. (105)

Here, Hs describes the proper field of the star, Hw is determined by the wind field, Hp
is the proper field of the planet, and Ha is determined by the field of atmosphere. Let us
characterize the contribution of each term.

As noted in Section 2, the proper magnetic field of the star Hs plays a significant role
in the corona region. Therefore, if the planet orbit is located in the heliospheric region,
then this field can be neglected. The main role in this zone is played by the wind field.
The magnetic field of the host star should be taken into account when the planet orbit is
located near the outer boundary of the corona or even inside it. Currently, hot Jupiters of
this type are observed and in some papers (see, for example, [51]) the field of the star was
taken into account explicitly. In our work, we consider the hot Jupiter HD 209458b, whose
orbit is located in the heliospheric region. This allows us to neglect the proper field of the
host star in the calculations.

The wind magnetic field, which is determined from the model described in Section 2,
does not make sense to include (105) entirely in the background field. The fact is that
the total magnetic field of the wind Bw does not satisfy the condition of potentiality,
∇× Bw 6= 0, since the rotor of the magnetic field just determines the electromagnetic force
affecting the dynamics of the wind plasma. However, the radial magnetic field of the wind
BR can be included in the background field. On the one hand, this field, as it is easy to
see, satisfies the condition of potentiality. On the other hand, in the vicinity of hot Jupiter,
located close to the host star, the radial component of the magnetic field dominates in the
wind plasma, since the ratio Bϕ/br is small in absolute value (see Figure 4). Taking into
account the assumed spherical symmetry of the stellar wind, we obtain (see Section 2)

Hw =
BsR2

s
|r− rs|2

ns, (106)

where the unit vector ns = (r− rs)/|r− rs| determines the direction from the center of star
rs to the observation point r.

In our numerical model, we assume that the intrinsic magnetic field of hot Jupiter is
purely dipole,

Hp =
µp

|r− rp|3
[
3(dp · np)np − dp

]
, (107)

where µp is the magnetic moment of the planet, np = (r − rp)/|r − rp|, dp is a unit
vector directed along the magnetic axis and determining the vector of magnetic moment
µp = µpdp. In our calculations, we assumed the value of magnetic moment of the hot
Jupiter HD 209458b to be µp = 0.1µJ. The orientation of magnetic dipole was determined
by the angles θ and φ, which were used as model parameters. The components of the unit
vector dp directed along the magnetic axis in the Cartesian coordinate system are described
by the expressions:

dp = (sin θ cos φ, sin θ sin φ, cos θ). (108)
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At the same time, we assumed that the proper rotation of the planet is synchronized with
the orbital one, and the axes of proper and orbital rotation are collinear.

For hot Jupiters, the magnetic field induced in the upper atmosphere and the extended
envelope seems to play an important role. Since plasma is almost completely ionized in this
region, any movements in it lead to the appearance of electric currents and, consequently,
to the generation of the magnetic field. This field, in particular, can arise due to zonal
currents in the upper atmosphere caused by uneven heating from the radiation of the host
star [39]. On the other hand, due to its close location to the host star, a quite strong magnetic
field can arise in the upper atmosphere of hot Jupiter, induced by currents shielding the
magnetic field of the stellar wind [40]. The configuration of induced magnetic field is
such that inside the atmosphere it completely compensates for the magnetic field of the
wind, and outside it is dipole. Therefore, in the region beyond the initial atmosphere, we
can write

Ha =
µa

|r− rp|3
[
3(da · np)np − da

]
, (109)

where the corresponding magnetic moment µa = R3
aBw/2, and the unit vector da = −Bw/Bw

is directed against the vector Bw. The magnitude of induced magnetic moment µa de-
pends on the initial radius of the atmosphere Ra and the wind field Bw in the orbit of
the planet. If we take an average field of the star Bs = 0.5 Gs, then, for the characteristic
dimensions of the atmosphere Ra = (4–5)Rp, we can obtain the values of magnetic moment
µa = (0.05–0.2)µJ. In other words, in order of magnitude, the induced magnetic moment
µa turns out to be equal to the intrinsic magnetic moment µp of the hot Jupiter. Note that
the induced magnetic field Ha is completely determined by the wind field Bw. There-
fore, the structure of induced field (in particular, the vector of induced magnetic moment
µa = µada) will track the direction to the star when the planet moves along its orbit.

As noted above, in a non-inertial reference frame rotating together with a binary
system consisting of a star and a planet, the magnetic fields Hp and Ha are stationary,
∂Hp/∂t = 0, ∂Ha/∂t = 0. The proper field of a star, on the contrary, is non-stationary,
∂Hs/∂t 6= 0, since it rotates together with the star at the angular velocity Ωs−Ω. The radial
component of the wind magnetic field Hw is also rigidly associated with the star. In this
case, it can be assumed that the field lines velocity of the radial magnetic field in a non-
inertial reference frame is equal to

vs = −Ω× (r− rs), (110)

since the azimuthal component of the field, due to the proper rotation of the star Ωs, has
already been taken into account in the vector b. The change in the magnetic field Hw in
time is determined by the equation

∂Hw

∂t
= ∇× (vs × Hw). (111)

Substituting the expressions (106) and (110) here, it is not difficult to verify by direct
calculations that the right hand side of this equation vanishes due to the spherical symmetry
of the field Hw. Consequently, the left hand side should also be equal to zero, ∂Hw/∂t = 0.
Thus, in our model, the total background magnetic field (105) turns out to be stationary,
∂H/∂t = 0.

4.4. Numerical Method

To numerically solve the equations of multi-component magnetic hydrodynam-
ics (80)–(84), we use a combination of difference schemes of Roe (see Section 3) and
Lax–Friedrichs [74,75]. The solution algorithm consists of several successive stages result-
ing from the application of the splitting method by physical processes. Suppose that we
know the distribution of all values on the computational mesh at the moment of time t.
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Then, to obtain the values at the next time moment t + ∆t, we decompose the complete
system of Equations (80)–(84) into two subsystems.

The first subsystem corresponds to the equations of ideal multi-component mag-
netic hydrodynamics with intrinsic magnetic field b of plasma without considering the
background magnetic field H:

∂ρ

∂t
+∇ · (ρv) = 0, (112)

∂v
∂t

+ (v · ∇)v = −∇P
ρ
− b×∇× b

4πρ
+ f , (113)

∂b
∂t

= ∇× (v× b), (114)

∂ε

∂t
+ (v · ∇)ε + P

ρ
∇ · v = Q, (115)

∂

∂t
(ρξs) +∇ · (ρξsv) = 0, s = 1, . . . , N. (116)

In our numerical model, a method based on Roe’s scheme was used to solve this system
(see Appendix A).

The second subsystem corresponds to considering the influence of the background field:

∂v
∂t

= −H ×∇× b
4πρ

, (117)

∂b
∂t

= ∇× (v× H). (118)

The first equation in this subsystem describes the influence of the electromagnetic force
caused by the background field, and the second equation does the generation of a magnetic
field. At the same time, it is assumed that at this stage of the algorithm, the density ρ and the
specific internal energy ε do not change. To solve the second subsystem, the Lax–Friedrichs
scheme was used with increasing TVD (total variation diminishing) corrections [68].

To clear the divergence of the magnetic field b, we used the method of the generalized
Lagrange multiplier [76]. The choice of this method is due to the fact that the flow in
vicinity of hot Jupiter is essentially non-stationary, especially in the flow on the night side
forming the magnetospheric tail.

5. Results of Simulations
5.1. Model Parameters

As an object of study, we use a typical hot Jupiter HD 209458b, which has the mass
Mp = 0.71MJ and the photometric radius Rp = 1.38RJ, where MJ and RJ is the mass and
radius of Jupiter. The host star is characterized by the following parameters: spectral
class G0, mass Ms = 1.1M�, radius Rs = 1.2R�. The period of proper rotation of the star
Prot = 14.4 days, which corresponds to the angular velocity Ωs = 5.05× 10−6 s−1 or linear
velocity at the equator vrot = 4.2 km/s. The major semi-axis of the planet orbit A = 10.2R�,
which corresponds to the period of revolution around the star Porb = 84.6 h.

In the simulations, the temperature of atmosphere Ta is varied, while the particle
number density at the photometric radius was set equal to a fixed value na = 1010 cm−3.
The atmospheric outflow rate Ṁa = 109 g/s corresponds to the velocity of the planetary
wind at the photometric radius va = 78 cm/s. The values of these parameters correspond
to the results obtained in aeronomic models for atmospheres of hot Jupiters [12,14–16,48,73].
We assumed that the magnitude of the magnetic moment µp of the planet is 0.1 of the
magnetic moment of Jupiter, and the orientation of magnetic dipole axis (108) is determined
by the angle values θ = 90◦ and ϕ = 60◦.
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At the same time, as already mentioned above, we believed that the proper rotation of
the planet is synchronized with the orbital one, and the axes of proper and orbital rotations
are collinear. The average magnetic field at stellar surface Bs in various models was set to
0.01 G (weak field), 0.2 G (medium field), and 0.5 G (strong field). These values are in the
physically acceptable range (see, e.g., [63]).

Figure 5 shows the distributions of the radial wind velocity vr (left panel) and the
heating function Qw, which is determined by the Equation (88) (right panel), for all three
cases of values Bs. The characteristic value of the heating function in the vicinity of the
planet Qw = 5× 109 erg·g−1·s−1. In this case, the maximum values of the heating function
are reached at distances of approximately 4R� from the star center.
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Figure 5. Distributions of the radial wind velocity vr (left) and the heating function Qw (88) (right)
for the magnetic field values at the stellar surface Bs used in simulations.

For numerical simulations, we used the Cartesian coordinate system (x, y, z) in a
non-inertial reference frame rotating together with the binary system “star–planet” around
the center of masses. The origin of the coordinate system was chosen at the planet center
rp = (0, 0, 0). The x axis was located along the line connecting the centers of the star
and the planet, while the center of the star was at the point rs = (−A, 0, 0). The y axis
was chosen so that its direction coincided with the direction of the orbital motion of the
planet. Finally, considering the selected orientations of the axes x and y, the third axis z
will coincide in the direction with the vector of the orbital angular velocity Ω.

In order to check the correctness of considering the complete wind model, we per-
formed separate numerical calculations of the flow structure in the region where the planet
is absent. To do this, it was enough to choose a computational domain symmetrically lo-
cated relative to the center of the star (i.e., in the vicinity of the point x = −2A). Calculation
results for cases of weak (Bs = 0.01 G) and strong (Bs = 0.5 G) magnetic field of the wind
are shown in Figures 6 and 7, respectively.

These figures show the distributions of density (color and iso-lines), velocity (ar-
rows) and magnetic field (solid lines) at the initial moment of time (left panels) and after
one orbital period (right panels). The density values are given in units of magnitude
ρw = 2.3× 10−21 g/cm3, corresponding to the wind density at a distance of 10R� from the
center of the star. The dotted line shows the boundary of the Roche lobe. The star is located
to the right of the computational domain.
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Figure 6. Distributions of density (color), velocity (arrows) and magnetic field (lines) in the stellar
wind for the case when the magnetic field at the surface of the star Bs = 0.01 G at the initial time
(left) and after one orbital period (right). The dotted line shows the boundary of the Roche lobe.

Figure 7. The same as in Figure 6, but for the case, when the magnetic field at the stellar surface
Bs = 0.5 G.

The analysis of these figures allows us to conclude that during the time of order of the
orbital period, in the numerical model, the distributions of wind parameters for both the
case of weak and strong fields practically do not change. Small perturbations introduced
into the solution by boundary conditions are not essential for our purposes. Therefore, we
can assume that the accounting of the complete wind model is carried out correctly.

Figure 8 shows the initial distributions of density (color) and magnetic field (arrow
lines) in the vicinity of the planet for the case, when the temperature of the atmosphere
Ta = 6000 K. The left panel corresponds to the magnitude of the magnetic field at the
surface of the star Bs = 0.01 G (weak field), and the right panel does to the case for the
strong field Bs = 0.5 G. The dotted line again shows the boundary of the Roche lobe and
the white circle corresponds to the photometric radius of the planet. The star is located on
the left side. The radius of the atmosphere in the case of the strong field (right panel) is
smaller compared to the case of the weak field (left panel). This is due to the fact that an
increase in the field Bs leads to an increase in the total wind pressure (92) and, consequently,
to a decrease in the initial radius of the atmosphere (93).
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Figure 8. The initial distributions of density (color) and magnetic field (lines with arrows) for the
case, when the temperature of the atmosphere Ta = 6000 K, and the magnetic field at the stellar
surface Bs is 0.01 G (left) and 0.5 G (right). The dotted line shows the boundary of the Roche lobe.
The white circle corresponds to the photometric radius of the planet.

It can be noticed that the magnetic field is clearly divided into four zones. In the first
zone (above and below the planet in the figures), the magnetic field is characterized by
open force lines of the star, which begin at its surface and go to infinity. In the second zone
(to the right of the planet), the magnetic field is determined by the open force lines of the
planet. In the third zone (to the left of the planet), magnetic lines are common for the star
and the planet. They start at the surface of the star and finish at the surface of the planet,
forming a kind of magnetic “bridge” connecting the star with the planet and performing
orbital rotation with them together. Finally, the last zone consists of the closed lines of the
planet forming the inner part of the magnetosphere.

There are two neutral points in the orbital plane, in which, due to the superposition
of individual fields, the total induction vector B = 0 and therefore the direction of the
magnetic field becomes indeterminate. In space, the set of these neutral points forms a
certain line, the shape of which, in particular, is determined by the orientation parameters of
the magnetic axis of the planet. In case of a strong wind field (Figure 8, right panel) neutral
points and closed dipole lines are located in a more compact region around the planet.
When the stellar wind flows around the planet, a more complex flow pattern is formed
and the structure of the magnetic field is significantly distorted. However, in general,
the described topology (separation into magnetic zones and the presence of neutral points)
is preserved.

Below, we present the results of two blocks of numerical simulations. In the first
block, we set a weak field of the wind corresponding to the super-Alfvén regime of the
stellar wind flowing around hot Jupiter, and varied the temperature of the atmosphere.
This led to the formation of various types of super-Alfvén envelopes. In the second block,
with fixed atmospheric parameters, we varied the magnitude of the magnetic field of the
wind in order to trace how the envelope structure changes in this case. The parameters of
the models, as well as the flow characteristics, are presented in Table 1.
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Table 1. Parameters and characteristics of the models: Ta is the temperature of the upper atmosphere,
Bs is the magnetic field of the star, and Ṁp is the mass loss rate of the planet.

Model Ta, K Bs, G Flow Regime Envelope Type Ṁp, 109 g/s

1 5000 0.01 Super-Alfvénic Closed 1
2 5500 0.01 Super-Alfvénic Quasi-closed 1
3 6000 0.01 Super-Alfvénic Quasi-Opened 4
4 6500 0.01 Super-Alfvénic Opened 10
5 6500 0.2 Trans-Alfvénic Quasi-Opened 9
6 6500 0.5 Sub-Alfvénic Quasi-Opened 7

5.2. Super-Alfvén Flow Regime

This section presents the results of numerical simulation of the flow structure in
the vicinity of hot Jupiter for the case, when the magnetic field at the surface of the star
Bs = 0.01 G. The Alfvén Mach number (29) in the orbit of the planet is λ = 15.5. This
means that the planet is located in the super-Alfvén zone of the stellar wind. The total
Alfvén Mach number, considering the velocity of the orbital motion of the planet, λ = 23.2.
Therefore, in this case, the flow around of hot Jupiter by the stellar wind should occur in
the super-Alfvén regime.

Calculations were performed for four models differing in atmospheric temperature
values Ta (see Table 1). Namely, the temperature of atmosphere Ta was set equal to 5000 K
(model 1), 5500 K (model 2), 6000 K (model 3), 6500 K (model 4). The simulation was carried
out in the computational domain −30 ≤ x/Rp ≤ 30, −30 ≤ y/Rp ≤ 30, −15 ≤ z/Rp ≤ 15
with the number of cells 192× 192× 96.

The simulation results are demonstrated by Figure 9. The density distributions (color,
iso-lines), velocities (arrows) and magnetic field (lines) in the orbital plane are represented
on various panels of this figure. The density is expressed in units of wind density in
the vicinity of the planet ρw. The boundary of the Roche lobe is shown by a dotted line.
The planet is located in the center of the computational domain and is represented by
a light circle, the radius of which corresponds to the photometric one. All the solutions
obtained correspond to the time moment of the order of one third of the orbital period from
the beginning of the computation. During this period of time, a stable quasi-stationary
flow pattern is formed.

In all four calculation variants, as a result of the stellar wind flowing around, a wide
(on the order of several radii of the planet) hydrogen–helium turbulent plume is formed
at the night side of the planet. The interaction of the stellar wind with the envelope of
hot Jupiter leads to the appearance of bow shock wave. The position and shape of the
bow shock in this numerical model are slightly different from those we received in our
previous models [16,17,41,52,54–57,73]. This is due to a more correct consideration of wind
parameters. In the old model, wind velocity and temperature were considered as constants,
but in the new model they change in space.

In addition, we previously accelerated the wind by disabling the gravitational forces
of the star and the planet in the area occupied by the wind plasma. As a result, the flow
velocity increased and the shock wave pressed closer to the planet. In the new numerical
model, the flow velocity is calculated from the wind structure and as a result, the shock
wave moves further away from the planet. Another effect is due to the fact that the sound
point is located inside the computational domain at a distance of about 20 radii of the
planet towards the star (see Figure 3). Therefore, the lower left edge of the shock wave,
reaching this point, breaks off. This is clearly visible on the upper panels of Figure 9.
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Figure 9. Distributions of density (color, iso-lines), velocity (arrows) and magnetic field (lines) in the
orbital plane at a time moment approximately equal to a one third of the orbital period for models 1
(Ta = 5000 K, top left), 2 (Ta = 5500 K, top right), 3 (Ta = 6000 K, bottom left) and 4 (Ta = 6500 K,
bottom right). The density is expressed in units of ρw. The dotted line shows the border of the Roche
lobe. The white circle corresponds to the photometric radius of the planet.

In model 1 (Ta = 5000 K, upper left panel Figure 9) a compact envelope of hot Jupiter
is formed, except a relatively weak plume located inside the Roche lobe. The bow shock
has an almost spherical shape. According to the classification proposed in [17], such a flow
configuration corresponds to the closed envelope of hot Jupiter. In model 2 (Ta = 5500 K,
upper right panel Figure 9) a compact envelope of hot Jupiter is also forming. However,
in this case, there is a small cusp in the surface of contact discontinuity (envelope boundary)
directed towards the inner Lagrange point L1. Therefore, the outflow of matter from the
envelope occurs not only due to a turbulent plume forming at the night side, but also due
to a weak outflow from the day side of the planet. The shape of bow shock is also close to
spherical. An extended envelope of this type can be called quasi-closed. The mass loss rate
for these models Ṁp ≈ 109 g/s and determines by the outflow from the night side of the
planet (see the last column in Table 1).

A rather complex flow pattern is observed in model 3 (Ta = 6000 K, lower left panel
Figure 9) and model 4 (Ta = 6500 K, lower right panel Figure 9). In these models, two
powerful flows are formed from the vicinity of Lagrange points L1 and L2. The first stream,
as in the previous two models, begins at the night side and forms a wide turbulent plume
behind the planet. The second stream is formed at the day side, directed towards the star
and, therefore, moves against the wind due to the stellar gravity.

A stream of hydrogen–helium matter from the inner Lagrange point significantly
distorts the shape of the bow shock, while pushing it further away from the planet. We
can say that the shock wave consists of two separate parts, one of which arises around the
atmosphere of the planet, and the other arises around the stream from the inner Lagrange
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point L1. The flow of matter in the stream is directed against the wind and therefore the
Kelvin–Helmholtz instability develops along its surface.

In model 3, the flow has a lower intensity and it is largely deflected and blocked by the
stellar wind. Such an extended envelope can be called quasi-open. The corresponding mass
loss rate Ṁp ≈ 4× 109 g/s and determines mainly by the outflow from inner Lagrange
point L1. Finally, in model 4, the intensity of the flow is so high that it does not stop under
impact of the stellar wind and continues to move away towards the star. This leads to a
significant loss of matter from the hot Jupiter envelope. We find that in this model the mass
loss rate Ṁp ≈ 1010 g/s. An extended envelope of this type can be called open.

Thus, in the new numerical model, all the previously discovered [17] types of extended
envelopes remain. However, their boundaries in the parameter space have shifted to the
region of lower densities and temperatures. This is mainly due to the fact that, in this
model, we take into account the chemical composition of the atmosphere.

5.3. Sub-Alfvén Flow Regime

In this section, we present the results of the second block of numerical simulations.
The temperature of atmosphere was set equal to Ta = 6500 K, which corresponds in the
case of a weak field (Bs = 0.01 G) to an open extended envelope under conditions of super-
Alfvén flow by the stellar wind (model 4 from the previous Section 5.2). In the second
block, calculations were performed for the cases Bs = 0.2 G (model 5) and Bs = 0.5 G
(model 6). The parameters of the computational domain and the mesh were used the same
as in the previous models 1–4. The results of the simulations are shown in Figure 10, which
shows the flow structure for these two variants at a time moment of about one third of the
orbital period from the beginning of computation.

Figure 10. Distributions of density (color, iso-lines), velocity (arrows), and magnetic field (lines) in
the orbital plane at a time moment approximately equal to one third of the orbital period for Model 5
(Bs = 0.2 G, left) and Model 6 (Bs = 0.5 G, right). The density is expressed in units of ρw. The dotted
line shows the border of the Roche lobe. The white circle corresponds to the photometric radius of
the planet.

In both models, the planet is located in the sub-Alfvén wind zone, but between the
points rS (slow magnetosonic) and rA (Alfvén). Consequently, in the orbit of the planet,
the wind velocity vw exceeds the slow magnetosonic velocity uS, but becomes less than the
Alfvén velocity uA. In model 5, the Alfvén Mach number at the planet orbit is λ = 0.77 and
therefore the planet is located in the sub-Alfvén zone of the stellar wind. The total Alfvén
Mach number, considering the velocity of the orbital motion of the planet λ = 1.16.

We can say that this situation corresponds to the trans-Alfvén regime of the stellar wind
flowing around the planet, since hot Jupiter is located in the sub-Alfvén wind zone, but the
flow occurs in the super-Alfvén regime. In model 6, the Alfvén Mach number on the orbit
of the planet is λ = 0.31, and the total Alfvén Mach number is λ = 0.46. Therefore, in this
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case, the conditions for the implementation of the sub-Alfvén regime of the hot Jupiter flow
around by the stellar wind are completely satisfied.

In the super-Alfvén flow around regime, an extended open-type envelope was formed
for these atmospheric parameters (see the lower right panel in Figure 9). Under the
conditions of a strong magnetic field of the wind, the envelope structure has undergone
significant changes. The intensity of the matter flow from the inner Lagrange point L1 at the
day side weakened and the envelope became closer to the quasi-open type. We obtained
that the mass loss rate Ṁp ≈ 9× 109 g/s for the model 5 and Ṁp ≈ 7× 109 g/s for the
model 6. It follows from these results that, at fixed parameters of the atmosphere (density
ρa and temperature Ta), the rate of mass loss Ṁp for hot Jupiter decreases with an increase
in the magnetic field of the wind (the parameter Bs in our numerical model).

In addition, the flow direction changed, since, in a strong field, plasma tends to move
mainly along magnetic force lines. This is especially noticeable in the case of model 6
(right panel in Figure 10). Since the wind field is almost radial in the vicinity of the planet,
the envelope matter moves directly to the star and, continuing to move along such a
trajectory, falls immediately onto the star.

Thus, in the case of a strong magnetic wind field (sub-Alfvén flow around regime), we
have some new type of extended envelope, complementing the previous classification [17].
In order to distinguish these envelopes types, we can call them super-Alfvén and sub-Alfvén,
respectively. For example, in this case, sub-Alfvén extended envelopes of open or quasi-
open type are formed. It is obvious that the observational manifestations of such envelopes
should have important differences in comparison with ones formed in the super-Alfvén
flow around regime [56].

It is also interesting to note that a magnetic barrier is formed in front of the planet
in the direction of its orbital motion. It manifests itself as an elongated area of con-
densation of magnetic field lines (see Figure 10). Within this region, the magnetic field
induction increases.

The process of the stellar wind flowing around the planet is basically shock-less.
In model 5 (the left panel in Figure 10) a weak shock wave is formed around the planet,
but towards the end of the stream it disappears, since the conditions of the sub-Alfvén flow
regime are already being realized in this region. In model 6 (the right panel in Figure 10)
in the entire computational domain, the flow occurs in the sub-Alfvén mode. Therefore,
shock waves are not formed either around the atmosphere of the planet, or around the flow
of matter flowing from the inner Lagrange point L1.

In model 6 (the right panel in Figure 10), a non-physical spherical structure appeared
around the planet. Its appearance is due to the fact that to describe the induced magnetic
field of the atmosphere, we used the formula (109), which follows from the exact solution for
the problem of the magnetic field of an ideally conducting sphere placed in a homogeneous
external magnetic field. In our case, the magnetic field of the wind is not uniform. Therefore,
this solution does not allow to accurately compensate the external field in the entire volume
of the atmosphere and parasitic currents will be induced all the time near the surface of the
initial contact discontinuity. This is noticeable in models with a strong wind field. In future
works, we will attempt to overcome this problem.

6. Conclusions

To investigate the process of the stellar wind matter flowing around hot Jupiters,
considering both the planet own magnetic field and the wind magnetic field, we developed
a three-dimensional numerical model based on the approximation of multi-component
magnetic hydrodynamics. Our numerical model is based on the Roe–Einfeldt–Osher
difference scheme of high resolution for the equations of multi-component MHD.

The total magnetic field is represented as a superposition of the external magnetic field
and the magnetic field induced by electric currents in the plasma itself. The superposition
of the planet proper magnetic field, the induced magnetic field of the atmosphere, and
the radial component of the wind magnetic field was used as the external field. In the
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numerical algorithm, the factors associated with the presence of an external magnetic
field were taken into account at a separate stage using an appropriate Godunov-type
difference scheme.

The main attention was focused on the inclusion of a complete MHD model of the
stellar wind. This, in particular, makes it possible to more correctly calculate the location
of the Alfvén point. As a result, the numerical model is applicable for calculating the
structure of the extended envelope of hot Jupiters not only in the super-Alfvén [55] and
sub-Alfvén [56] regimes of stellar wind flow around but also in the trans-Alfvén regime.
The multi-component MHD approximation in the future will be used by us to account for
changes in the chemical composition of the hydrogen–helium envelopes of hot Jupiters.
In this paper, we did not consider these processes, assuming all the individual components
as passive admixtures moving together with the matter.

As an example of the object to study, we considered a typical hot Jupiter HD 209458b.
The numerical simulations presented in the paper can be divided into two blocks. The first
block includes calculations with a weak wind field (super-Alfvén flow regime), in which
we changed the parameters of atmosphere (temperature). This made it possible to simulate
different types of super-Alfvén envelopes: closed, quasi-closed, quasi-open and open.
In the second block, with fixed atmospheric parameters (open envelope), we changed the
magnetic field of the wind and analyzed how the envelope structure changes.

In the case of the super-Alfvén flow regime, all previously discovered types of ex-
tended envelopes are also implemented in the new numerical model. However, their
boundaries in the parameter space have shifted to the region of lower densities and tem-
peratures. This is due to the fact that in this model we take into account the chemical
composition of the atmosphere. Position and shape of the bow shock in the new numerical
model differ from those we obtained in the previous models. This can be explained by
a more correct consideration of wind parameters. In the old model, wind velocity and
temperatures were considered constant throughout the computational domain, and in the
new model they change in space according to the analytical solution.

In addition, in the old model, the gravitational forces of the star and planet were
turned off to accelerate the wind. As a result, the flow velocity naturally increased and the
shock wave pressed closer to the planet. In the new model, the flow velocity is obtained
directly from the wind model (considering all forces) and as a result, the shock wave moves
further away from the planet.

With the increase in the magnitude of wind magnetic field, the total wind pressure
enlarges. As a result, the stream of matter from the inner Lagrange point L1 is stopped
by the stellar wind earlier. Therefore, for example, an open envelope tends to become
quasi-open with the growth of field. In addition, in the strong magnetic field of the wind,
the direction of movement of stream changes. The stream plasma will attempt to move
along the magnetic force lines. As a result, an additional type of envelopes is realized—
sub-Alfvén ones, which have their own specific observational features.

In the trans-Alfvén regime, the bow shock wave has a fragmentary nature. In the
completed sub-Alfvén flow around regime, the bow shock wave is not formed at all. It
should also be noted that with an increase in the magnetic field of the wind, the induced
field of the atmosphere growths. The corresponding magnetic moment becomes greater
than the planet intrinsic magnetic moment. As a result, the magnetic pole shifts. This may
affect the overall configuration of the magnetosphere and, in particular, the position of the
dead zones and the auroral zone.
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Appendix A. Difference Scheme for the Equations of Multi-Component
Magnetic Hydrodynamics

Appendix A.1. Roe Matrix

In this section, we describe the adaptation of the Roe scheme [77] to the case of
multi-component magnetic hydrodynamics equations. We will discard all source terms,
since they can be accounted separately. The hyperbolic part of the system consists of the
equations of magnetic hydrodynamics

∂ρ

∂t
+∇ · (ρv) = 0, (A1)

∂

∂t
(ρv) +∇ · (ρvv + PT + BB) = 0, (A2)

∂B
∂t
−∇× (v× B) = 0, (A3)

∂ET

∂t
+∇ · [v(ET + PT)− B(v · B)] = 0 (A4)

and equations for the mass fractions of components

∂

∂t
(ρξs) +∇ · (ρξsv) = 0, s = 1, . . . , N. (A5)

Here, all the equations are written in a conservative form and notations for total pressure
and total energy density are used

PT = P +
B2

2
, ET = ρε + ρ

v2

2
+

B2

2
. (A6)

For the convenience of numerical simulation, a system of units is used in these equations,
in which the multiplier 4π does not occur in the expression for the electromagnetic force.

For the numerical solving of three-dimensional equations of multi-component mag-
netic hydrodynamics (A1)–(A5), the splitting technique by spatial directions can be used.
As a result, the solving of a three-dimensional problem is reduced to solving a series of
one-dimensional problems. In the case of using Godunov-type schemes [78], numerical
fluxes in each spatial direction are calculated based on the corresponding one-dimensional
Riemann problem on the decay of an arbitrary discontinuity.

Consider the case of a plane flow corresponding to the coordinate direction x. Since in
the plane flow the magnetic field component BX = const, the equations of one-dimensional
multi-component magnetic hydrodynamics in a conservative form can be written as

∂u
∂t

+
∂F
∂x

= 0, (A7)

www.jscc.ru


Universe 2021, 7, 422 32 of 43

where the vectors of conservative variables and fluxes are defined by expressions:

u =



ρ
ρvx
ρvy
ρvz
By
Bz
ET
ρξs


, F =



ρvx
ρv2

x + PT
ρvxvy − BxBy
ρvxvz − BxBz
vxBy − vyBx
vxBz − vzBx

ρhvx − Bx(v · B),
ρvxξs


. (A8)

Here, it is assumed that the index s runs through values from 1 to N and a notation is used
for the total enthalpy density h, determined by the relation

ρh = ET + PT. (A9)

Note that the equation for the Bx component is excluded from this system. In fact, this
value is a flow parameter.

The Roe scheme refers to Godunov-type schemes and is based on an approximate
solving of the Riemann problem on the decay of an arbitrary discontinuity. In this method,
instead of solving the Riemann problem for the original system of non-linear Equation (A7),
a linearized problem is solved

∂u
∂t

+ Â(uL, uR) ·
∂u
∂x

= 0 (A10)

with initial conditions: u(x, 0) = uL for x < 0 and u(x, 0) = uR for x > 0.
In order for the solutions of the original (A7) and the linearized (A10) problems to be

consistent, the matrix Â(uL, uR) must satisfy the following three conditions.

(1) Hyperbolicity. Matrix Â(uL, uR) must be hyperbolic. Otherwise, the Riemann
problem for a system of linearized Equation (A10) loses its meaning.

(2) Consistency. Matrix Â(uL, uR) should make smooth transition to the hyperbolicity
matrix Â(u) = ∂F/∂u in the limit at uL → uR = u.

(3) Conservation. Matrix Â(uL, uR) must satisfy the condition of conservation relative
to discontinuities:

Â(uL, uR) · ∆u = ∆F, (A11)

where is denoted δu = uR − uL, δF = FR − FL. In this case, solving of the linearized
discontinuity decay problem (A10) will satisfy the same integral conservation laws as
the solving of the original non-linear problem (A7).

As is known, the solution of the Riemann problem for a linear hyperbolic system of
Equation (A10) is a set of strong discontinuities whose velocities are equal to the eigenval-
ues λα of the Roe matrix Â(uL, uR), where α is the index of the characteristic. Corresponding
jumps of values at discontinuities

[u]α = rα∆Sα, (A12)

where square brackets denote differencies between the right and the left values when
crossing the discontinuity, ∆Sα = lα · δu is the characteristic amplitudes, and rα, lα is
the right and left eigenvectors of Roe matrix. At each discontinuity, the corresponding
Hugoniot conditions must be satisfied:

λα[u]α = [F]α. (A13)

The Roe matrix for the equations of magnetic hydrodynamics (A1)–(A4), as well as all
the characteristic parameters necessary for constructing the scheme for the special case of
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the adiabatic index γ = 2, are described in [79]. In [80], the corresponding Roe matrix with
the adiabatic index 1 < γ ≤ 2 was constructed for the first time. A detailed description of
this scheme is given in our monograph [68]. We will not dwell on this here, considering all
these properties to be known. Recall, however, that this matrix of dimension 7× 7 has the
following set of eigenvalues:

λ±F = vx ± uF, λ±S = vx ± uS, λ±A = vx ± uA, λE = vx, (A14)

where the indices F, S, A, and E correspond to fast, slow, Alfvén, and entropy characteristics.
The values uF and uS describe fast and slow magnetosonic velocities, and uA is the Alfvén
velocity. Following the paper of [80], we introduce intermediate values (Roe’s averages)
for density, velocity, magnetic field and total enthalpy:

ρ =
√

ρLρR, v =

√
ρLvL +

√
ρRvR√

ρL +
√

ρR
, (A15)

B =

√
ρRBL +

√
ρLBR√

ρL +
√

ρR
, h =

√
ρLhL +

√
ρRhR√

ρL +
√

ρR
. (A16)

The Roe matrix for the equations of one-dimensional multi-component magnetic
hydrodynamics (A7), (A8) has the following structure

Â =


Aik

0 . . . 0
...

. . .
...

0 . . . 0
−ξ1vx ξ1 0 . . . 0

...
...

...
. . .

...
−ξNvx ξN 0 . . . 0

vx . . . 0
...

. . .
...

0 . . . vx


. (A17)

As it can be seen, this matrix consists of four blocks. In the upper left block of dimension
7× 7 there are elements of the Aik Roe matrix for magnetic hydrodynamics. The indices i
and k run through values from 1 to 7. All elements of the upper right block of dimension
N × 7 are equal to zero. The lower left block has dimension 7× N. In the line with the
number s of this block, the first element is equal to −ξsvx, the second element is equal
to ξs, and the remaining elements are zero. The lower right block of dimension N × N is
diagonal, and all its diagonal elements are equal to vx.

Let us write out the Roe’s conditions (A11) for the matrix (A17). For the matrix
components corresponding to the equations of magnetic hydrodynamics, they do not give
anything new:

∆Fi =
7

∑
k=1

Aik∆uk. (A18)

Consequently, the structure of magnetohydrodynamic part of the matrix Aik is not affected
and remains the same. For the selected component ξs = ξ we have the relation:

∆(ρξvx) = −ξvx∆ρ + ξ∆(ρvx) + vx∆(ρξ). (A19)

From here, we find the Roe’s average for the value ξ,

ξ =
ξL
√

ρL + ξR
√

ρR√
ρL +

√
ρR

. (A20)

This expression is valid for any ξs component.
Taking into account the block structure of the Roe matrix Â∗ it can be written

det
(

Â− λ Î
)
= det(Aik − λδik)(vx − λ)N , (A21)
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where δik is a unit matrix of dimension 7× 7, and Î is a unit matrix of full size. It follows
that the eigenvalues of the Roe matrix Â are the eigenvalues (A14) of the matrix Aik, as well
as N-multiple eigenvalues

λs = vx, s = 1, . . . , N, (A22)

corresponding to the Equation (A5) for the mass fractions of ξs.

Appendix A.2. Eigenvectors

The right eigenvectors of the Roe matrix Â are denoted as follows:

r =
(

r1, . . . , r7, r̃1, . . . , r̃N
)T

, (A23)

where T denotes transposition, the first 7 components of the vector correspond to the
magnetohydrodynamic part, the remaining N components, marked with tildes, correspond
to the Equation (A5) for the mass fractions ξs. Let us write out the equations for the
right eigenvectors

Â · r = λr. (A24)

We have:
7

∑
k=1

Aikrk = λri, i = 1, . . . , 7, (A25)

− ξsvxr1 + ξsr2 + vx r̃s = λr̃s, s = 1, . . . , N. (A26)

Let us first consider the MHD characteristics when λ are determined by the eigenval-
ues of (A14) of the matrix Aik. It follows from the first Equation (A25) that in this case the
components of ri coincide with the corresponding components of the right eigenvectors
in magnetic hydrodynamics. The remaining components of the right eigenvectors can be
found from the additional Equation (A26). If λ 6= vx, then for each component r̃s of the
right vector, it can be written:

r̃s =
ξs

λ− vx

(
r2 − vxr1

)
. (A27)

Hence, for fast and slow characteristics we find r̃s = α f ξs and r̃s = αsξs, respectively,
and for Alfvén r̃s = 0. The coefficients α f and αs determine the normalization of Roe
matrix eigenvectors in magnetic hydrodynamics [79,80] (see also [68]). For the entropy
characteristic λ = vx, r1 = 1, r2 = vx and, consequently, all additional Equation (A26)
are satisfied automatically. This means that in this case we can choose r̃s in an arbitrary
way. Without limiting generality, they can be put equal to zero. As a result, we obtain the
following right eigenvectors

r±F =
(

r1
±F, . . . , r7

±F, αFξ1, . . . , αFξN

)T
,

r±S =
(

r1
±S, . . . , r7

±S, αSξ1, . . . , αSξN

)T
,

r±A =
(

r1
±A, . . . , r7

±A, 0, . . . , 0
)T

,

rE =
(

r1
E, . . . , r7

E, 0, . . . , 0
)T

.

(A28)

For additional characteristics corresponding to the eigenvalues of λs, we come to the
following equations:

7

∑
k=1

Aikrk = vxri, i = 1, . . . , 7, (A29)

r2 − vxr1 = 0, s = 1, . . . , N. (A30)
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The equations for the ri components coincide with the corresponding equations for the
entropy characteristic. Therefore, there should be ri = ri

E. The relation (A30) is also satisfied
identically. The values of r̃s remain arbitrary. They must be selected in such a way as to
obtain a linearly independent set of vectors. To do this, it is enough to set r̃s = 1 for the
characteristic corresponding to the index s, and to set the remaining components equal to
zero. As a result, we obtain the following set of additional right eigenvectors

rs =
(

r1
E, . . . , r7

E, 0, . . . , 1, . . . , 0
)T

. (A31)

Here, the unit is located in place of the component numbered 7 + s. Since the vectors rs
and rE are linearly independent, and the eigenvalues for these characteristics are the same
(λ = vx), then, without violating linear independence, the vector rs can be replaced by the
difference rs − rE. In this case, we have a set of unit vectors

rs = (0, . . . , 0, 0, . . . , 1, . . . , 0)T . (A32)

Let us now consider the left eigenvectors of the Roe matrix Â:

l =
(
l1, . . . , l7, l̃1, . . . , l̃N

)
, (A33)

where the first seven components of the vector again correspond to the magnetohydro-
dynamic part, and the remaining N components, marked with tildes, correspond to the
Equation (A5) for the mass fractions ξs. Describing relations for left eigenvectors

l · Â = λl, (A34)

we come to the following equations:

7

∑
k=1

lk Ak1 −
N

∑
r=1

l̃rξrvx = λl1, (A35)

7

∑
k=1

lk Ak2 +
N

∑
r=1

l̃rξr = λl2, (A36)

7

∑
k=1

lk Akn = λln, n = 3, . . . , 7, (A37)

vx l̃s = λl̃s, s = 1, . . . , N. (A38)

For fast, slow, and Alfvén characteristics, the eigenvalue is λ 6= vx. Therefore, for them
all the additional components are l̃s = 0. For the entropy characteristic, the values of
l̃s are arbitrary. It can also be chosen them l̃s = 0, so as not to change anything in the
magnetohydrodynamic part of the left eigenvector. As a result, for all MHD characteristics,
the left eigenvectors will have the following form:

l±F =
(

l±F
1 , . . . , l±F

7 , 0, . . . , 0
)

,

l±S =
(

l±S
1 , . . . , l±S

7 , 0, . . . , 0
)

,

l±A =
(

l±A
1 , . . . , l±A

7 , 0, . . . , 0
)

,

lE =
(

lE
1 , . . . , lE

7 , 0, . . . , 0
)

.

(A39)



Universe 2021, 7, 422 36 of 43

For additional characteristics λs, the last Equation (A38) is satisfied automatically.
The remaining equations are reduced to the form:

7

∑
k=1

lk Ak1 −
N

∑
r=1

l̃rξrvx = vxl1, (A40)

7

∑
k=1

lk Ak2 +
N

∑
r=1

l̃rξr = vxl2, (A41)

7

∑
k=1

lk Akn = vxln, n = 3, . . . , 7. (A42)

We can see that in the case of l̃r = 0, li = lE
i follows from these equations. However, then

we find a linearly dependent set of vectors. To obtain a linearly independent set of vectors,
for an additional characteristic with the index s, we choose l̃s = 1, and set the remaining
additional components equal to zero. For the rest of the components, we will look for a
solution in a more general form:

li = χlE
i + xi, (A43)

where χ is the normalizing factor, and xi is the unknown quantities. Since

7

∑
k=1

lE
k Aki = vxlE

i , i = 1, . . . , 7, (A44)

then, for xi, we come to the equations:

7

∑
k=1

xk Ak1 − ξsvx = vxx1, (A45)

7

∑
k=1

xk Ak2 + ξs = vxx2, (A46)

7

∑
k=1

xk Akn = vxxn, n = 3, . . . , 7. (A47)

Without limiting generality, we can assume that only the value x1 is non-zero. Recall [80]
that the first row of the matrix Aik contains a single non-zero element A12 = 1. There-
fore, the Equation (A47) is satisfied automatically, and the Equations (A45) and (A46)
coincide and give the solution x1 = −ξs. As a result, the left eigenvectors for additional
characteristics will have the following form:

ls =
(

χlE
1 − ξs, χlE

2 , . . . , χlE
7 , 0, . . . , 1, . . . , 0

)
. (A48)

Here, the unit is located again in place of the component with the index 7 + s.
The coefficient χ should be found from the condition of orthonormality of eigenvectors

lα · rβ = δα
β. (A49)

For MHD characteristics, when α and β correspond to ±F, ±S, ±A or E, all components of
l̃s = 0. Therefore

lα · rβ =
7

∑
k=1

lα
k rk

β = δα
β (A50)
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due to the orthonormality of the MHD vectors. If α corresponds to MHD characteristics,
and β is the additional characteristics, then it’s obvious,

lα · rs = 0. (A51)

If we consider vectors for additional characteristics α = r, β = s, then we also find the
necessary relation,

lr · rs = δr
s . (A52)

Finally, let us consider the case, when α = s, and β corresponds to the MHD characteristics.
We have:

ls · rβ = χ
7

∑
k=1

lE
k rk

β − ξsr1
β + r̃s

β. (A53)

If α = ±F, then the first term in the right part vanishes due to the orthonormality of the
MHD vectors. Then, r1

±F = α f , r̃s
±F = α f ξs and, consequently, the entire right part turns

out to be zero. The situation is similar in cases where α corresponds to ±S and ±A. For the
entropy characteristic α = E we have:

ls · rE = χ
7

∑
k=1

lE
k rk

E − ξsr1
E = 0. (A54)

Hence, using the normalization condition of entropy MHD vectors, as well as the equality
r1

E = 1, we find χ = ξs. Thus, we finally find

ls =
(

ξslE
1 − ξs, ξslE

2 , . . . , ξslE
7 , 0, . . . , 1, . . . , 0

)
. (A55)

Here, as before, the unit is located again in place of the component with the index 7 + s.
Using the expressions obtained for the left eigenvectors, it is easy to calculate the

characteristic amplitudes of ∆Sα = lα · ∆u. Since for all MHD characteristics the additional
components of the left eigenvectors l̃s = 0, the corresponding expressions for characteristic
amplitudes do not change. For additional characteristics of λs we have:

∆Ss = ξs

7

∑
k=1

lE
k ∆uk − ξs∆ρ + ∆(ξsρ). (A56)

Taking into account (A20), this expression can be simplified,

∆Ss = ξs∆SE + ρ∆ξs, (A57)

where ρ is the Roe’s average for density (A15).

Appendix A.3. Test Calculations

To numerically solve the equations of multi-component magnetic hydrodynam-
ics (A1)–(A5), we use the finite-difference Roe scheme [77], some details of which are
described above. To improve the accuracy, we apply the Osher increasing correction [81].
The resulting difference scheme belongs to the class of TVD (total variation diminishing)
schemes [82] and for the case of single-fluid magnetic hydrodynamics is described in detail
in [83]. The scheme has the first order of approximation in time and the third order in space.
Note that the magnetohydrodynamic version of the Roe scheme in our scheme is presented
in such a way that in the absence of a magnetic field (B = 0) this scheme exactly passes
into the Roe-Einfeldt-Osher scheme we used in purely gas-dynamic simulations [17].

The main disadvantage of the Roe method should, apparently, be considered that
the linear system (A10), qualitatively repeating the solution of the original problem (A7),
does not reproduce centered rarefaction waves. Instead, the solution consists of a jumps
system propagating at speeds corresponding to the eigenvalues of the Roe matrix Â(uL, uR),
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and some of these jumps may not satisfy the condition of evolutionarity. However, for most
cases, the Roe method works well, even if the exact solution of the original problem
involves rarefaction waves.

The exception is solutions with trans-sonic rarefaction waves, for the correct account-
ing of which special evolutionary corrections are used. In the case of magnetic hydrody-
namics equations (single-fluid or multi-fluid), such corrections should be used for fast
and slow magnetosonic characteristics, in which rarefaction waves with corresponding
properties may sometimes occur. For fast magnetosonic characteristics, our difference
scheme uses the Einfeldt [84] correction. In the case of slow magnetosonic characteristics,
the initial Einfeldt correction does not agree with a purely gas-dynamic version of the
difference Roe scheme. Therefore, for such characteristics, we use a modified entropy
correction [83].

In multi-dimensional problems, when using Godunov’s methods for solving equations
of magnetic hydrodynamics, a separate procedure is required to clear the divergence of the
magnetic field, since the difference scheme operates with values averaged over the volume
of a cell and, therefore, does not conserve the magnetic flux. The method we use to clear
the magnetic field divergence is described in Section 4.4. In the test calculations, the results
of which are given in this section, divergence cleaning was not applied.

In the first test calculation, numerical simulation of the decay of an arbitrary MHD
discontinuity was carried out. At the initial moment of time, the resting matter (velocity
v = 0) was considered in a homogeneous magnetic field Bx = 1/4, By =

√
3/4, Bz = 0.

An arbitrary discontinuity was located at the point x = 0.
In the region to the left of the discontinuity x < 0, the following values were set:

density ρ = 1, pressure P = 1. In the region to the right of the discontinuity x > 0,
the parameters were set: density ρ = 0.125, pressure P = 0.1. The adiabatic index γ = 5/3.
A calculated grid containing 512 cells was used. A two-component mixture consisting of
hydrogen ions H+ and helium He+ was considered. We assume that at the initial moment
of time, the matter to the left of the discontinuity consists only of helium ions, and the
matter to the right of the discontinuity consists only of hydrogen ions.

The results of the numerical solution of this problem obtained at the time t = 0.15 are
shown in Figure A1. The decay of the initial arbitrary discontinuity leads to the formation
of two rarefaction waves (fast 1 and slow 2) propagating into the region of helium matter.
The contact discontinuity 3 propagates to the right. Two shock waves are formed in the
region of hydrogen plasma (slow 4 and fast 5). The panel on the bottom right shows
the resulting distribution of the mass fractions of helium ions ξ1 and hydrogen ions ξ2.
The contact boundary between the matters shifts to the right, is clearly localized in space
and does not contain any non-physical oscillations. Analysis of the figure shows that the
scheme approximates all types of running waves quite well.

As a second demonstration example, let us consider the results of a test calculation
of the problem on a volume-distributed explosion in a medium with a homogeneous
magnetic field. The initial conditions correspond to the situation when, in the entire
volume of an infinitely long cylinder with a radius of R = 0.2 with a density of ρ = 1,
the pressure instantly increases by 10 times compared to the pressure in the external
environment. As a result of such an explosion, the matter of the cloud begins to expand
into the external environment.

The density and pressure in the external environment were set as follows: ρext = 0.125,
Pext = 0.1. The magnetic field at the initial time in the entire volume of the computational
domain was homogeneous: Bx = 1/4, Bx =

√
3/4, Bx = 0. The cloud was filled with

helium ions He+, and the external environment was filled with hydrogen ions H+. Due to
the formulation of the problem in each plane z = const, the flow pattern will be the same.
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Figure A1. The results of the test calculation of the Riemann problem on the decay of an arbitrary
discontinuity (see the description of the initial conditions in the text). Density distributions are shown
(top left), velocity components vx and vy (top right), magnetic field components by (bottom left),
as well as mass fractions ξ1 and ξ2 (bottom right) at time t = 0.15. The figures correspond to the
digits: 1—fast rarefaction wave, 2—slow rarefaction wave, 3—contact gap, 4—slow shock wave, and
5—fast shock wave.

Therefore, the problem is actually two-dimensional. Calculations were carried out in
the computational domain −0.5 ≤ x ≤ 0.5,−0.5 ≤ y ≤ 0.5 on a mesh with the number
of cells 512× 512. It should be noted that according to its formulation, the previous test
problem corresponds to the decay of an arbitrary discontinuity on the right edge of the
cloud along the x coordinate.

The results of the calculation of the second test problem at time moment t = 0.1 are
shown in Figure A2. The left panel shows the distribution of density (color) and velocity
(arrows). The boundary of the cloud that separates helium and hydrogen corresponds to a
solid line. The right panel shows the distribution of density (iso-lines) and magnetic field
(lines with arrows). As it can be seen from the figure, the flow structure is determined by a
complex system of strong MHD discontinuities propagating outward (fast and slow shock
waves, contact discontinuity), as well as fast and slow rarefaction MHD waves propagating
to the center.

The presence of the magnetic field leads to the fact that the flow pattern is anisotropic.
In particular, the contact boundary along the magnetic field propagates faster than in the
direction across the field. As a result, the initially symmetrical helium cloud becomes
elongated along the magnetic force lines. The analysis of the figure allows us to conclude
that the computational qualities of the difference scheme we used, noted above for a
one-dimensional problem, are preserved in the multi-dimensional case.
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Figure A2. The results of the test calculation of the problem on a volume-distributed explosion in a
homogeneous magnetic field. The density (color) and velocity distributions (arrows) are shown on
the left. The solid line corresponds to the border of the cloud. The density distributions (iso-lines)
and magnetic field distributions (lines with arrows) are shown on the right. The distributions of the
quantities are presented at time moment t = 0.1.

References
1. Murray-Clay, R.A.; Chiang, E.I.; Murray, N. Atmospheric escape from hot Jupiters. Astrophys. J. 2009, 693, 23–42. [CrossRef]
2. Mayor, M.; Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 1995, 378, 355–359. [CrossRef]
3. Lai, D.; Helling, C.; van den Heuvel, E.P.J. Mass transfer, transiting stream, and magnetopause in close-in exoplanetary systems

with applications to WASP-12. Astrophys. J. 2010, 721, 923–928. [CrossRef]
4. Li, S.-L.; Miller, N.; Lin, D.N.C.; Fortney, J.J. WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation. Nature

2010, 463, 1054–1056. [CrossRef] [PubMed]
5. Vidal-Madjar, A.; Lecavelier des Etangs, A.; Desert, J.-M.; Ballester, G.E.; Ferlet, R.; Hébrard, G.; Mayor, M. An extended upper

atmosphere around the extrasolar planet HD209458b. Nature 2003, 422, 143–146. [CrossRef]
6. Vidal-Madjar, A.; Lecavelier des Etangs, A.; Desert, J.-M.; Ballester, G.E.; Ferlet, R.; Hébrard, G.; Mayor, M. Exoplanet HD 209458b

(Osiris): Evaporation strengthened. Astrophys. J. 2008, 676, L57. [CrossRef]
7. Ben-Jaffel, L. Exoplanet HD 209458b: Inflated hydrogen atmosphere but no sign of evaporation. Astrophys. J. 2007, 671, L61–L64.

[CrossRef]
8. Vidal-Madjar, A.; Desert, J.-M.; Lecavelier des Etangs, A.; Hébrard, G.; Ballester, G.E.; Ehrenreich, D.; Ferlet, R.; McConnell, J.C.;

Mayor, M.; Parkinson, C.D. Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar
planet HD 209458b. Astrophys. J. 2004, 604, L69–L72. [CrossRef]

9. Ben-Jaffel, L.; Sona Hosseini, S. On the existence of energetic atoms in the upper atmosphere of exoplanet HD209458b. Astrophys. J.
2010, 709, 1284–1296. [CrossRef]

10. Linsky, J.L.; Yang, H.; France, K.; Froning, C.S.; Green, J.C.; Stocke, J.T.; Osterman, S.N. Observations of mass loss from the
transiting exoplanet HD 209458b. Astrophys. J. 2010, 717, 1291–1299. [CrossRef]

11. Lecavelier des Etangs, A.; Bourrier, V.; Wheatley, P.J.; Dupuy, H.; Ehrenreich, D.; Vidal-Madjar, A.; Hébrard, G.; Ballester, G.E.;
Désert, J.-M.; Ferlet, R.; et al. Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b. Astron. Astrophys.
2012, 543, id.L4. [CrossRef]

12. Yelle, R.V. Aeronomy of extra-solar giant planets at small orbital distances. Icarus 2004, 170, 167–179. [CrossRef]
13. Garcia Munoz, A. Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 2007, 55, 1426–1455. [CrossRef]
14. Koskinen, T.T.; Harris, M.J.; Yelle, R.V.; Lavvas, P. The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical-

dynamical model of the thermosphere. Icarus 2013, 226, 1678–1694. [CrossRef]
15. Ionov, D.E.; Shematovich, V.I.; Pavlyuchenkov, Y.N. Influence of photoelectrons on the structure and dynamics of the upper

atmosphere of a hot Jupiter. Astron. Rep. 2017, 61, 387–392. [CrossRef]
16. Bisikalo, D.V.; Shematovich, V.I.; Kaygorodov, P.V.; Zhilkin, A.G. Gas envelopes of exoplanets—Hot Jupiters. Phys. Uspekhi 2021,

64, 747–800. [CrossRef]
17. Bisikalo, D.V.; Kaigorodov, P.V.; Ionov, D.E.; Shematovich, V.I. Types of gaseous envelopes of “hot Jupiter” exoplanets. Astron. Rep.

2021, 57, 715–725. [CrossRef]
18. Cherenkov, A.A.; Bisikalo, D.V.; Kaigorodov, P.V. Mass-loss rates of “hot-Jupiter” exoplanets with various types of gaseous

envelopes. Astron. Rep. 2014, 58, 679–687. [CrossRef]
19. Bisikalo, D.V.; Cherenkov, A.A. The influence of coronal mass ejections on the gas dynamics of the atmosphere of a “hot Jupiter”

exoplanet. Astron. Rep. 2016, 60, 183–192. [CrossRef]

http://doi.org/10.1088/0004-637X/693/1/23
http://dx.doi.org/10.1038/378355a0
http://dx.doi.org/10.1088/0004-637X/721/2/923
http://dx.doi.org/10.1038/nature08715
http://www.ncbi.nlm.nih.gov/pubmed/20182506
http://dx.doi.org/10.1038/nature01448
http://dx.doi.org/10.1086/587036
http://dx.doi.org/10.1086/524706
http://dx.doi.org/10.1086/383347
http://dx.doi.org/10.1088/0004-637X/709/2/1284
http://dx.doi.org/10.1088/0004-637X/717/2/1291
http://dx.doi.org/10.1051/0004-6361/201219363
http://dx.doi.org/10.1016/j.icarus.2004.02.008
http://dx.doi.org/10.1016/j.pss.2007.03.007
http://dx.doi.org/10.1016/j.icarus.2012.09.027
http://dx.doi.org/10.1134/S1063772917050018
http://dx.doi.org/10.3367/UFNe.2020.11.038879
http://dx.doi.org/10.1134/S1063772913100016
http://dx.doi.org/10.1134/S1063772914100047
http://dx.doi.org/10.1134/S1063772916020013


Universe 2021, 7, 422 41 of 43

20. Cherenkov, A.; Bisikalo, D.; Fossati, L.; Möstl, C. The influence of coronal mass ejections on the mass-loss rates of hot-Jupiters.
Astrophys. J. 2017, 846, 31. [CrossRef]

21. Cherenkov, A.A.; Bisikalo, D.V.; Kosovichev, A.G. Influence of stellar radiation pressure on flow structure in the envelope of
hot-Jupiter HD 209458b. Mon. Not. R. Astron. Soc. 2018, 475, 605–613. [CrossRef]

22. Bisikalo, D.V.; Cherenkov, A.A.; Shematovich, V.I.; Fossati, L.; Möstl, C. The influence of a stellar flare on the dynamical state of
the atmosphere of the exoplanet HD 209458b. Astron. Rep. 2018, 62, 648–653. [CrossRef]

23. Shaikhislamov, I.F.; Khodachenko, M.L.; Lammer, H.; Kislyakova, K.G.; Fossati, L.; Johnstone, C.P.; Prokopov, P.A.; Berezutsky, A.G.;
Zakharov, Y.P.; Posukh, V.G. Two regimes of interaction of a hot Jupiter’s escaping atmosphere with the stellar wind and heneration
of energized atomic hydrogen corona. Astrophys. J. 2016, 832, 173. [CrossRef]

24. Shaikhislamov, I.F.; Khodachenko, M.L.; Lammer, H.; Berezutsky, A.G.; Miroshnichenko, I.B.; Rumenskikh, M.S. 3D aeronomy
modelling of close-in exoplanets. Mon. Not. R. Astron. Soc. 2018, 481, 5315–5323. [CrossRef]

25. Shaikhislamov, I.F.; Khodachenko, M.L.; Lammer, H.; Berezutsky, A.G.; Miroshnichenko, I.B.; Rumenskikh, M.S. Three-
dimensional modelling of absorption by various species for hot Jupiter HD 209458b. Mon. Not. R. Astron. Soc. 2020, 491, 3435–3447.

26. Khodachenko, M.L.; Shaikhislamov, I.F.; Lammer, H.; Kislyakova, K.G.; Fossati1, L.; Johnstone, C.P.; Arkhypov, O.V.; Berezutsky, A.G.;
Miroshnichenko, I.B.; Posukh, V.G. Lyα absorption at transits of HD 209458b: A comparative study of various mechanisms under
different conditions. Astrophys. J. 2017, 847, 126. [CrossRef]

27. Khodachenko, M.L.; Shaikhislamov, I.F.; Lammer, H.; Berezutsky, A.G.; Miroshnichenko, I.B.; Rumenskikh, M.S.; Kislyakova, K.G.;
Dwivedi, N.K. Global 3D hydrodynamic modeling of in-transit Lyα absorption of GJ 436b. Astrophys. J. 2019, 885, 67. [CrossRef]

28. Grießmeier, J.-M.; Stadelmann, A.; Penz, T.; Lammer, H.; Selsis, F.; Ribas, I.; Guinan, E.F.; Motschmann, U.; Biernat, H.K.;
Weiss, W.W. The effect of tidal locking on the magnetospheric and atmospheric evolution of “Hot Jupiters”. Astron. Astrophys.
2004, 425, 753-762. [CrossRef]

29. Sanchez-Lavega, A. The magnetic field in giant extrasolar planets. Astrophys. J. 2004, 609, L87–L90. [CrossRef]
30. Vidotto, A.A.; Jardine, M.; Helling, C. Prospects for detection of exoplanet magnetic fields through bow-shock observations

during transits. Mon. Not. R. Astron. Soc. 2011, 411, L46–L50. [CrossRef]
31. Kislyakova, K.G.; Holmström, M.; Lammer, H.; Odertand, P.; Khodachenkol, M.L. Magnetic moment and plasma environment of

HD 209458b as determined from Lyα observations. Science 2014, 346, 981–984. [CrossRef]
32. Stevenson, D.J. Planetary magnetic fields. Rep. Prog. Phys. 1983, 46, 555–620. [CrossRef]
33. Showman, A.P.; Guillot, T. Atmospheric circulation and tides of “51 Pegasus b-like” planets. Astron. Astrophys. 2002, 385, 166–180.

[CrossRef]
34. Jones, C.A. Planetary magnetic fields and fluid dynamos. Annu. Rev. Fluid Mech. 2011, 43, 583–614. [CrossRef]
35. Jones, C.A. A dynamo model of Jupiter’s magnetic field. Icarus 2014, 241, 148–159. [CrossRef]
36. Batygin, K.; Stanley, S.; Stevenson, D.J. Magnetically controlled circulation on hot extrasolar planets. Astrophys. J. 2013, 776, 53.

[CrossRef]
37. Rogers, T.M.; Showman, A.P. Magnetohydrodynamic simulations of the atmosphere of HD 209458b. Astrophys. J. 2014, 782, L4.

[CrossRef]
38. Rogers, T.M.; Komacek, T.D. Magnetic effects in hot Jupiter atmospheres. Astrophys. J. 2014, 794, 132. [CrossRef]
39. Rogers, T.M. Constraints on the magnetic field strength of HAT-P-7b and other hot giant exoplanets. Nat. Astron. 2017, 1, 0131.

[CrossRef]
40. Erkaev, N.V.; Odert, P.; Lammer, H.; Kislyakova, K.G.; Fossati, L.; Mezentsev, A.V.; Johnstone, C.P.; Kubyshkina, D.I.;

Shaikhislamov, I.F.; Khodachenko, M.L. Effect of stellar wind induced magnetic fields on planetary obstacles of non-magnetized
hot Jupiters. Mon. Not. R. Astron. Soc. 2017, 470, 4330–4336. [CrossRef]

41. Zhilkin, A.G.; Bisikalo, D.V. On possible types of magnetospheres of hot Jupiters. Astron. Rep. 2019, 63, 550–564. [CrossRef]
42. Belen’kaya, E.S. Magnetospheres of planets with an intrinsic magnetic field. Phys. Uspekhi 2009, 52, 765–788. [CrossRef]
43. Russell, C.T. Planetary magnetospheres. Rep. Prog. Phys. 1993, 56, 687–732. [CrossRef]
44. Ip, W.-H.; Kopp, A.; Hu, J.H. On the star-magnetosphere interaction of close-in exoplanets. Astrophys. J. 2004, 602, L53–L56.

[CrossRef]
45. Koskinen, T.T.; Cho, J.Y.-K.; Achilleos, N.; Aylward, A.D. Ionization of extrasolar giant planet atmospheres. Astrophys. J. 2010,

722, 178–187. [CrossRef]
46. Koskinen, T.T.; Yelle, R.V.; Lavvas, P.; Lewis, N.K. Characterizing the thermosphere of HD 209458b with UV transit observations.

Astrophys. J. 2010, 723, 116–128. [CrossRef]
47. Trammell, G.B.; Arras, P.; Li, Z.-Y. Hot Jupiter magnetospheres. Astrophys. J. 2011, 728, 152. [CrossRef]
48. Shaikhislamov, I.F.; Khodachenko, M.L.; Sasunov, Y.L.; Lammer, H.; Kislyakova, K.G.; Erkaev, N.V. Atmosphere expansion and

mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric
material. Astrophys. J. 2014, 795, 132. [CrossRef]

49. Khodachenko, M.L.; Shaikhislamov, I.F.; Lammer, H.; Prokopov, P.A. Atmosphere expansion and mass loss of close-orbit giant
exoplanets heated by stellar XUV. II. Effects of planetary nagnetic field; structuring of inner magnetosphere. Astrophys. J. 2015,
813, 50. [CrossRef]

50. Trammell, G.B.; Li, Z.-Y.; Arras, P. Magnetohydrodynamic simulations of hot Jupiter upper atmospheres. Astrophys. J. 2014,
788, 161. [CrossRef]

http://dx.doi.org/10.3847/1538-4357/aa82b2
http://dx.doi.org/10.1093/mnras/stx3230
http://dx.doi.org/10.1134/S1063772918100025
http://dx.doi.org/10.3847/0004-637X/832/2/173
http://dx.doi.org/10.1093/mnras/sty2652
http://dx.doi.org/10.3847/1538-4357/aa88ad
http://dx.doi.org/10.3847/1538-4357/ab46a4
http://dx.doi.org/10.1051/0004-6361:20035684
http://dx.doi.org/10.1086/422840
http://dx.doi.org/10.1111/j.1745-3933.2010.00991.x
http://dx.doi.org/10.1126/science.1257829
http://dx.doi.org/10.1088/0034-4885/46/5/001
http://dx.doi.org/10.1051/0004-6361:20020101
http://dx.doi.org/10.1146/annurev-fluid-122109-160727
http://dx.doi.org/10.1016/j.icarus.2014.06.020
http://dx.doi.org/10.1088/0004-637X/776/1/53
http://dx.doi.org/10.1088/2041-8205/782/1/L4
http://dx.doi.org/10.1088/0004-637X/794/2/132
http://dx.doi.org/10.1038/s41550-017-0131
http://dx.doi.org/10.1093/mnras/stx1471
http://dx.doi.org/10.1134/S1063772919070096
http://dx.doi.org/10.3367/UFNe.0179.200908a.0809
http://dx.doi.org/10.1088/0034-4885/56/6/001
http://dx.doi.org/10.1086/382274
http://dx.doi.org/10.1088/0004-637X/722/1/178
http://dx.doi.org/10.1088/0004-637X/723/1/116
http://dx.doi.org/10.1088/0004-637X/728/2/152
http://dx.doi.org/10.1088/0004-637X/795/2/132
http://dx.doi.org/10.1088/0004-637X/813/1/50
http://dx.doi.org/10.1088/0004-637X/788/2/161


Universe 2021, 7, 422 42 of 43

51. Matsakos, T.; Uribe, A.; Königl, A. Classification of magnetized star-planet interactions: Bow shocks, tails, and inspiraling flows.
Astron. Astrophys. 2015, 578, A6. [CrossRef]

52. Arakcheev, A.S.; Zhilkin, A.G.; Kaigorodov, P.V.; Bisikalo, D.V.; Kosovichev, A.G. Reduction of mass loss by the hot Jupiter
WASP-12b due to its magnetic field. Astron. Rep. 2017, 61, 932–941. [CrossRef]

53. Bisikalo, D.V.; Arakcheev, A.S.; Kaigorodov, P.V. Pulsations in the atmospheres of hot Jupiters possessing magnetic fields.
Astron. Rep. 2017, 61, 925–931. [CrossRef]

54. Zhilkin, A.G.; Bisikalo, D.V.; Kaygorodov, P.V. Coronal mass ejection effect on envelopes of hot Jupiters. Astron. Rep. 2020,
64, 159–167. [CrossRef]

55. Zhilkin, A.G.; Bisikalo, D.V.; Kaygorodov, P.V. The orientation influence of a hot Jupiter’s intrinsic dipole magnetic field on the
flow structure in its extended envelope. Astron. Rep. 2020, 64, 259–271. [CrossRef]

56. Zhilkin, A.G.; Bisikalo, D.V. Possible new envelope types of hot Jupiters. Astron. Rep. 2020, 64, 563–577. [CrossRef]
57. Zhilkin, A.G.; Bisikalo, D.V.; Kolymagina, E.A. MHD model of the interaction of a coronal mass ejection with the hot Jupiter HD

209458b. Astron. Rep. 2021, 65, 676–692. [CrossRef]
58. Owens, M.J.; Forsyth, R.J. The heliospheric magnetic field. Living Rev. Sol. Phys. 2013, 10, 5. [CrossRef]
59. Parker, E.N. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 1958, 128, 664–676. [CrossRef]
60. Weber, E.J.; Davis, L., Jr. The angular momentum of the solar wind. Astrophys. J. 1967, 148, 217–227. [CrossRef]
61. Lamers, H.J.; Cassinelli, J.P.; Cassinelli, J. Introduction to Stellar Winds; Cambridge University Press: Camridge, UK, 1999.
62. Withbroe, G.L. The temperature structure, mass, and energy flow in the corona and inner solar wind. Astrophys. J. 1988,

325, 442–467. [CrossRef]
63. Fabbian, D.; Simoniello, R.; Collet, R.; Criscuoli, S.; Korhonen, H.; Krivova, N.A.; Oláh, K.; Jouve, L.; Solanki, S.K.;

Alvarado-Gómez, J.D.; et al. The variability of magnetic activity in solar-type stars. Astron. Nachrichten 2017, 338, 753–772.
[CrossRef]

64. Lammer, H.; Gudel, M.; Kulikov, Y.; Ribas, I.; Zaqarashvili, T.V.; Khodachenko, M.L.; Kislyakova, K.G.; Gröller, H.; Odert, P.;
Leitzinger, M.; et al. Variability of solar/stellar activity and magnetic field and its influence on planetary atmosphere evolution.
Earth Planets Space 2021, 64, 179–199. [CrossRef]

65. Steinolfson, R.S.; Hundhausen, F.J. Density and white light brightness in looplike coronal mass ejections: Temporal evolution.
J. Geophys. Res. 1988, 93, 14269–14276. [CrossRef]

66. Roussev, I.I.; Gombosi, T.I.; Sokolov, I.V.; Velli, M.; Manchester, W., IV; DeZeeuw, D.L.; Liewer, P.; Tóth, G.; Luhmann, J.
A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophys. J. 2003, 595, L57–L61.
[CrossRef]

67. Totten, T.L.; Freeman, J.W.; Arya, S. An empirical determination of the polytropic index for the free-streaming solar wind using
Helios 1 data. J. Geophys. Res. 1995, 100, 13–18. [CrossRef]

68. Bisikalo, D.V.; Zhilkin, A.G.; Boyarchuk, A.A. Gas Dynamics of Close Binary Stars; Fizmatlit: Moscow, Russia, 2013. (In Russian)
69. Zhilkin, A.G.; Bisikalo, D.V.; Boyarchuk, A.A. Flow structure in magnetic close binary stars. Phys. Uspekhi 2021, 55, 115–136.

[CrossRef]
70. Tanaka, T. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous

systems including strong background potential fields. J. Comput. Phys. 1994, 111, 381–389. [CrossRef]
71. Powell, K.G.; Roe, P.L.; Linde, T.J.; Gombosi, T.I.; De Zeeuw, D.L. A solution-adaptive upwind scheme for ideal magnetohydrody-

namics. J. Comput. Phys. 1999, 154, 284–309. [CrossRef]
72. Guo, J.H. Escaping particle fluxes in the atmospheres of close-in exoplanets. I. Model of hydrogen. Astrophys. J. 2011, 733, 98.

[CrossRef]
73. Bisikalo, D.V.; Shematovich, V.I.; Kaigorodov, P.V.; Zhilkin, A.G. Gaseous Envelopes of Exoplanets—Hot Jupiters; Nauka: Moscow,

Russia, 2020. (In Russian)
74. Lax, P.D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 1954,

7, 159–193. [CrossRef]
75. Friedrihs, K.O. Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math. 1954, 7, 345–392. [CrossRef]
76. Dedner, A.; Kemm, F.; Kroner, D.; Munz, C.-D.; Schnitzera, T.; Wesenberg, M. Hyperbolic divergence cleaning for the MHD

equations. J. Comput. Phys. 2002, 175, 645–673. [CrossRef]
77. Roe, P.L. The use of the Riemann problem in finite difference schemes. Lect. Notes Phys. 1981, 141, 354–359.
78. Godunov, S.K. A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik

1959, 47, 271–306. Translated US Joint Publ. Res. Service, JPRS 7225 Nov. 29, 1960.
79. Brio, M.; Wu, C.C. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 1988,

75, 400–422. [CrossRef]
80. Cargo, P.; Gallice, G. Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws.

J. Comput. Phys. 1997, 136, 446–466. [CrossRef]
81. Chakravarthy, S.R.; Osher, S. A new class of high accuracy TVD schemes for hyperbolic conservationlaws. In Proceedings of the

23rd Aerospace Sciences Meeting, Reno, NV, USA, 14–17 January 1985. [CrossRef]
82. Harten, A.; Hyman, J. Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 1983,

50, 235–269. [CrossRef]

http://dx.doi.org/10.1051/0004-6361/201425593
http://dx.doi.org/10.1134/S1063772917110014
http://dx.doi.org/10.1134/S1063772917110026
http://dx.doi.org/10.1134/S1063772920020055
http://dx.doi.org/10.1134/S1063772920030063
http://dx.doi.org/10.1134/S1063772920080090
http://dx.doi.org/10.1134/S1063772921090092
http://dx.doi.org/10.12942/lrsp-2013-5
http://dx.doi.org/10.1086/146579
http://dx.doi.org/10.1086/149138
http://dx.doi.org/10.1086/166015
http://dx.doi.org/10.1002/asna.201713403
http://dx.doi.org/10.5047/eps.2011.04.002
http://dx.doi.org/10.1029/JA093iA12p14269
http://dx.doi.org/10.1086/378878
http://dx.doi.org/10.1029/94JA02420
http://dx.doi.org/10.3367/UFNe.0182.201202a.0121
http://dx.doi.org/10.1006/jcph.1994.1071
http://dx.doi.org/10.1006/jcph.1999.6299
http://dx.doi.org/10.1088/0004-637X/733/2/98
http://dx.doi.org/10.1002/cpa.3160070112
http://dx.doi.org/10.1002/cpa.3160070206
http://dx.doi.org/10.1006/jcph.2001.6961
http://dx.doi.org/10.1016/0021-9991(88)90120-9
http://dx.doi.org/10.1006/jcph.1997.5773
http://dx.doi.org/10.1006/jcph.1997.5773
http://dx.doi.org/10.1016/0021-9991(83)90066-9


Universe 2021, 7, 422 43 of 43

83. Zhilkin, A.G.; Sobolev, A.V.; Bisikalo, D.V.; Gabdeev, M.M. Flow structure in the eclipsing polar V808 Aur. Results of 3D numerical
simulations. Astron. Rep. 2019, 63, 751–777. [CrossRef]

84. Einfeldt, B. On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 1988, 25, 294–318. [CrossRef]

http://dx.doi.org/10.1134/S1063772919090087
http://dx.doi.org/10.1137/0725021

	Introduction
	Stellar Wind Model
	Basic Equations
	Method of Solution
	Calculation Example

	Multi-Component Magnetic Hydrodynamics
	Model for Envelope of Hot Jupiter
	Model Description
	Upper Atmosphere
	Magnetic Field
	Numerical Method

	Results of Simulations
	Model Parameters
	Super-Alfvén Flow Regime
	Sub-Alfvén Flow Regime

	Conclusions
	Difference Scheme for the Equations of Multi-Component Magnetic Hydrodynamics
	Roe Matrix
	Eigenvectors
	Test Calculations

	References

