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Abstract: We analyze the effects of gravity on neutrino wave packet decoherence. As a specific
example, we consider the gravitational field of a spinning spherical body described by the Lense–
Thirring metric. By working in the weak-field limit and employing Gaussian wave packets, we show
that the characteristic coherence length of neutrino oscillation processes is nontrivially affected, with
the corrections being dependent on the mass and angular velocity of the gravity source. Possible
experimental implications are finally discussed.
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1. Introduction

Neutrinos are among the elementary particles in the Standard Model (SM) of funda-
mental interactions. In spite of this, their essential nature has not yet been fully revealed,
and has become even more puzzling after Pontecorvo’s pioneering idea of neutrino mass
and mixing [1–3] and the subsequent discovery of flavor oscillations [4–7]. Further studies
in Quantum Field Theory (QFT) have highlighted the shortcomings of the standard quan-
tum mechanical (QM) predictions by pointing out the unitary inequivalence between the
Fock spaces for definite flavor fields and definite mass fields [8–10]. Phenomenological
implications of this inequivalence have been investigated in a variety of contexts, ranging
from vacuum effects [11–15] to particle decays [16–19] and apparent violations of the weak
equivalence principle [20].

Neutrino mixing and oscillations are typically analyzed in the plane wave approxi-
mation. However, a more realistic treatment that accounts for neutrinos being localized
particles should involve the use of wave packets (WPs), which introduce decoherence
among the mass eigenstates. The first WP approach was developed in [21], showing the
existence of a coherence length beyond which the interference between massive neu-
trinos becomes negligible. This effect arises from the different group velocities of the
different mass states, which leads WPs to spread over macroscopic sizes and separate
during the propagation. Wave packet models of neutrino oscillations were later developed
within the framework of QM [22–24] and QFT [25–28], both in vacuum and matter [29–31]
(see [32] for a review). In particular, in dense environments, decoherence through WP
separation was shown to depend on the model chosen for the adiabaticity violation of WP
evolution [30,31].

All of the above investigations were performed in flat spacetime. The effects of gravity
on neutrino decoherence were addressed in [33] by considering a static and spherically
symmetric field described by the Schwarzschild metric. By adopting the density matrix for-
malism [31] with Gaussian WPs and exploiting previous achievements of [34–36], neutrino
decoherence was quantified by a coherence coordinate distance and a proper time. As a
result, it was shown that these quantities are nontrivially modified with respect to the flat
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case, with the corrections being, in principle, sizable. Aspects of gravitational decoherence
were also explored in neutrino lensing in Schwarzschild [37] and γ [38] spacetime.

The Schwarzschild solution provides a first useful approximation to describe the
spacetime metric around many astronomical objects, including the Earth and Sun. However,
it does not account for the rotation of the source. In this work, we take a further step forward
by studying neutrino decoherence in the gravitational field of a spinning spherical body of
constant density and in the weak-field regime (Lense–Thirring metric) [39]. Following [33],
we resort to the density matrix approach and evaluate the coherence length in terms of
the neutrino local energy, which is the energy actually measured by an inertial observer
at rest at a finite radius in the gravitational field. In this sense, our calculation differs
from that of [33], where the final result is exhibited as a function of the asymptotic energy
of neutrinos. We show that it is possible to extract a separate gravitational contribution
depending on the mass and angular velocity of the source. Experimental implications of
our finding are preliminarily discussed at the end.

The layout of the paper is as follows: In Section 2, we review the density matrix
approach to describing neutrino WP decoherence in flat spacetime. For this purpose, we
follow [31,33]. The above considerations are then extended to curved spacetime in Section 3.
As a specific example, we consider neutrino propagation in the Lense–Thirring metric. The
conclusions and outlook are summarized in Section 4. Throughout the entire manuscript,
we use natural units h̄ = c = G = 1 and the metric with the conventional mostly negative
signature (+1,−1,−1,−1).

2. WP Decoherence in Flat Spacetime: The Density Matrix Approach

In the SM, it is a well-established fact that neutrinos interact in weak eigenstates that
are superpositions of mass eigenstates through Pontecorvo transformation [1–3]:

|ν`(t,~p)〉 = ∑
i=1,2

U∗`i |νi(t,~p)〉 , (1)

where ` = e, µ (i = 1, 2) denotes the flavor (mass) index and U∗`i is the generic element of
the Pontecorvo mixing matrix1. The time-dependent neutrino state |νi(t,~p)〉 with three-
momentum ~p is the solution of the Schrödinger-like equation i d

dt |νi(t,~p)〉 = H|νi(t,~p)〉,
where H is the Hamiltonian governing the time evolution. In astrophysical environments,
the Hamiltonian may include different contributions, such as the vacuum term, the matter
interactions, and self-interactions. However, following [33], in our analysis, we neglect
matter effects and neutrino self-interactions outside the compact object. We are then
left with H0|νi(t,~p)〉 = Ei(~p)|νi(t,~p)〉, where Ei(~p) = (m2

i + |~p|2)1/2 is the free energy
eigenvalue of the i-th mass eigenstate.

In the coordinate space, the i-th neutrino state is given by the 3-dimensional
Fourier expansion

|νi(t,~x)〉 =
1

(2π)3

∫
d3 p ei~p·~x|νi(t,~p)〉 . (2)

To streamline the notation, henceforth, we denote the momentum integration (2π)−3
∫

d3 p
by
∫
~p . At this stage, it is worth emphasizing that we are neglecting the spin structure of

neutrinos. This is, in principle, not relevant for our purposes of studying gravitational
effects on neutrino flavor oscillations and decoherence. In passing, we mention that effects
of gravity–spin coupling on neutrinos have been largely addressed in the literature (see,
e.g., [40–42]).

In the standard treatment of flavor oscillations, the mass eigenstates are typically
described by plane waves. To account for the localization of neutrinos to a finite region, a
formalism based on WPs should be used. This has been considered in [21–31]. In the WP
approach, the neutrino flavor state (1) turns out to be a superposition of mass eigenstate
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WPs, each centered around the momentum ~pi with distribution amplitude f~pi
(~p). At the

initial time t0 = 0, the i-th WP component satisfies

|νi(0,~p)〉 = f~pi
(~p)|νi〉, (3)

where 〈νj|νi〉 = δij and ∫
~p
| f~pi

(~p)|2 = 1 . (4)

The explicit form of the WP distribution f~pi
(~p) will be given below.

Now, by using Equation (2), the i-th mass state in the coordinate space can be
written as

|νi(t,~x)〉 = ψi(t,~x)|νi〉 , (5)

where the wave function ψi(t,~x) in the coordinate space is the Fourier transform of the
corresponding momentum-dependent wave function, i.e.,

ψi(t,~x) =
∫
~p

ei~p·~xψi(t,~p) =
∫
~p

ei~p·~x f~pi
(~p)e−iEi(~p)t . (6)

Therefore, the flavor state takes the form

|ν`(t,~x)〉 = ∑
i=1,2

U∗`i ψi(t,~x)|νi〉 . (7)

Starting from the above premises, let us employ the density matrix formalism to
describe the WP decoherence effects. In flat spacetime, the one-body density matrix for the
neutrino state (7) is defined, as usual, by [31]

ρ(`)(t,~x) = |ν`(t,~x)〉〈ν`(t,~x)| . (8)

By using Equations (6) and (7), the jk-element of this matrix can be easily
computed, yielding

ρ
(`)
jk (t,~x) = U∗` jU`k ψj(t,~x)ψ∗k (t,~x) . (9)

Flavor vacuum oscillations occur due to the interference between different massive
neutrinos. Thus, in the WP approach, the condition to be satisfied to detect oscillations
at a given point is that the mass eigenstate WPs still overlap sufficiently to produce
interference in that point (see Figure 1). To account for this, one introduces the coherence
length Lcoh, which is defined as the distance travelled by neutrinos beyond which the WPs
corresponding to different propagation eigenstates composing the produced neutrino flavor
state separate by more than the WP size σx. Recalling that the decoherence is generated by
the different group velocities of the different mass eigenstate WPs, the coherence length
can be estimated heuristically as Lcoh ' σxvg(∆vg)−1 [31], where vg is the average group
velocity of the WPs and ∆vg is the difference between the group velocities of the mass
eigenstate WPs. For relativistic neutrinos, we have [31,33]

Lcoh '
2E2

|∆m2
jk|

σx , (10)

where ∆m2
jk = m2

j −m2
k and E ' |~p| is the average energy between the interfering mass

eigenstates. Clearly, in the plane wave approximation, we have Lcoh → ∞ because of the
infinite spatial extension of plane waves.

The above relation is to be compared with the characteristic oscillation length in the
plane wave formalism, which is

Losc '
4πE
|∆m2

jk|
. (11)
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Thus, the central role of the finite WP-width assumption in producing decoherence
between the different neutrino eigenstate WPs is evident.

It is worth noting that, in the presence of three neutrino generations, one should
define a coherence length for each pair of propagation eigenstates. In that case, complete
decoherence occurs when the distance travelled by neutrinos is higher than all of the
coherence lengths. As remarked in [31], partial decoherence may also be of interest in some
physical contexts.

We now aim at deriving the coherence length (10) more rigorously by using the density
matrix approach. As we shall see in the next section, this formalism is also well suited for
extension to curved spacetime. Toward this end, we need to specify the explicit form of
WPs. There exist in the literature several examples of WPs, such as square or sech WPs.
Here, we resort to the most common Gaussian WPs of momentum width

σp =
1

2σx
, (12)

for which the (normalized) distribution amplitude f~pi
(~p) reads

f~pi
(~p) =

(
2π

σ2
p

)3/4

e
− (~p−~pi)

2

4σ2
p . (13)

Notice that the plane wave limit is recovered for σp → 0 (i.e., for σx → ∞), which
yields f~pi

(~p) = [(2π)3/
√

V] δ3(~p− ~pi), where V is the normalization volume.
Now, by plugging Equations (13) into (9), we are led to

ρ
(`)
jk (t,~x) = N(`)

jk

∫
~p,~q

e−iφjk(t,~x) e
−
[
(~p−~pj)

2

4σ2
p

+
(~q−~qk)

2

4σ2
p

]
, (14)

where
φjk(t,~x) = [Ej(~p)− Ek(~q)]t − (~p−~q) ·~x (15)

is the standard QM phase shift and

N(`)
jk ≡

(
2π

σ2
p

)3/2

U∗`j U`k . (16)

We have assumed equal dispersion σp for the mass eigenstate WPs.
The integrals in Equation (14) can be computed by expanding the neutrino energy

Ej(~p) around the WP central momentum ~pj according to [33]

Ej(~p) ' Ej + (~p− ~pj) ·~vj , (17)

(and similarly for Ek(~q)), where Ej ≡ Ej(~pj) and ~vj =
∂Ej
∂p |~p=~pj

is the group velocity of the
j-th mass eigenstate. The relation (14) then becomes

ρ
(`)
jk (t,~x) = N(`)

jk

∫
~p,~q

e−i(Ej−Ek)t e−i[(~p−~pj)·~vj−(~q−~qk)·~vk ]t ei(~p−~q)·~x e
−
[
(~p−~pj)

2

4σ2
p

+
(~q−~qk)

2

4σ2
p

]
. (18)

Through the explicit calculation of the Gaussian integrals, we get

ρ
(`)
jk (t,~x) =

N(`)
jk

(2
√

πσx)6 e−i(Ejkt−~pjk ·~x) e
−
[
(~x−~vj t)2

4σ2
x

+
(~x−~vkt)2

4σ2
x

]
, (19)
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where
Ejk ≡ Ej − Ek , ~pjk ≡ ~pj −~qk. (20)

Let us now evaluate the density matrix averaged over time

ρ
(`)
jk (~x) ≡

∫
dt ρ

(`)
jk (t,~x) , (21)

which is the typical quantity of interest in oscillation experiments. Tedious but straightfor-
ward calculations lead to

ρ
(`)
jk (~x) = A(`)

jk ρosc
jk (~x) ρ

damp
jk (~x) , (22)

where

A(`)
jk =

U∗`jU`k
√

2π v σ2
x

e−
(Ejkσx)2

v2 , (23)

ρosc
jk (~x) = e

i
(
~pjk−

2Ejk~vg

v2

)
·~x

, (24)

ρ
damp
jk (~x) = e

−
(~vj−~vk)

2

4v2σ2
x

x2

. (25)

The first term does not affect oscillations. The second one is the oscillation term with
the extra factor 2Ejk~vg/v2, where we have set ~vg ≡ (~vj +~vk)/2 and v ≡ (v2

j + v2
k)

1/2. The
last factor is the damping term, which is actually responsible for decoherence. In passing,
we remark that the above averaged density matrix can be alternatively calculated as a
function of time by integrating Equation (19) over space coordinates. This was done in [31],
obtaining a similar expression for the decoherence term through the identification t ' |~x|.

From Equation (25), we can now estimate the coherence length between the mass
eigenstate WPs as the distance at which the density matrix is suppressed by a factor e−1.
This gives [33]

Lcoh =
2 v σx

|~vj −~vk|
' 4
√

2E2

|∆m2
jk|

σx , (26)

which agrees with the heuristic estimate in Equation (10), up to a numerical factor.
In the next section, we show how the density matrix formalism is modified when

extended to curved spacetime. In particular, we consider the case of the Lense–Thirring
metric and evaluate gravity-induced corrections to the coherence length (26).

3. Gravitational Effects on WP Decoherence: The Lense–Thirring Metric Example

Gravitational effects on neutrino oscillations have been extensively analyzed in the
literature by using several approaches, e.g., the plane wave method [36,43] or geometric
formalisms [35,44], and in different metrics, such as the Schwarzschild [36,45], Kerr [43,46],
Friedmann–Robertson–Walker [47,48], and Lense–Thirring [49] metrics, among others.
Recently, nontrivial results were obtained in extended theories of gravity [50], quantum
gravity scenarios [51,52], and in QFT in a curved background [12,13].

The first systematic WP treatment of decoherence in neutrino oscillations was devel-
oped in [33] by relying on Stodolsky’s covariant generalization of the quantum mechanical
phase shift in Equation (15) [34]. By way of illustration, calculations were explicitly per-
formed for Schwarzschild geometry.

In curved spacetime, a neutrino flavor state produced at the point P(t,~xP) is described
by |ν`(P)〉 = ∑i=1,2 U∗`i|νi(P)〉. During the propagation to the detection point D(tD,~xD),
the i-th mass eigenstate evolves according to

|νi(P, D)〉 = e−iΦi(P,D)|νi(P)〉 , (27)
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where the QM phase Φi(P, D) in its covariant form is given by [34]

Φi(P, D) =
∫ D

P
p(i)µ dxµ . (28)

Here, p(i)µ (µ = 0, 1, 2, 3) is the canonical four-momentum conjugated to the coordinate xµ,

p(i)µ = migµν
dxν

ds
, (29)

satisfying the generalized mass–shell relation

p(i)µ p(i)µ = m2
i , (30)

where gµν is the metric tensor and ds is the line element along the trajectory described by
the i-th neutrino state. In the approximation of relativistic neutrinos, it is reasonable to
assume that this trajectory is close to a null-geodesic. Clearly, the detection point D is such
that the mass eigenstate WPs can still interfere in it (see Figure 1).

The relation (27) along with the definition (28) of the QM phase generalize Equation (2)
to an arbitrary curved space. For gµν equal to Minkowski tensor, it is easy to check that the
standard evolution in flat spacetime is recovered.

Figure 1. Pictorial representation of a neutrino propagating in the gravitational field of a spinning
spherical body from the production point P to the detection point D, where the WPs can still interfere.
We are assuming that each eigenstate WP follows a trajectory close to null-geodesics. The (online)
colored widths represent the distribution of the trajectories due to the WP finite extension.

The Lense–Thirring Metric Example

The Lense–Thirring metric describes the gravitational field around a spinning spheri-
cal source of constant density. Let us denote by M and R the mass and radius of the central
source, respectively. By assuming the neutrino propagation to be confined to the equatorial
plane (z = 0), the line element in the (linearized) weak-field limit can be written in cartesian
coordinates as

ds2 = (1 + 2ϕ)dt2 − ϕΩ
r2 (x dy− y dx)dt− (1− 2ϕ)(dx2 + dy2) , (31)
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where

Ω ≡ 4R2ω

5
, (32)

and ω is the angular velocity of the source, which is supposed to be constant and oriented
along the z axis. The gravitational potential ϕ ≡ ϕ(r) is defined by

ϕ(r) = −M
r
≡ − M√

x2 + y2
, (33)

where, for simplicity, we have denoted the radial distance in the equatorial plane by r.
Equation (31) provides the metric typically employed to describe gravitomagnetic

frame-dragging effects [53,54]. Moreover, in [55], it was used to compute gravity corrections
to the Mandelstam–Tamm time–energy uncertainty relation for oscillations.

In the above setting, it is easy to show that the only nontrivial components of the
four-momentum p(i)µ are

p(i)t = mi

[
(1 + 2ϕ)

dt
ds

+
ϕΩy
2r2

dx
ds
− ϕΩx

2r2
dy
ds

]
, (34)

p(i)x = mi

[
ϕΩy
2r2

dt
ds
− (1− 2ϕ)

dx
ds

]
, (35)

p(i)y = mi

[
− ϕΩx

2r2
dt
ds
− (1− 2ϕ)

dy
ds

]
, (36)

where we have neglected higher-order terms in the potential ϕ.
Following [53,55], we can now consider a first approximation in which the neutrinos

propagate along a direction parallel to the x-axis with impact parameter y = b > R
(Figure 1). This implies that dy = 0 in Equations (34) and (36). Furthermore, since the
metric (31) does not depend on t, the component p(i)t ≡ Ei(~p) is a constant of motion,
corresponding to the neutrino energy as measured by an inertial observer at rest at infinity
(asymptotic energy). The local energy, which is the quantity actually measured by an
observer at rest at finite radius in the gravitational field [35,36,56], is related to Ei(~p)
through the transformation law that connects the local Lorentz frame {xâ} to the general
frame {xµ}

xµ = eµ
â xâ, gµνeµ

â eν
b̂ = ηâb̂ , (37)

where eµ
â are the vierbein fields, and we have used the standard convention of denoting

general coordinates and local Lorentz frame indexes by Greek and hatted Latin letters,
respectively. With reference to the metric (31), the relevant tetrad components are [55]

e0
0̂ = 1− ϕ, e1

0̂ =
ϕΩy

r2 , e2
0̂ = − ϕΩx

r2 , ei
ĵ = (1 + ϕ)δi

j . (38)

From Equation (37), it is a matter of calculation to show that the local and asymptotic
energies are related by [55]:

EL =

[
1− ϕ

(
1 +

Ωy
r2

)]
E(~p) , (39)

where the subscript L stands for “local” and we have omitted the space- and momentum-
dependence of EL for simplicity.

A comment is now in order: In [33], all of the quantities are expressed in terms of the
asymptotic energy Ei(~p). To make the comparison with the formulas of [33] easier, in what
follows, we retain the dependence on Ei(~p) and implement the substitution (39) only at
the end.
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With our assumptions, the mass–shell relation (30) takes the form

(1 + 2ϕ)

(
dt
ds

)2
− (1− 2ϕ)

(
dx
ds

)2
+

ϕΩb
r2

dt
ds

dx
ds

= 1 , (40)

where r must now be intended as r(x, y = b). From Equation (34), along with p(i)t = Ei(~p),
we derive

dt
ds

=
Ei(~p)

mi
(1− 2ϕ)− ϕΩb

2r2
dx
ds

, (41)

which can be substituted into (40) to give

dx
ds

= ±Ei(~p)
mi

[
1−

m2
i

2E2
i (~p)

(1 + 2ϕ)

]
. (42)

Here, we have exploited the condition of relativistic neutrinos at infinity, which
ensures that they are even more relativistic for r < ∞, according to Equation (39). Without
loss of generality, we assume that neutrinos propagate toward increasing values of x as s
increases, so the solution with the positive sign must be considered.

Let us now consider the covariant phase in Equation (28). Combining Equations
(34)–(36), (41), and (42), for the integral argument, one gets

p(i)µ dxµ = Ei(~p)

{
dt−

[
(1− 2ϕ)− ϕΩb

r2 −
m2

i
2E2

i (~p)

]
dx

}
. (43)

The covariant phase then reads

Φi(P, D) = Ei(~p)
(

tPD − bPD − c(Ω)
PD

)
+

m2
i

2Ei(~p)
xPD , (44)

where, for brevity, we have defined tPD ≡ tD − tP, xPD ≡ xD − xP, and

bPD ≡ xPD + 2M log
(

xD + rD
xp + rP

)
, (45)

c(Ω)
PD ≡

ΩM
b

(
xD
rD
− xP

rP

)
, (46)

with
rD ≡ r(x = xD, b) =

√
x2

D + b2, rP ≡ r(x = xP, b) =
√

x2
P + b2. (47)

Clearly, for a non-rotating source, c(Ω)
PD = 0. In this case, Equation (44) reproduces the

linearized result of [33] for the Schwarzschild metric up to a global sign due to the different
signature convention adopted for the metric.

From Equation (44), the phase difference Φjk = Φj − Φk of the mass eigenstate
WPs reads

Φjk(P, D) =
[
Ej(~p)− Ek(~q)

](
tPD − bPD − c(Ω)

PD

)
+

(
m2

j

2Ej(~p)
−

m2
k

2Ek(~q)

)
xPD . (48)

By using the first-order expansion (17), this becomes

Φjk(P, D) = Ejk

(
tPD − bPD − c(Ω)

PD

)
+

(
m2

j

2Ej
−

m2
k

2Ek

)
xPD (49)

+ ~vj · (~p− ~pj)(tPD − λj)−~vk · (~q−~qk)(tPD − λk) ,
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where we have used Equation (20) and introduced the shorthand notation

λi(P, D) ≡ bPD + c(Ω)
PD +

m2
i

2E2
i

xPD . (50)

Let us now evaluate the one-body density matrix describing the neutrino mass eigen-
states as (non-covariant) Gaussian WPs. This is given by the generalization of Equation (14)
with the QM phase being given by Equation (49), i.e.,

ρ̃
(`)
jk (P, D) = N(`)

jk

∫
~p,~q

e−iΦjk(P,D) e
−
[
(~p−~pj)

2

4σ2
p

+
(~q−~qk)

2

4σ2
p

]
, (51)

=
N(`)

jk

(2
√

πσx)6 e−iEjk(tPD−bPD−c(Ω)
PD ) e

i

(
m2

k
2Ek
−

m2
j

2Ej

)
xPD

e−σ2
p

[
v2

k(tPD−λk)
2+v2

j (tPD−λj)
2]

,

where we have used the tilde to distinguish the density matrix in curved spacetime from
the corresponding flat expression. The normalization N(`)

jk is defined in Equation (16).

As in Section 2, the averaged density matrix is obtained by integrating ρ̃
(`)
jk over the

coordinate time. In this case, the resulting expression can also be factorized into the product
of three terms as follows:

ρ̃
(`)
jk (xP, xD) = A(`)

jk ρ̃ osc
jk (xP, xD) ρ̃

damp
jk (xP, xD) , (52)

in order to compare with the corresponding flat result (22). The amplitude A(`)
jk is in-

dependent of the travelled distance and exhibits the same expression as in Minkowski
spacetime (see Equation (23)). The second term, which is responsible for flavor oscillations,
is given by

ρ̃ osc
jk (xP, xD) = e

i

(
m2

k
2Ek
−

m2
j

2Ej

)
xPD

e
−i

Ejk
v2

(
v2

j

m2
j

2E2
j
+v2

k
m2

k
2E2

k

)
xPD

. (53)

Finally, the damping term reads

ρ̃
damp

jk (xP, xD) = e
−

(vjvk xPD)2

4v2σ2
x

(
m2

k
2E2

k
−

m2
j

2E2
j

)2

, (54)

which, for relativistic neutrinos, becomes

ρ̃
damp

jk (xP, xD) ' e
−

(m2
k−m2

j )
2

32E4σ2
x

x2
PD . (55)

Here, E is the average energy between the mass eigenstates, as defined below Equation (10).
We notice that Equation (55) is formally the same as the damping term found in [33]

in the Schwarzschild metric. As argued in [56], to make the dependence on M and Ω
explicit, ρ̃

damp
jk should be recast in terms of the local (rather than asymptotic) energy (39).

By implementing the transformation (39) in Equation (55), we are led to

ρ̃
damp

jk (xP, xD) ' e
−

(m2
k−m2

j )
2 x2

PD
32 E4

Lσ2
x

[
1+ 4M

rD

(
1+ Ωb

r2
D

)]
, (56)

where the local energy must be considered as being evaluated at the detection point D.
In analogy with the flat-spacetime case, one can now define the proper coherence

length as the distance at which the density matrix is suppressed by the factor e−1. We
then obtain
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L̃PD
coh '

4
√

2E2
L σx

|∆m2
jk|

(
1− 2

M
rD
− 2

MΩb
r3

D

)
. (57)

We remark that in the M → 0 limit, Equation (26) is straightforwardly recovered,
since EL → E. This is indeed the expected outcome in the absence of a gravitational field.
Therefore, with respect to the flat case, the coherence length in the linearized Lense–Thirring
metric turns out to be decreased by acquiring some nontrivial corrections. Specifically,
the second term in the brackets is a constant factor that only depends on the source mass
and the detection point. The presence of this correction could somehow be expected, since
the spacetime metric is no longer translation-invariant. The third term is the genuinely
Lense–Thirring imprint, as it carries the information about the rotational velocity Ω of the
central object and the impact parameter b of the neutrino’s trajectory.

It would be interesting to estimate the gravity corrections in Equation (57). For this pur-
pose, we study the case of neutrinos in the gravitational field of the Sun. Then, by assuming
the mass of the Sun M� ' 1030 Kg and its rotational frequency ω−1 ' 27 d and setting
b & R� ' 6× 108 m, rD ' 1011 m, we obtain the following estimate for the relative differ-
ence between the coherence length (57) and the corresponding flat-spacetime expression

δ ≡
|L̃PD

coh − L̃PD
coh(M = 0)|

L̃PD
coh(M = 0)

' 10−8 , (58)

Predictably, this shows that the impact of the Sun’s gravity on decoherence effects is
negligible, at least with the current experimental technology. On the other hand, for neutri-
nos in astrophysical environments, such as supernova neutrinos or neutrinos propagating
in the field of massive compact objects, we expect these effects to be significantly improved,
as shown in [33] for the case of the Schwarzschild geometrical background. However, a
more rigorous analysis of decoherence effects in the strong-field regime would require us
to go beyond the linearized approximation. This study is under active investigation and
will be presented elsewhere.

Finally, in order to compare Equation (56) with the result of [56], we need to express the
coordinate distance xPD in terms of the proper distance LPD between the production and
detection points. Under our assumptions, it is possible to show that these two quantities
are related by [55]:

LPD =
∫ D

P

√
−gxxdx = xPD + M log

(
xD + rD
xP + rP

)
, (59)

where rD and rP are defined in Equation (47). By plugging into Equation (56), the averaged
density matrix takes the form

ρ̃
damp

jk (xP, xD) ' e
−

(m2
k−m2

j )
2 L2

PD
32 E4

Lσ2
x

[
1+ 4M

rD

(
1+ Ωb

r2
D

)
− 2M

LPD
log
(

xD+rD
xP+rP

)]
, (60)

which gives rise to the modified coherence length

L̃PD
coh '

4
√

2E2
L σx

|∆m2
jk|

[
1− 2

M
rD
− 2

MΩb
r3

D

]
+ M log

(
xD + rD
xP + rP

)
. (61)

For vanishing spinning velocity Ω = 0, it is easy to check that the above formula re-
produces the coherence length obtained in [56] for the case of a non-rotating Schwarzschild
source2. By comparison with Equation (57), it follows that L̃PD

coh acquires a further correction
with the same logarithmic behavior as in Schwarzschild spacetime [56]. We plan to further
investigate the physical meaning of Equation (61) in order to understand how to express
the quantities in terms of proper distance in a more consistent way.
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4. Discussion and Conclusions

The influence of gravity on neutrino decoherence was investigated within the frame-
work of the density matrix with Gaussian WPs. As a specific background, we considered
the gravitational field around a spinning spherical body described by the Lense–Thirring
metric. By working in the weak field, we derived the effective coherence length for rela-
tivistic neutrinos, showing that it is nontrivially modified with respect to the flat case. A
rough estimation of gravity corrections highlighted that they are below the sensitivity of
current experiments for neutrinos propagating in the gravitational field of the Sun. How-
ever, significant deviations from the standard result are expected in strong-field regimes,
e.g., in the case of neutron stars formed from a core-collapse supernova [30,33] or in the
presence of supermassive black holes. This is in line with [33]. In this regard, we need to
emphasize that our comparison with the result of [33] has to be seen as more qualitative
than quantitative. Indeed, a direct comparison with [33] is prevented due to the fact that
the analysis of [33] did not rely on the weak-field approximation. This allowed the authors
of [33] to test gravity in stronger regimes than in our case. We are currently working on the
extension of our formalism beyond the weak-field approximation. This will be presented
elsewhere as an upgrade of the present study.

We remark that our study relies on some preliminary assumptions. For instance, we
neglected matter and neutrino self-interactions outside the central compact object. As
claimed in [33], these effects can be embedded by using a similar procedure involving the
use of the matter eigenstate basis instead of the mass one. This investigation turns out to be
necessary in order to explore whether WP decoherence suppresses flavor oscillations and
its impact on the supernova dynamics and r-process nucleosynthesis. Furthermore, we
considered rectilinear propagation of mass eigenstate WPs. In a more general treatment,
bending effects should also be contemplated. To give a rough estimation of the correction
we neglected, let us think of neutrinos as nearly massless particles. In this case, we can
refer to [53,57], where it was shown that the magnitude of the bending angle δφ for a light
ray in the Lense–Thirring metric and in the equatorial plane turns out to be

δφ ' M
b

(
1−

~J ·~n
Mb

)
, (62)

where~J is the angular momentum of the source and~n is a unit vector in the direction of
the angular momentum of light about the center of the source-body. The term outside the
parenthesis provides the pure Schwarzschild correction. For instance, in the case of the Sun,
the relative correction to the pure mass term is of the order of 10−6, which, in principle,
justifies our assumption.

Apart from their intrinsic relevance, let us emphasize that decoherence effects on
neutrino oscillations are also studied to constrain quantum gravity models [51,52,58].
In particular, in [51], quantum gravitational analogues of the MSW effect and of foam
models endowed with stochastic fluctuations of the background were presented as possible
alternative sources of decoherence in neutrino oscillations. A similar analysis was recently
developed in [59], where the influence of quantum gravity on neutrino propagation and
decoherence was investigated with a focus on the case of neutrino interactions with virtual
black holes produced by spacetime fluctuations. The study of the above aspects is quite
demanding and will be the object of future work.
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Abbreviations
The following abbreviations are used in this manuscript:

QFT Quantum Field Theory
QM Quantum Mechanics
WP Wave packet
SM Standard Model

Notes
1 We consider a simplified model involving only two generations of neutrinos. The same considerations and results hold in the

case of three flavors.
2 Strictly speaking, the second term in the square brackets is found with the opposite sign with respect to [56] due to a possible

mistake therein.

References
1. Pontecorvo, B. Mesonium and anti-mesonium. Zh. Eksp. Teor. Fiz. 1957, 33, 549.
2. Pontecorvo, B. Inverse beta processes and nonconservation of lepton charge. Zh. Eksp. Teor. Fiz. 1957, 34, 247.
3. Pontecorvo, B. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Zh. Eksp. Teor. Fiz. 1967, 53, 1717.
4. Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; et al. Evidence

for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 1998, 1562, 81. [CrossRef]
5. Abe, K.; Hayato, Y.; Iida, T.; Iyogi, K.; Kameda, J.; Koshio, Y.; Kozuma, Y.; Marti, L.; Miura, M.; Moriyama, S.; et al. Evidence for

the Appearance of Atmospheric Tau Neutrinos in Super-Kamiokande. Phys. Rev. Lett. 2013, 110, 181802. [CrossRef] [PubMed]
6. Ahmad, Q.R.; Allen, R.C.; Andersen, T.C. Measurement of the Rate of νe + d→ p + p + e− Interactions Produced by 8B Solar

Neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2001, 87, 071301. [CrossRef]
7. Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton, J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black,

R.A.; et al. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino
Observatory. Phys. Rev. Lett. 2002, 89, 011301. [CrossRef]

8. Blasone, M.; Vitiello, G. Quantum field theory of fermion mixing. Annals Phys. 1995, 244, 283. [CrossRef]
9. Blasone, M.; Capolupo, A.; Romei, O.; Vitiello, G. Quantum field theory of boson mixing. Phys. Rev. D 2001, 63, 125015. [CrossRef]
10. Ji, C.R.; Mishchenko, Y. General Quantum Field Theory of Flavor Mixing and Oscillations. Universe 2021, 7, 51. [CrossRef]
11. Blasone, M.; Luciano, G.G.; Petruzziello, L.; Smaldone, L. Casimir effect for mixed fields. Phys. Lett. B 2018, 278, 786. [CrossRef]
12. Blasone, M.; Lambiase, G.; Luciano, G.G. Nonthermal signature of the Unruh effect in field mixing. Phys. Rev. D 2017, 96, 025023.

[CrossRef]
13. Capolupo, A.; Lambiase, G.; Quaranta, A. Neutrinos in curved spacetime: Particle mixing and flavor oscillations. Phys. Rev. D

2020, 101, 095022. [CrossRef]
14. Luciano, G.G.; Blasone, M. q-generalized Tsallis thermostatistics in Unruh effect for mixed fields. Phys. Rev. D 2021, 104, 045004.

[CrossRef]
15. Luciano, G.G.; Blasone, M. Nonextensive Tsallis statistics in Unruh effect for Dirac neutrinos. arXiv 2021, arXiv:2107.11402.
16. Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. Role of neutrino mixing in accelerated proton decay. Phys. Rev. D 2018,

97, 105008. [CrossRef]
17. Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. Neutrino oscillations in Unruh radiation. Phys. Lett. B 2020, 800, 135083.

[CrossRef]
18. Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. On the β-decay of the accelerated proton and neutrino oscillations: A

three-flavor description with CP violation. Eur. Phys. J. C 2020, 80, 130. [CrossRef]
19. Lee, C.Y. Interactions and oscillations of coherent flavor eigenstates in beta decay. Mod. Phys. Lett. A 2020, 29, 2030015. [CrossRef]
20. Blasone, M.; Jizba, P.; Lambiase, G.; Petruzziello, L. Non-relativistic neutrinos and the weak equivalence principle apparent

violation. Phys. Lett. B 2020, 811, 135883. [CrossRef]
21. Nussinov, S. Solar Neutrinos and Neutrino Mixing. Phys. Lett. B 1976, 63, 201. [CrossRef]
22. Giunti, C.; Kim, C.W.; Lee, U.W. When do neutrinos really oscillate? Quantum mechanics of neutrino oscillations. Phys. Rev. D

1991, 44, 3635. [CrossRef]
23. Giunti, C.; Kim, C.W. Coherence of neutrino oscillations in the wave packet approach. Phys. Rev. D 1998, 58, 017301. [CrossRef]
24. Dolgov, A.D. Neutrinos in cosmology. Phys. Rept. 2002, 370, 333. [CrossRef]
25. Kiers, K.; Weiss, N. Neutrino oscillations in a model with a source and detector. Phys. Rev. D 1998, 57, 3091. [CrossRef]
26. Cardall, C.Y. Coherence of neutrino flavor mixing in quantum field theory. Phys. Rev. D 2000, 61, 073006. [CrossRef]
27. Beuthe, M. Towards a unique formula for neutrino oscillations in vacuum. Phys. Rev. D 2002, 66, 013003. [CrossRef]
28. Giunti, C. Neutrino wave packets in quantum field theory. J. High Energy Phys. 2002, 11, 017. [CrossRef]
29. Giunti, C.; Kim, C.W.; Lee, U.W. Coherence of neutrino oscillations in vacuum and matter in the wave packet treatment. Phys.

Lett. B 1992, 274, 87. [CrossRef]

http://doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/10.1103/PhysRevLett.110.181802
http://www.ncbi.nlm.nih.gov/pubmed/23683190
http://dx.doi.org/10.1103/PhysRevLett.87.071301
http://dx.doi.org/10.1103/PhysRevLett.89.011301
http://dx.doi.org/10.1006/aphy.1995.1115
http://dx.doi.org/10.1103/PhysRevD.63.125015
http://dx.doi.org/10.3390/universe7030051
http://dx.doi.org/10.1016/j.physletb.2018.10.004
http://dx.doi.org/10.1103/PhysRevD.96.025023
http://dx.doi.org/10.1103/PhysRevD.101.095022
http://dx.doi.org/10.1103/PhysRevD.104.045004
http://dx.doi.org/10.1103/PhysRevD.97.105008
http://dx.doi.org/10.1016/j.physletb.2019.135083
http://dx.doi.org/10.1140/epjc/s10052-020-7658-7
http://dx.doi.org/10.1142/S0217732320300153
http://dx.doi.org/10.1016/j.physletb.2020.135883
http://dx.doi.org/10.1016/0370-2693(76)90648-1
http://dx.doi.org/10.1103/PhysRevD.44.3635
http://dx.doi.org/10.1103/PhysRevD.58.017301
http://dx.doi.org/10.1016/S0370-1573(02)00139-4
http://dx.doi.org/10.1103/PhysRevD.57.3091
http://dx.doi.org/10.1103/PhysRevD.61.073006
http://dx.doi.org/10.1103/PhysRevD.66.013003
http://dx.doi.org/10.1088/1126-6708/2002/11/017
http://dx.doi.org/10.1016/0370-2693(92)90308-Q


Universe 2021, 7, 417 13 of 13

30. Kersten, J.; Smirnov, A.Y. Decoherence and oscillations of supernova neutrinos. Eur. Phys. J. C 2016, 76, 339. [CrossRef]
31. Akhmedov, E.; Kopp, J.; Lindner, M. Collective neutrino oscillations and neutrino wave packets. J. Cosmol. Astropart. Phys. 2017,

9, 017. [CrossRef]
32. Giunti, C. Coherence and wave packets in neutrino oscillations. Found. Phys. Lett. 2004, 17, 103. [CrossRef]
33. Chatelain, A.; Volpe, M.C. Neutrino decoherence in presence of strong gravitational fields. Phys. Lett. B 2020, 801, 135150.

[CrossRef]
34. Stodolsky, L. 36 On the Treatment of Neutrino Oscillations in a Thermal Environment. Phys. Rev. D 1987, 36, 2273. [CrossRef]

[PubMed]
35. Cardall, C.Y.; Fuller, G.M. Neutrino oscillations in curved space-time: An Heuristic treatment. Phys. Rev. D 1997, 55, 7960.

[CrossRef]
36. Fornengo, N.; Giunti, C.; Kim, C.W.; Song, J. Gravitational effects on the neutrino oscillation. Phys. Rev. D 1997, 56, 1895.

[CrossRef]
37. Swami, H.; Lochan, K.; Patel, K.M. Aspects of gravitational decoherence in neutrino lensing. arXiv 2021, arXiv:2106.07671.
38. Chakrabarty, H.; Borah, D.; Abdujabbarov, A.; Malafarina, D.; Ahmedov, B. Effects of gravitational lensing on neutrino oscillation

in γ-spacetime. arXiv 2021, arXiv:2109.02395.
39. Lense, J.; Thirring, H. Über die Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der

Einsteinschen Gravitationstheorie (trad. On the influence of the proper rotation of a central body on the motion of the planets
and the moon, according to Einstein’s theory of gravitation). Z. Phys. 1918, 19, 156.

40. Cai, Y.C.; Papini, G. Neutrino helicity flip from gravity spin coupling. Phys. Rev. Lett. 1991, 1259, 66. [CrossRef]
41. Dvornikov, M. Spin effects in neutrino gravitational scattering. Phys. Rev. D 2020, 056018, 101. [CrossRef]
42. Mastrototaro, L.; Lambiase, G. Neutrino spin oscillations in conformally gravity coupling models and quintessence surrounding

a black hole. Phys. Rev. D 2021, 024021, 104.
43. Konno, K.; Kasai, M. General relativistic effects of gravity in quantum mechanics: A case of ultra-relativistic, spin 1/2 particles.

Prog. Theor. Phys. 1998, 100, 1145. [CrossRef]
44. Zhang, Y.H.; Li, X.Q. Three-generation neutrino oscillations in curved spacetime. Nucl. Phys. B 2016, 911, 563. [CrossRef]
45. Ahluwalia, D.V.; Burgard, C. Gravitationally Induced Neutrino-Oscillation Phases. Gen. Rel. Grav. 1996, 28, 1161. [CrossRef]
46. Wudka, J. Mass dependence of the gravitationally induced wave-function phase. Phys. Rev. D 2001, 64, 065009. [CrossRef]
47. Visinelli, L. Neutrino flavor oscillations in a curved space-time. Gen. Rel. Grav. 2015, 47, 62. [CrossRef]
48. Khalifeh, A.R.; Jimenez, R. Distinguishing Dark Energy Models with Neutrino Oscillations. arXiv 2021, arXiv:2105.07973.
49. Lambiase, G.; Papini, G.; Punzi, R.; Scarpetta, G. Neutrino optics and oscillations in gravitational fields. Phys. Rev. D 2005,

71, 073011. [CrossRef]
50. Buoninfante, L.; Luciano, G.G.; Petruzziello, L.; Smaldone, L. Neutrino oscillations in extended theories of gravity. Phys. Rev. D

2020, 101, 024016. [CrossRef]
51. Mavromatos, N.E.; Meregaglia, A.; Rubbia, A.; Sakharov, A.; Sarkar, S. Quantum-Gravity Decoherence Effects in Neutrino

Oscillations: Expected Constraints From CNGS and J-PARC. Phys. Rev. D 2008, 77, 053014. [CrossRef]
52. Sprenger, M.; Nicolini, P.; Bleicher, M. Quantum Gravity signals in neutrino oscillations. Int. J. Mod. Phys. E 2011, 20S2, 1.

[CrossRef]
53. Ruggiero, M.L.; Tartaglia, A. Gravitomagnetic effects. Nuovo Cim. B 2002, 117, 743.
54. Ciufolini, I. Dragging of inertial frames. Nature 2007, 449, 41. [CrossRef]
55. Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L.; Smaldone, L. Time-energy uncertainty relation for neutrino oscillations

in curved spacetime. Class. Quant. Grav. 2020, 37, 155004. [CrossRef]
56. Petruzziello, L. Comment on “Neutrino decoherence in presence of strong gravitational fields”. Phys. Lett. B 2020, 809, 135784.

[CrossRef]
57. Cohen, J.M.; Brill, D.R. Further Examples of «Machian» Effects of Rotating Bodies in General Relativity. Il Nuovo Cimento B 1968,

56, 209.
58. Luciano, G.G.; Petruzziello, L. Testing gravity with neutrinos: From classical to quantum regime. Int. J. Mod. Phys. D 2020,

29, 2043002. [CrossRef]
59. Stuttard, T.; Jensen, M. Neutrino decoherence from quantum gravitational stochastic perturbations. Phys. Rev. D 2020, 102, 115003.

[CrossRef]

http://dx.doi.org/10.1140/epjc/s10052-016-4187-5
http://dx.doi.org/10.1088/1475-7516/2017/09/017
http://dx.doi.org/10.1023/B:FOPL.0000019651.53280.31
http://dx.doi.org/10.1016/j.physletb.2019.135150
http://dx.doi.org/10.1103/PhysRevD.36.2273
http://www.ncbi.nlm.nih.gov/pubmed/9958431
http://dx.doi.org/10.1103/PhysRevD.55.7960
http://dx.doi.org/10.1103/PhysRevD.56.1895
http://dx.doi.org/10.1103/PhysRevLett.66.1259
http://dx.doi.org/10.1103/PhysRevD.101.056018
http://dx.doi.org/10.1143/PTP.100.1145
http://dx.doi.org/10.1016/j.nuclphysb.2016.08.026
http://dx.doi.org/10.1007/BF03218936
http://dx.doi.org/10.1103/PhysRevD.64.065009
http://dx.doi.org/10.1007/s10714-015-1899-z
http://dx.doi.org/10.1103/PhysRevD.71.073011
http://dx.doi.org/10.1103/PhysRevD.101.024016
http://dx.doi.org/10.1103/PhysRevD.77.053014
http://dx.doi.org/10.1142/S0218301311040517
http://dx.doi.org/10.1038/nature06071
http://dx.doi.org/10.1088/1361-6382/ab995c
http://dx.doi.org/10.1016/j.physletb.2020.135784
http://dx.doi.org/10.1142/S0218271820430026
http://dx.doi.org/10.1103/PhysRevD.102.115003

	Introduction
	WP Decoherence in Flat Spacetime: The Density Matrix Approach
	Gravitational Effects on WP Decoherence: The Lense–Thirring Metric Example
	Discussion and Conclusions
	References

