
universe

Article

Dynamics of Charged Particles Moving around Kerr Black Hole
with Inductive Charge and External Magnetic Field

Xin Sun 1, Xin Wu 1,2,3,* , Yu Wang 1, Chen Deng 1, Baorong Liu 1,3 and Enwei Liang 1,3

����������
�������

Citation: Sun, X.; Wu, X.; Wang, Y.;

Deng, C.; Liu, B.; Liang, E. Dynamics

of Charged Particles Moving around

Kerr Black Hole with Inductive

Charge and External Magnetic Field.

Universe 2021, 7, 410. https://

doi.org/10.3390/universe7110410

Academic Editor: B.P. Bonga

(Béatrice)

Received: 15 September 2021

Accepted: 23 October 2021

Published: 29 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Physical Science and Technology, Guangxi University, Nanning 530004, China;
1807301062@st.gxu.edu.cn (X.S.); 2107401023@st.gxu.edu.cn (Y.W.); 1807301007@st.gxu.edu.cn (C.D.);
liubr@gxu.edu.cn (B.L.); lew@gxu.edu.cn (E.L.)

2 Center of Application and Research of Computational Physics, School of Mathematics, Physics and Statistics,
Shanghai University of Engineering Science, Shanghai 201620, China

3 Guangxi Key Laboratory for Relativistic Astrophysics, Guangxi University, Nanning 530004, China
* Correspondence: wuxin_1134@sina.com or xinwu@gxu.edu.cn

Abstract: We mainly focus on the effects of small changes of parameters on the dynamics of charged
particles around Kerr black holes surrounded by an external magnetic field, which can be considered
as a tidal environment. The radial motions of charged particles on the equatorial plane are studied
via an effective potential. It is found that the particle energies at the local maxima values of the
effective potentials increase with an increase in the black hole spin and the particle angular momenta,
but decrease with an increase of one of the inductive charge parameter and magnetic field parameter.
The radii of stable circular orbits on the equatorial plane also increase, whereas those of the innermost
stable circular orbits decrease. On the other hand, the effects of small variations of the parameters on
the orbital regular and chaotic dynamics of charged particles on the non-equatorial plane are traced
by means of a time-transformed explicit symplectic integrator, Poincaré sections and fast Lyapunov
indicators. It is shown that the dynamics sensitivity depends on small variations in the inductive
charge parameter, magnetic field parameter, energy, and angular momentum. Chaos occurs easily
as each of the inductive charge parameter, magnetic field parameter, and energy increases but is
weakened as the angular momentum increases. When the dragging effects of the spacetime increase,
the chaotic properties are not always weakened under some circumstances.

Keywords: Kerr black hole; magnetic field; circular orbits; chaos; symplectic integrator

1. Introduction

The Kerr metric that describes a rotating black hole is a solution to Einstein’s field
equations of general relativity. The observed event-horizon-scale images of the supermas-
sive black hole candidate in the center of the giant elliptical galaxy M87 are consistent with
the dark shadow of a Kerr black hole predicted by general relativity [1]. The motion of a
particle in the vicinity of a Kerr black hole is integrable because of the existence of four
conserved quantities, namely the energy, angular momentum, rest mass, and azimuthal
motion, of the particle. The azimuthal motion corresponds to the Carter constant [2], which
is obtained from the separation of variables in the Hamilton–Jacobi equation.

Observational evidence demonstrates the existence of strong magnetic fields in the
vicinity of the supermassive black hole at the center of the Galaxy [3]. The external
magnetic fields, which can be considered as tidal environments, are generally believed to
play a crucial role in the transfer of the energy from the accretion disk to jets. Radiation
reactions, depending on the external magnetic field strength, cause the accretion of charged
particles from the accretion disk to shift towards the black hole. An inductive charge
introduced by Wald [4] generates an induced electric field due to a contribution to the
Faraday induction from the parallel orientation of the spin of the black hole and the
magnetic field. When the inductive charge takes the Wald charge, the potential difference
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between the horizon of the black hole and infinity vanishes, and the process of selective
accretion is completed [5,6]. The effects of the magnetic fields involving the induced electric
field are so weak in comparison to the gravitational mass effects that they do not change
the spacetime metrics. However, they can essentially affect the motion of charged test
particles in accreting matter if the ratio of the electric charge and mass of the particle is
large. In most cases, the fourth invariable quantity related to the azimuthal motion of
the particles is absent when the external electromagnetic fields are considered near the
black hole. Thus, the dynamics of charged test particles in the black holes with external
electromagnetic fields is nonintegrable.

Although the magnetic fields in the vicinity of the black holes destroy the integrability
of these spacetimes in many problems, the radial motions of the charged particles on the
equatorial plane are still integrable and solvable. It is mainly studied by means of an
effective potential. The effective potential seems simple, but it describes many important
properties of the spacetimes. In particular, unstable circular orbits, stable circular orbits,
and innermost stable circular orbits (ISCOs) on the equatorial plane are clearly shown
through the effective potential. It is interesting to study these equatorial orbits in the theory
of accretion disks. An accreted material with sufficient angular momentum relative to an
axisymmetric massive central body will be still attracted by the central body, but such force
will be compensated due to the large angular momentum. This easily forms an accretion
disk. However, accreted material without sufficient angular momentum will fall into the
central body [7–9]. Electromagnetic fields could influence dynamics of charged particles in
accreting matter; therefore, the ISCOs in the field of a magnetized black hole shift towards
the horizon for a suitable spin direction. In other words, the inner boundary of the accretion
disk goes towards the central body. In view of the importance of the topic on the effective
potential and stable circular orbits on the equatorial plane, the topic has been taken into
account in a large number of literature studies [7–28]. These problems discussed in the
existing works are based on the equatorial plane. In some extended theories of gravity,
such as Brans–Dicke gravity, scale-dependent gravity, and asymptotically safe gravity in
the context of black hole physics [29–35], the effective potentials, unstable circular orbits,
stable circular orbits, and ISCOs on a plane slightly different from the equatorial can be
discussed similarly.

When the external magnetic fields destroy the spacetime’s symmetry (precisely speak-
ing, the external magnetic fields lead to the absence of the fourth constant related to the
particles’ azimuthal motion), the generic motion of charged particles on the non-equatorial
plane can be chaotic in some circumstances. If the external magnetic fields do not destroy
the symmetry, no chaotic dynamics is possible. For example, charged particle motions
in the Kerr–Newman black hole spacetime are regular and nonchaotic because of the
existence of four integrals leading to the integrability of the system [36]. Chaos describes
a dynamical-system-sensitive dependence on initial conditions. The theory of chaotic
scattering in the combined effective potential of the black hole and the asymptotically
uniform magnetic field is useful to explore the mechanism hidden behind the charged
particle ejection [5]. The energy of the charged particle in such combined fields is split
into one energy mode along the magnetic field line’s direction and another energy mode
at the perpendicular direction. The chaotic charged particle dynamics in the combined
gravitational and magnetic fields leads to an energy interchange between the two energy
modes of the charged particle dynamics. As a result, it can provide sufficient energy to
ultra-relativistic motion of the charged particle along the magnetic field lines. Based on
the importance of studies of the chaotic motion in the gravitational field of a black hole
combined with an external electromagnetic field, many authors [5,6,12,20,23,37–46] are
interested in this field.

The detection of the chaotic behavior requires the adopted computational scheme with
reliable results. Without a doubt, higher-order numerical integrators such as an eighth-
and ninth-order Runge–Kutta–Fehlberg integrator with adaptive step sizes can yield high-
precision numerical solutions. However, they are more computationally demanding than
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lower-order solvers. For Hamiltonian systems, the most appropriate solvers are symplectic
integrators, which respect the symplectic nature of Hamiltonian dynamics and show
no secular drift in energy errors [47–53]. A symplectic integrator method for numerical
calculation of charged particle trajectory is well known due to its small error in energy
even for long integration times, which make it perfectly suited for the description of
regular and chaotic dynamics through Poincaré sections calculations [54]. Because the
variables are inseparable in Hamiltonian systems associated with curved spacetimes,
the standard explicit symplectic integrators do not work when these Hamiltonian systems
are separated into two parts. In this case, completely implicit symplectic methods including
the implicit midpoint method [55,56] and Gauss–Runge–Kutta methods [41,54,57,58] are
often considered. Explicit and implicit combined symplectic methods [59–63] take less cost
than these completely implicit methods and then are also used. Recently, explicit symplectic
integrators were proposed for nonrotating black holes when the Hamiltonians of these
black holes have several splitting parts with analytical solutions as explicit functions of
proper time [64–66]. With the aid of time transformations, explicit symplectic integrators
are easily available for the Kerr-type spacetimes [67].

The authors of [54] employed the Gauss–Legendre symplectic solver (i.e., s-stage
implicit symplectic Runge–Kutta method) to study the regular and chaotic dynamics of
charged particles around the Kerr background endowed with an axisymmetric electro-
magnetic test field with the aid of Poincaré sections. The authors of [68] applied the
time-transformed explicit symplectic integrators introduced in [67] to mainly explore the
effect of the black hole spin on the chaotic motion of a charged particle around the Kerr
black hole immersed in an external electromagnetic field. Unlike Reference [68], the present
work particularly focuses on how a small change in the black hole’s snductive charge [6]
exerts influences on the effective potential, stable circular orbits and ISCOs on the equa-
torial plane, and a transition from order to chaos of orbits on the non-equatorial plane.
The effects of other dynamical parameters such as the magnetic field parameter are also
considered. For this purpose, we introduce a dynamical model for the description of
charged particles moving around the Kerr black hole immersed in an external magnetic
field in Section 2. The effective potential, stable circular orbits, and ISCOs on the equatorial
plane are discussed in Section 3. The explicit symplectic integrators are designed for this
problem, and the dependence of the orbital dynamical behavior on the parameters is shown
in Section 4. Finally, the main results are summarized in Section 5.

2. Kerr Black Hole Immersed in External Magnetic Field

The Kerr black hole is the description of a rotating black hole with mass M and angular
momentum a. In the standard Boyer–Lindquist coordinates (t, r, θ, φ), its time-like metric
is written as ds2 = −c2dτ2, that is,

ds2 = gαβdxαdxβ = gttc2dt2 + 2gtφcdtdφ

+grrdr2 + gθθdθ2 + gφφdφ2. (1)

These nonzero components in this metric are found in the paper of [69] as follows:

gtt = −(1− 2GMr/c2

Σ
),

gtφ = − (2GMr/c2)a sin2 θ

Σ
,

grr =
Σ
∆

, gθθ = Σ,

gφφ = (ρ2 +
2GMr

Σ
a2 sin2 θ) sin2 θ,

where Σ = r2 + a2 cos2 θ, ∆ = ρ2− 2GMr/c2 and ρ2 = r2 + a2. τ and t are proper and coor-
dinate times, respectively. c is the speed of light, and G denotes the gravitational constant.
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Suppose the Kerr black hole is immersed in an external asymptotically uniform
magnetic field, which has strength B and yields an induced charge Q. Set ξα

(t) and ξα
(φ)

as
time-like and space-like axial Killing vectors. An electromagnetic four-vector potential can
be found in References [6,70] and is written as

Aα = aBξα
(t) +

B
2

ξα
(φ) −

Q
2

ξα
(t). (2)

This potential has two nonzero covariant components

At = gtα Aα = (aB− Q
2
)gtt +

B
2

gtφ, (3)

Aφ = gφα Aα = (aB− Q
2
)gtφ +

B
2

gφφ. (4)

When Q = 2aBw, the inductive charge is the Wald charge QW , and Bw is a magnetic
field corresponding to the Wald charge [4]. The induced charge like the Wald charge QW
is so small that it has no contribution to the background geometry of the black hole [71].
However, the induced charge can exert an important influence on the motion of a charged
particle under some circumstances, as will be shown in later discussions.

The motion of the particles around the rotating black hole embedded in the external
magnetic field is described by the Hamiltonian

H =
1

2m
gµν(pµ − qAµ)(pν − qAν)

=
H1

m
+

1
2m

∆
Σ

p2
r +

1
2m

p2
θ

Σ
, (5)

where pr and pθ are generalized momenta, and H1 is a function of r and θ [68]:

H1 =
1
2

gtt[ f1(E + qAt) + f2(L− qAφ)]
2

+
1
2

gφφ[ f2(E + qAt) + f3(L− qAφ)]
2

−gtφ[ f1(E + qAt) + f2(L− qAφ)]

·[ f2(E + qAt) + f3(L− qAφ)]. (6)

Here, f1, f2, and f3 are functions of r and θ as follows:

f1 =
gφφ

c2(gttgφφ − g2
tφ)

, (7)

f2 =
gtφ

c(gttgφφ − g2
tφ)

, (8)

f3 =
gtt

gttgφφ − g2
tφ

. (9)

E = −pt is a constant energy of the particle, and L = pφ is a constant angular momentum
of the particle. pt and pφ are generalized momenta, which satisfy the relations

ṫ =
∂H
∂pt

= − f1(E + qAt)− f2(L− qAφ), (10)

φ̇ =
∂H
∂pφ

= f2(E + qAt) + f3(L− qAφ). (11)
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Because the 4-velocity Uα = (cṫ, ṙ, θ̇, φ̇) is always identical to the constant UαUα = −c2,
the Hamiltonian (5) remains invariant and obeys the constraint

H = −1
2

mc2. (12)

In fact, this third invariable quantity corresponds to the rest mass of the particle.
For simplicity, c and G take geometrized units: c = G = 1. Dimensionless operations

to the Hamiltonian (5) are carried out thorough a series of scale transformations: r → rM,
t → tM, τ → τM, a → aM, E → Em, pr → mpr, L → mML, pθ → mMpθ , q → mq,
B → B/M and H → mH. Note that no scale transformation is given to the inductive
charge Q. When these treatments are employed, M and m in all the above-mentioned
expressions are eliminated or taken as geometrized units: M = m = 1. The horizon event
of the black hole exists for |a| ≤ 1. For convenience, we take Q∗ = qQ and B∗ = qB.

3. Effective Potential and Stable Circular Orbits

Apart from the three integrals (10)–(12) in the dimensionless Hamiltonian (5), the fourth
constant related to the particles’ azimuthal motion is absent in general when the external
magnetic field forces are included. The absence of the fourth constant is mainly caused
by the gφφ term in Equation (4) rather than the gtt term in Equation (3). Because gtt is
only a function of r, it does not destroy the presence of the fourth constant. However, gφφ

is a function of r and θ, and therefore the Hamilton–Jacobi equation of Equation (5) has
no separable form of variables r and θ. This leads to the absence of the fourth constant.
Of course, the gtφ terms, being functions of r and θ in Equations (3) and (4), also have some
contributions to the absence of the fourth constant. In other words, the main contribution
to the absence of the fourth constant in the (5) comes from the external magnetic fields
associated with B∗. The inductive charges associated with Q∗ also exert some influences
on the absence of the fourth constant. Thus, the dimensionless Hamiltonian (5) is non-
integrable. However, it can be integrable for some particular cases. For instance, radial
motions of charged particles on the equatorial plane θ = π/2 are integrable. The radial
motions are described in terms of effective potential V, i.e., the expression of E obtained
from Equations (5) and (12) with pr = pθ = 0:

V = E =
B

2A
+

√
B2 + 4AC + 2A

4A2 , (13)

where A, B and C are expressed as

A = − 1
2
( f 2

1 gtt + f 2
2 gφφ − 2 f1 f2gtφ),

B = B1 + B2 + B3,

C =
1
2

gttC1 +
1
2

gφφC2 − gtφC3,

B1 = gttqAt f 2
1 + gtt f1 f2L− gtt f1 f2qAφ,

B2 = gφφqAt f 2
2 + gφφ f2 f3L− gφφ f2 f3qAφ,

B3 = −2gtφqAt f1 f2 − gtφ f1 f3L + gtφqAφ f1 f3

−gtφ f 2
2 L + gtφqAφ f 2

2 ,

C1 = f 2
1 q2 A2

t + 2 f1 f2qLAt − 2 f1 f2q2 At Aϕ

+ f 2
2

(
A2

φq2 − 2Aφ Lq + L2
)

,

C2 = f 2
2 q2 A2

t + 2 f2 f3qLAt − 2 f2 f3q2 At Aφ

+ f 2
3

(
A2

φq2 − 2Aφ Lq + L2
)

,

C3 = A2
φ f2 f3q2 − Aφ At f1 f3q2 − Aφ At f 2

2 q2

+A2
t f1 f2q2 − 2Aφ f2 f3Lq + At f1 f3Lq

+At f 2
2 Lq + f2 f3L2.



Universe 2021, 7, 410 6 of 17

The local minimal values of the effective potential correspond to stable circular orbits,
which satisfy the relation dr/dτ = 0 and the following conditions

dV
dr

= 0, (14)

d2V
dr2 ≥ 0. (15)

When the equality sign (=) is taken in Equation (15), the innermost stable circular orbit
(ISCO) is present.

Taking parameters L = 2
√

3, a = 0.1, and Q∗ = 2× 10−4 (if q = 0.1 and BW = 0.01,
then Q = 0.002 is the Wald charge), we plot the effective potentials for several different
magnetic parameters B∗ in Figure 1. When the magnetic parameter B∗ increases, the left
shape of the effective potential goes away from the black hole, and the shape of the effective
potential is not altered. The energies of the unstable or stable circular orbits become smaller.
That is to say, the effective potential for a larger value of B∗ is below that for a smaller value
of B∗. However, the radii of the stable circular orbits in Table 1 get larger as B∗ increases.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.930

0.935

0.940

0.945

0.950

0.955

0.960

 

 

V

r

 B =1 10-3

 B =2 10-3

 B =3 10-3

 B =4 10-3

 B =5 10-3

Figure 1. Effective potentials for different uniform magnetic field parameters B∗. The other parame-
ters are L = 2

√
3, a = 0.1, and Q∗ = 0.0002.

Table 1. Radii R of stable circular orbits in Figure 1.

Parameter B∗ = 0.001 B∗ = 0.002 B∗ = 0.003 B∗ = 0.004

R 7.4595 7.5165 7.5693 7.6177

Parameter B∗ = 0.005 B∗ = 0.006 B∗ = 0.007 B∗ = 0.008

R 7.6618 7.7013 7.7365 7.7673

An increase in the inductive charge parameter Q∗ does not alter the shape of the
effective potential but makes the left shape of the effective potential go away from the black
hole in Figure 2. Meanwhile, the energies of the unstable or stable circular orbits decrease,
but the radii of the stable circular orbits increase in Table 2.

Table 2. Radii R of stable circular orbits. The related parameters are the same as those in Figure 2.

a = 0.1 B∗ = 0.001 B∗ = 0.002

Q∗ = 0 7.4559 7.5129

Q∗ = 0.0001 7.4577 7.5147

Q∗ = 0.0004 7.4631 7.5201
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3 4 5 6 7 8 9 10
0.943

0.944

0.945

0.946

0.947

 

 

V

r

 Q =0
 Q =1
 Q =4

Figure 2. Effective potentials for several inductive charge parameters Q∗. The other parameters are
B∗ = 0.001, a = 0.1 and L = 2

√
3.

Figure 3 clearly describes the dependence of the effective potential on the black hole’s
spin a. The energies of the stable circular orbits increase when a gets larger. The radii of the
stable circular orbits always increase (see also Table 3).

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.936

0.938

0.940

0.942

0.944

0.946

0.948

0.950

 

 

V

r

 a=0.02
 a=0.04
 a=0.06
 a=0.08
 a=0.1

Figure 3. Effective potentials for several black hole spins a. The other parameters are L = 2
√

3,
B∗ = 0.001 and Q∗ = 0.004.

Table 3. Radii R of stable circular orbits in the Kerr spacetime of Figure 4. The radii R colored red are
those of the innermost stable circular orbits (ISCOs).

a L R

3.4641 6
0 4.0 12

4.5 16.5876

3.2640 5.3294
0.2 4.0 12.5329

4.5 16.9761

3.0340 4.6143
0.4 4.0 12.9954

4.5 17.3336

2.7559 3.8290
0.6 2.8 4.5721

2.9 5.4096

How does the effective potential vary as the particle’s angular momentum L increases?
The effective potential for a larger value of L is always over that for a smaller value of
L, as shown in the Kerr spacetime of Figure 4b,c. Note that there are critical values of L
corresponding to the ISCOs colored red in Table 3, such as L = 3.4641 for the Schwarzschild
spacetime with a = 0. When the angular momenta L are larger than the critical values,
the stable circular orbits are present in Table 3. However, no stable circular orbits exist
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for L less than the critical values. As a or L increases, the radii of the stable circular orbits
also increase.

0 10 20 30 40 50
0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15(a)

 

 

a=0

 L=0
 L=3.4641
 L=4
 L=4.5

V

r
0 10 20 30 40 50

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20(b)

 L=0
 L=3.0340
 L=4
 L=4.5

a=0.4

 

 

V

r
0 10 20 30

0.85

0.90

0.95

1.00(c)

 L=0
 L=2.7559
 L=2.8
 L=2.9

a=0.6

 

 

V

r

Figure 4. The black hole spins are (a) a = 0, (b) a = 0.4 and (c) a = 0.6. Effective potentials for different
angular momenta L of test particles. The other parameters are Q∗ = 0 and B∗ = 0.

Although the radii of the stable circular orbits increase with an increase in a, the radii
of the ISCOs become smaller, as shown in Table 3. In addition, the radii of the ISCOs
depend on the sign of the particle’s angular momentum as well as the magnitude of the
particle’s angular momentum. When L > 0 (for this case, the spin direction of the black
hole is consistent with the particle’s angular momentum), the considered orbits are called
direct orbits. When L < 0 (for this case, the spin direction of the black hole is opposite to
the particle’s angular momentum), the considered orbits are called retrograde orbits [38].
Given parameters a, Q∗ and B∗, the radii of the ISCOs for the retrograde orbits are larger
than those for the direct orbits. If any one of the parameters a, Q∗, and B∗ increases,
the radii of the ISCOs for the retrograde orbits or the direct orbits decrease. More details
on the ISCOs are listed in Tables 4–6.

Table 4. Radii R of the ISCOs. The parameters are a = 0.2, Q∗ = 0.008. DO represents a direct orbit,
and RO denotes a retrograde orbit. Note that L with E is not arbitrarily given for the case of ISCOs,
but it is for the case of stable circular orbits. R, E, and L are determined together in terms of the
conditions of ISCOs.

B∗ = 0.02 B∗ = 0.02 B∗ = 0.04 B∗ = 0.04 B∗ = 0.06 B∗ = 0.06
DO RO DO RO DO RO

R 5.2406 6.4737 5.0411 6.1176 4.7844 5.8262

L 3.1794 −3.8201 3.1433 −4.0808 3.1311 −4.3879

E 0.9078 0.9879 0.8885 1.0406 0.8726 1.10173

Table 5. Similar to Table 4, but the parameters are a = 0.2 and B∗ = 0.01.

Q∗ = 0 Q∗ = 0 Q∗ = 0.001 Q∗ = 0.001 Q∗ = 0.002 Q∗ = 0.002
DO RO DO RO DO RO

R 5.3276 6.599 5.3275 6.6193 5.3274 6.6043

L 3.2224 −3.7282 3.2209 −3.7265 3.2194 −3.7247

E 0.9226 0.9688 0.9222 0.9683 0.9217 0.9679

Table 6. Similar to Table 4, but the parameters are a = 0.2 and Q∗ = 0.

B∗ = 0 B∗ = 0 B∗ = 0.02 B∗ = 0.02 B∗ = 0.04 B∗ = 0.04
DO RO DO RO DO RO

R 5.3641 6.6713 5.2534 6.4653 5.0411 6.1218

L 3.2641 −3.6434 3.1912 −3.8343 3.1546 −4.0954

E 0.9354 0.9485 0.9112 0.9917 0.8918 1.0445
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4. Numerical Investigations

Without loss of generality, the Hamiltonian system (5) for the description of the motion
of charged particles at the non-equatorial plane is nonintegrable and has no analytical
solutions. Numerical integration schemes are convenient to solve this system. Particularly
for obtaining the numerical solutions of the Hamiltonian problem, symplectic integrators
are naturally a prior choice. Because explicit symplectic integrators are generally superior to
implicit ones at the same order in computational efficiency, their applications also remain a
high priority. Owing to the difficulty in the separation of variables or the separation of two
integrable parts in curved spacetimes, the implicit symplectic integrators rather than the
explicit ones are suitably applicable to the curved spacetimes in general [41,54–58]. Recently,
Wang et al. [64–66] split the Hamiltonians of non-rotating black holes surrounded by
external magnetic fields into several parts with analytical solutions as explicit functions of
proper time τ, and successfully constructed the explicit symplectic integrators for these non-
rotating black holes. More recently, the authors of [67] gave a time transformation to the
Kerr geometry and designed the explicit symplectic integrators for the time-transformed
Hamiltonian with a desired splitting form. The time-transformed explicit symplectic
integrators were applied to study the dynamics of charged particles moving around the
Kerr black hole surrounded by external magnetic fields without the inductive charge
Q [68]. Following the two works [67,68], we use the explicit symplectic integrators to the
Hamiltonian problem (5).

4.1. Explicit Symplectic Integrators

The authors of [67] introduced a time transformation function

dτ = g(r, θ)dw, g(r, θ) =
Σ
r2 , (16)

where w is a new coordinate time unlike the original coordinate time t. The Hamilto-
nian (15) becomes

K = g(H + p0) =
Σ
r2 (H1 + p0) +

∆
2r2 p2

r +
1

2r2 p2
θ . (17)

The new Hamiltonian K is a time-transformed Hamiltonian, where the proper time τ
is viewed as a coordinate q0 = τ and its corresponding momentum is p0 = −H = 1/2 6= pt.
In this case, K is always identical to zero for any coordinate time w, i.e.,

K ≡ 0. (18)

Now, the time-transformed Hamiltonian K in Equation (17) is split into five parts

K = K1 + K2 + K3 + K4 + K5, (19)

where all sub-Hamiltonians are expressed as

K1 =
Σ
r2 (H1 + p0), (20)

K2 =
1
2

p2
r , (21)

K3 = −1
r

p2
r , (22)

K4 =
a2

2r2 p2
r , (23)

K5 =
1

2r2 p2
θ . (24)

K2, K3, and K5 are consistent with those of [67], but K1 and K4 are not.
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Each of the five sub-Hamiltonians K1, K2, K3, K4, and K5 is solved analytically, and its
solutions are explicit functions of the new coordinate time w. Operators associated with the
solutions of K1, K2, K3, K4, and K5 are K̂1, K̂2, K̂3, K̂4, and K̂5, respectively. The solutions of
system (5) advancing a new coordinate time step ∆w = h are given in terms of an explicit
second-order symplectic integrator

SK
2 (h) = K̂5(

h
2
) ◦ K̂4(

h
2
) ◦ K̂3(

h
2
) ◦ K̂2(

h
2
) ◦ K̂1(h)

◦K̂2(
h
2
) ◦ K̂3(

h
2
) ◦ K̂4(

h
2
) ◦ K̂5(

h
2
), (25)

as was proposed in [67]. The second-order method easily yields a fourth-order symplectic
integrator [72]

SK
4 (h) = SK

2 (γh) ◦ SK
2 (δh) ◦ SK

2 (γh), (26)

where δ = 1− 2γ and γ = 1/(2− 3
√

2).
In fact, the explicit symplectic algorithms (25) and (26) are attributed to the devel-

opment of the time-transformed symplectic method of [73] in the Kerr spacetime and its
extension. The method of Mikkola [73] aims to exhibit good performance of symplectic
integrators for close encounters of objects or high orbital eccentricities in the solar system.
In the idea of Mikkola, these integrators use fixed time steps and remain symplectic for
the new time but adaptive time steps for the original time. However, the time steps in
the method of [67], including the present integrators (25) and (26), are approximately
invariant for the proper time τ because g ≈ 1 and ∆τ ≈ g∆w ≈ ∆w = h for r � 2 in
Equation (16). As the authors of [67] claimed, the time transformation mainly aims to
eliminate the function Σ in the denominators of the terms pr and pθ in the Hamiltonian H
and to cause the time-transformed Hamiltonian K to have the desired separable form.

In comparison with S4, a fourth-order method implicit symplectic algorithm (IM4)
consisting of three second-order implicit midpoint methods [56] is applied to the time-
transformed Hamiltonian K. The conventional fourth-order Runge–Kutta explicit integra-
tion method (RK4) is also employed. Of course, IM4 and RK4 are suitable for the original
Hamiltonian (5).

The new coordinate time step is given by h = 1. The parameters are E = 0.9935,
L = 4.6, a = 0.5, B∗ = 0.001, and Q∗ = 0.001. The initial conditions are θ = π/2 and
pr = 0. If the initial separation r is given, then the initial value pθ > 0 is obtained from
Equation (12). We take r = 55 for Orbit 1, and r = 75 for Orbit 2. When the three algorithms
S4, IM4, and RK4 independently integrate the two orbits in system (17), the evolutions
of K in Equation (18) with integration time w are shown in Figure 5a,b. The explicit
symplectic method S4 and the implicit symplectic algorithm IM4 do not show secular drifts
in Hamiltonian errors, but RK4 does. In addition, S4 and IM4 are almost the same and have
two orders of magnitude smaller errors than RK4. Accuracy of each algorithm for Orbit 2 in
Figure 5b has an advantage over that for Orbit 1 in Figure 5a. Is this result because Orbit 2
is regular and Orbit 1 is chaotic? In fact, Orbit 1 is a regular Kolmogorov–Arnold–Moser
(KAM) torus, but Orbit 2 exhibits the chaoticity, as described through Poincaré section at
the plane θ = π/2 with pθ > 0 in Figure 5c. The result on the preference of accuracy of
each algorithm for Orbit 2 over that for Orbit 1 is because Orbit 1 has a larger average
period than Orbit 2. Although both orbits are not exactly periodic and Orbit 2 is chaotic,
they have approximately average periods. Based on good computational efficiency, S4 is
employed in the later studies.

4.2. Dynamics of Generic Orbits

Let us consider the effect of a small change in the inductive charge parameter Q∗ on
the orbital dynamics. If Q∗ = 0.001 in Figure 5c gives place to Q∗ = 0, no chaos exists in
Figure 6a. When Q∗ = 0.0005, all the orbits in Figure 6b are still regular. As the inductive
charge parameter increases to Q∗ = 0.0006 in Figure 6c, the pink orbit with the initial
separation r = 100 is chaotic. For Q∗ = 0.0008 in Figure 6d, Orbit 2 and the pink orbit
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with the initial separation r = 100 are chaotic. As the inductive charge parameter increases
and takes the Wald charge Q∗ = 2aBq = 0.001 in Figure 5c, chaos becomes stronger from
the global phase-space structure. These facts show that a small increase in the inductive
charge parameter Q∗ can easily induce chaos. An explanation of this result is given here.
The inductive charges in the vicinity of the Wald charge are so small that they do not
contribute to the spacetime curvature but can exert somewhat important influences on
the motions of charged particles and even enhance the chaotic properties. The inductive
charges have small contributions to the absence of the fourth constant, although the external
magnetic fields provide the main contributions, as is claimed above. When B∗ is given an
appropriate value and the ratio of the particle’s charge q to the particle’s mass m (i.e., q/m)
is large enough, the inductive charges possibly contribute to the occurrence of chaos.
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Figure 5. (a,b): Accuracies of the time-transformed Hamiltonian K yielded by three methods S4,
IM4, and RK4 acting on Orbit 1 and Orbit 2. The time-step is h = 1. Orbits 1 and 2 have their initial
separations r = 55 and r = 75, respectively. The other initial conditions are θ = π/2, pr = 0 and
pθ > 0. The parameters are E = 0.9935, L = 4.6, B∗ = 0.001, a = 0.5, and Q∗ = 0.001. Symbol “×100”
means that the plotted errors are enlarged 100 time compared with the practical errors. (c) Poincaré
sections at plane θ = π/2 with pθ > 0. The black orbit has its initial separation r = 25, the red orbit
has the initial separation r = 35, and the pink orbit has the initial separation r = 100. Orbit 1 is
regular, whereas Orbit 2 and the pink orbit with the initial separation r = 100 are chaotic.
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Figure 6. Same as Figure 5c but the inductive charge parameters Q∗ are different. There is no chaos
in (a,b). Chaos occurs for the pink orbit with the initial separation r = 100 in (c). Orbit 2 and the pink
orbit with the initial separation r = 100 are chaotic in (d).

A minor change in the magnetic parameter B∗ has an important effect on the orbital
dynamics. With B∗ increasing, the evolution of orbits transits from regular KAM tori for
B∗ = 0.0003 in Figure 7a to chaos for B∗ = 0.0008 in Figure 7b and to stronger chaos for
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B∗ = 0.0011 in Figure 7c. An increase in B∗ means that of the Lorentz force and therefore
enhances the strength of chaos.
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Figure 7. Poincaré sections. The magnetic field parameters are (a) B* = 0.0003, (b) B* = 0.0008 and
(c) B* = 0.0011. The parameters are E = 0.995, L = 4.6, a = 0.5, and Q∗ = 0.0003. Orbits 1 and 2 have
their initial separations r = 75 and r = 100, respectively. The initial separations are r = 15 for the
black orbit, r = 35 for the red orbit, and r = 55 for the blue orbit.

The above demonstrations mainly consider how the two parameters Q∗ and B∗ exert
influences on the orbital dynamical behavior. What about the effect of the black hole spin
a on the orbital dynamics? Figure 8 gives an answer to this question. It is found that the
chaotic properties are gradually weakened and ruled out as the dragging effects of the
spacetime by the rotating black hole increase. This fact supports the result of [12]. It is
shown again that an increase in the inductive charge parameter Q∗ helps to induce chaos
for a given spin a. Similarly, an increase in the particle’s angular momentum L also results
in weakening and suppressing the chaotic properties, as shown in Figure 9.
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Figure 8. Poincaré sections. The parameters are E = 0.995, L = 4.6, and B∗ = 0.0008. Orbits 1 and 2
have their initial separations r = 35 and r = 145, respectively. The initial separations are r = 15 for
the black orbit, r = 55 for the blue orbit, and r = 75 for the green orbit. (a–c) have the same spins
a = 0 but different charge parameters Q*. (d–f) have the same spins a = 0.00048 but different charge
parameters Q*.
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Figure 9. Poincaré sections. The parameters are E = 0.995, a = 0.1, B∗ = 8× 10−4, and Q∗ = 1× 10−5.
Orbits 1 and 2 have their initial separations r = 75 and r = 95, respectively. The initial separations
are r = 15 for the black orbit, r = 35 for the red orbit, and r = 55 for the blue orbit. The angular
momenta in (a–c) are different.

As is well known, chaos is stronger when the particle’s energy E is larger. This result
is confirmed by fast Lyapunov indicators (FLIs) in Figure 10. Here, computations of the
FLIs are based on the method of [74]. The FLI is the logarithm of the ratio of the separation
between two nearby trajectories d(τ) at proper time τ to the starting separation d(0):

FLI = log10
d(τ)
d(0)

. (27)

Different growths of separation d(τ) with proper time τ allow one to distinguish
between ordered and chaotic orbits. A slowly polynomial or algebraical increase in the
separation indicates the regularity of the considered bounded orbit for E = 0.9925 in
Figure 10. However, a rapidly exponential increase in the separation turns out to be the
characteristic of chaoticness of the considered bounded orbit for E = 0.9935. The FLI for
E = 0.995 is less than for E = 0.997 after the integration time w = 106 or τ = 106; therefore,
the former chaoticity is weaker than the latter one. That is, an increase of the energy E
gives rise to enhancing strength of chaos.
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40

 

 

FL
I

log10w

 E=0.9925
 E=0.9935
 E=0.995
 E=0.997

Figure 10. Fast Lyapunov indicators (FLIs). The parameters are L = 4.6, a = 0.5, B∗ = 0.001, and
Q∗ = 0.001. The initial separation is r = 75.

We find that the FLIs are always smaller than 3.5 for the regular case but larger than
this value for the chaotic case when the integration time reaches w = 106. Now, we employ
the technique of FLIs to trace how a small variation in one parameter affects a dynamical
transition from order to chaos. Only one of the parameters is given many different values,
and the initial conditions (except pθ) and the other parameters are fixed. Each FLI is
obtained after the integration time w = 106. The transition from order to chaos occurs
when Q∗ ≥ 0.00056 (Figure 11a), B∗ ≥ 0.000844 (Figure 11b), or E ≥ 0.99379 (Figure 11c).
However, the transition from chaos to order occurs when L ≥ 5.84789 (Figure 11d). That
is, the strength of chaos is enhanced as one of the parameters Q∗, B∗, and E increases,
but weakened as the parameter L increases. The effects of variations of these parameters on
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the orbital dynamics described by the technique of FLIs are consistent with those described
by the technique of Poincaré sections.

The transition from order to chaos occurs when the black hole’s spin a ≥ 0.046 in
Figure 11e. That is, an increase in a leads to strong chaos. The result is consistent with that
of [68], but unlike that of Figure 8, in which the dragging effects of the spacetime weaken
the chaotic properties from the global phase-space structures. The different results between
Figures 10 and 11e are due to distinct choices of the initial conditions and other parameters.
Perhaps, the dependence of the dynamical behavior on the spin may be different if the
chosen initial conditions and other parameters are varied.
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Figure 11. Dependence of FLIs on the parameters. Each of the FLIs is obtained after the integration
time w = 106. The parameters and initial separations are as follows. (a) E = 0.9935, L = 4.6, a = 0.5,
B∗ = 0.001, and r = 100. (b) E = 0.995, L = 4.6, a = 0.5, Q∗ = 0.0001, and r = 75. (c) L = 4.6,
a = 0.5, B∗ = 1× 10−3, Q∗ = 1.25× 10−4, and r = 75. (d) E = 0.995, a = 0.5, B∗ = 1× 10−3,
Q∗ = 1.25× 10−4, and r = 75. (e) E = 0.995, L = 4.6, B∗ = 1× 10−3, Q∗ = 2× 10−7, and r = 75.

5. Conclusions

In this paper, we mainly focused on studying the dynamics of charged particles
around the Kerr black hole immersed in an external electromagnetic field, which can be
considered as a tidal environment.

First, we discussed the radial motions of charged particles on the equatorial plane
through the effective potential. We traced how the dynamical parameters exert influences
on the effective potential. It was found that the particle energies at the local maxima values
of the effective potentials increase with an increase in the black hole spin and the particle
angular momentum, whereas they decrease as one of the inductive charge parameter and
magnetic field parameter increases. In addition, the radii of stable circular orbits on the
equatorial plane always increase. However, the radii of ISCOs decrease as any one of the
black hole spin |a|, inductive charge parameter Q∗, and uniform magnetic field parameter
B∗ is increasing.
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Then, we investigated the motions of charged particles on the non-equatorial plane
using a time-transformed explicit symplectic integrator. The effects of small variations of
the parameters on the orbital regular and chaotic dynamics are studied through the tech-
niques of Poincaré sections and fast Lyapunov indicators. As a result, the dynamics have
sensitive dependence on a small variation in any one of the inductive charge parameter,
magnetic field parameter, energy, and angular momentum. Chaos is easily induced as the
inductive charge parameter, magnetic field parameterm and energy increase but weakened
as the angular momentum increases. When the dragging effects of the spacetime increase,
the chaotic properties are not always enhanced or weakened under some circumstances.

The theoretical work may have potential astrophysical applications. The unstable or
stable circular orbits and ISCOs would be helpful to study some accretion disks. The theory
of chaotic scattering in the combined effective potential and the asymptotically uniform
magnetic field would be applicable to explaining the mechanism hidden behind the charged
particle ejection. The existence of the magnetic fields involving the induced electric field
may be demonstrated through observational evidence.
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