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Abstract: After giving a short overview of previous results on constraining of Extended Gravity by
stellar orbits, we discuss the Schwarzschild orbital precession of S2 star assuming the congruence with
predictions of General Relativity (GR). At the moment, the S2 star trajectory is remarkably fitted with
the first post-Newtonian approximation of GR. In particular, both Keck and VLT (GRAVITY) teams
declared that the gravitational redshift near its pericenter passage for the S2 star orbit corresponds to
theoretical estimates found with the first post-Newtonian (pN) approximation. In 2020, the GRAVITY
Collaboration detected the orbital precession of the S2 star around the supermassive black hole
(SMBH) at the Galactic Center and showed that it is close to the GR prediction. Based on this
observational fact, we evaluated parameters of the Extended Gravity theories with the Schwarzschild
precession of the S2 star. Using the mentioned method, we estimate the orbital precession angles for
some Extended Gravity models including power-law f (R), general Yukawa-like corrections, scalar–
tensor gravity, and non-local gravity theories formulated in both metric and Palatini formalism. In
this consideration, we assume that a gravitational field is spherically symmetric, therefore, alternative
theories of gravity could be described only with a few parameters. Specifically, considering the
orbital precession, we estimate the range of parameters of these Extended Gravity models for which
the orbital precession is like in GR. Then we compare these results with our previous results, which
were obtained by fitting the simulated orbits of S2 star to its observed astrometric positions. In case of
power-law f (R), generic Yukawa-like correction, scalar–tensor gravity and non-local gravity theories,
we were able to obtain a prograde orbital precession, like in GR. According to these results, the
method is a useful tool to evaluate parameters of the gravitational potential at the Galactic Center.

Keywords: alternative theories of gravity; supermassive black hole; stellar dynamics

1. Introduction

Several modified gravity theories have been proposed as possible extensions of Ein-
stein’s theory of gravity [1]. Among their main motivations, there is the possibility to
explain cosmological and astrophysical data at different scales without introducing dark
energy and dark matter, but just taking into account further degrees of freedom of the
gravitational field emerging from geometric corrections [2]. They have to explain different
observations ranging from solar systems, neutron stars, binary pulsars, spiral and eliptical
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galaxies, and clusters of galaxies up to the large-scale structure of the universe and the
observed accelerated dynamics [3–6]. A number of alternative gravity theories have been
proposed (see, e.g., [2,7–10] for reviews). In recent years, theories of “massive gravity”
have also attracted a lot of attention (see, e.g., [11,12] and references therein and citations
of these papers), especially after a creation of massive gravity models without pathologies
such Boulware–Deser ghosts [13–16]. Different alternative approaches for the weak field
limit starting from fourth-order theories of gravity, like f (R), have been proposed and dis-
cussed [17–26]. The alternative theories of gravity were discussed from the field-theoretical
point of view by Petrov et al. in the book [27]. Furthermore, some experimental limits
related to Extended Theories of Gravity are reported in the literature [28–31].

In this discussion, stellar dynamics acquires a special role because it allows us to
investigate gravitational potentials of self-gravitating structures considering stellar motions.
In particular, S-stars are the bright stars which move around the Galactic Center [32–44]
where Sgr A∗ is located, which is a compact bright radio source. One of the brightest
among S stars with a high eccentricity is called S2 [34,38].

The conventional model for the Galactic Center consists of the supermassive black
hole with mass around 4.3× 106M� and an extended mass distribution formed with stellar
cluster and dark matter. A total mass of bulk distribution inside a spherical shell where
trajectories of bright stars are located must be much smaller than the black hole mass,
otherwise, theoretical fits significantly differ from observational data. Recently, GRAVITY
Collaboration [45,46] and the Keck group [47] evaluated relativistic redshifts of spectral
lines for the S2 star near its periapsis passage in May 2018, and the redshifts were consistent
with theoretical estimates done in the first post-Newtonian correction for the redshifts.

Some time ago, Ruffini, Argüelles Rueda [48] proposed a dark matter distribution
having a dense core and a diluted halo. Later, the dark matter distribution was called
the RAR-model. Recently, Becerra-Vergara et al. [49] claimed that this model provides
a better fit of trajectories of bright stars in comparison with the supermassive black hole
model. The properties of bright star trajectories in the gravitational field of a dense core in
the RAR-model have been considered in [50] and it was concluded that the gravitational
field determined from the RAR model is the harmonic oscillator potential. In this case,
trajectories of stars are ellipses with centers at the origin and their periods are the same, so
they do not depend on semi-major axes, therefore, it was concluded that these properties
are not consistent with existing observational data.

In the case of small velocities of stars (in units of speed of light) and great radial
coordinates (in Schwarzschild radius units) the orbital precession occurs due to relativistic
effects and due to extended mass distribution because we have perturbations of the New-
tonian potential in both cases. In the first case, precession results in a prograde pericentre
shift, and in the second case in a retrograde shift [51], respectively. In both cases, the
result will be rosette shaped orbits [52]. Weinberg et al. [53] demonstrated that the lowest
order relativistic effects, i.e., the prograde precession, could be detectable if the astrometric
precision would reach a few tenths of mass.

In our previous papers, we constrained different Extended Gravity theories using as-
tronomical data for the S2 orbit [24,54–62], fundamental plane of elliptical galaxies [63–65]
and barionic Tully–Fischer relation of spiral galaxies [66]. In this paper, we evaluate pa-
rameters of the following theories of gravity: power-law f (R), Yukawa, Sanders, Palatini
and non-local gravity by Schwarzschild precession of S2 star. We assume that the orbital
precession of the S2 star is equal to the GR prediction 0◦.18 per orbital period. We use this
assumption because the GRAVITY Collaboration detected the orbital precession of the S2
star around the SMBH [44] and showed that it is close to the corresponding prediction
of GR.

It is important to investigate gravity in the vicinity of very massive compact objects
because the environment around these objects is drastically different from that in the Solar
System framework. The precession of the S2 star is a unique opportunity to test gravity at
the sub-parsec scale of a few thousand AU. Gravity is relatively well constrained at short
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ranges (especially at sub-mm scale) by experimental tests [67]; however, for long ranges
(e.g., at sub-parsec scale), further tests are still needed (see Figures 9 and 10 from [67] for
different ranges). It is worth stressing that a phenomenological approach can be useful in
this context. The precession of the S2 star is an excellent opportunity to test theories of
gravity. Furthermore, we use the Schwarzschild precession because it is a new observational
result for our Galactic Center and we are interested to learn alternative theory parameters
that correspond to the Schwarzschild precession for S2 star.

We organized the paper in the following way. In Section 2, we presented basic theoretical
models for power-law f (R), Yukawa, Sanders, Palatini and non-local gravity theories. In
Section 3, we evaluate parameters of these theories of gravity by Schwarzschild precession of
S2 star and discussed the obtained results. The concluding remarks are given in Section 4.

2. Theory

Let us summarize the theoretical models that we want to investigate by S2 star orbits
moving around Sgr A∗.

2.1. Power-Law F(R) Gravity

f (R) gravity is a straightforward extension of GR where, instead of the Hilbert–Einstein
action, linear in the Ricci scalar R, one considers a generic function of it [17–19,68–71]. A
power-law f (R) is obtained by replacing the scalar curvature R with f (R) = f0nRn in the
gravity Lagrangian [69,70]. Clearly, for n = 1, GR is recovered. It is interesting to stress
that n can be any positive real number so that, as soon as n ' 1 + ε, with ε � 1, little
deviations from GR can be considered. In the weak field limit, a gravitational potential of
the form.

Φ(r) = −GM
2r

[
1 +

(
r
rc

)β
]

, (1)

can be found [69,70]. Here, rc is the scale-length parameter and it is related to the boundary
conditions and the mass of the system and β is a universal parameter related to the power
n. It is possible to demonstrate that the relation

β =
12n2 − 7n− 1−

√
36n4 + 12n3 − 83n2 + 50n + 1

6n2 − 4n + 2
. (2)

holds [70]. For the case n = 1 and β = 0, the Newtonian potential is recovered.
Being n any positive real number, it is always possible to recast the f (R) power-law

function as

f (R) ∝ R1+ε . (3)

If we assume a small deviation with respect to GR, that is |ε| � 1, it is possible to
re-write a first-order Taylor expansion as

R1+ε ' R + εRlogR + O(ε2) . (4)

In this way, one can control the magnitude of the corrections with respect to the
Einstein gravity.

2.2. General Yukawa-like Corrections

Yukawa-like potentials deviate from the standard Newtonian gravitational potential
due to the presence of decreasing exponential terms [72–77]. Adelberger et al. [67] reviewed
experiments and constraints on the Yukawa term for the short ranges. In the case of
the longer distances parameters of Yukawa gravity potential are given for clusters of
galaxies [78,79] and for rotation curves of spiral galaxies [74]. Other studies of long-range
Yukawa-like modifications of gravity can be found in [73,80–85]. It is worth noticing that
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Yukawa-like corrections naturally emerge in the weak field limit derived by analytic Taylor
expansions of f (R) gravity

f (R) =
∞

∑
n= 0

f (n)(0)
n!

Rn = f0 + f1R +
f2

2
R2 + ... (5)

Specifically, expanding with respect to R = 0, that is, around the Minkowskian
background [86], it is possible to obtain [2,75]:

Φ(r) = − GM
(1 + δ)r

1 + δe
−
( r

Λ

), (6)

where Λ is the range of interaction and δ is a universal constant. In the case δ = 0, the
Yukawa potential reduces to the Newtonian one.

The Yukawa-like correction coming from f (R) gravity can be used to fix the coefficients
in the expansion (5) and, eventually, to match the observations [87]. For the expansion up
to the second order, we have 2 parameters to fix [88]. The relations between f1, f2 and δ
and Λ parameters are f1 = 1 + δ, f2 = −(1 + δ)/(Λ2) [88].

2.3. Scalar–Tensor Gravity and Sanders Potential

The above approach can be improved by adding a scalar field into dynamics in order
to match the observations according to the Sanders prescriptions for flat rotation curves of
galaxies (see [86] and references therein). We can start from the action

A =
∫

d4x
√
−g
[

f (R, φ) + ω(φ) φ;α φ;α +XLm

]
(7)

where φ is the scalar field. It can be approximated as φ = φ(0) + φ(1) + φ(2) + . . . (see [86]
for more details) and the function f (R, φ) with its partial derivatives ( fR, fRR, fφ, fφφ and
fφR) and ω(φ) can be substituted by their corresponding Taylor series. So, in the case of
f (R, φ), we obtain [86]:

f (R, φ) ∼ f (0, φ(0)) + fR(0, φ(0))R(1) + fφ(0, φ(0))φ(1)... (8)

where Ricci scalar R is approximated as R = R(0) + R(1) + R(2) + . . . (see [86] for more
details). The lowest order of field equations gives [86]:

f (0, φ(0)) = 0, fφ(0, φ(0)) = 0. (9)

In order to evaluate parameters of Sanders gravity, we can set the value of the deriva-
tives of the Taylor expansion as fRφ = 1, fRR = 0, fR = φ without losing generality
(see [86] for more details). Setting the gravitational constant as:

G =

(
2 ω(φ(0)) φ(0) − 4
2 ω(φ(0)) φ(0) − 3

)
G∞

φ(0)
(10)

where G∞ is the gravitational constant as measured at infinity and by imposing α−1 =
3− 2 ω(φ(0)) φ(0), the Yukawa gravity potential in the weak field limit gets the following
form [86]:

ΦST(x) = −G∞ M
|x|

{
1 + α e−

√
1−3α mφ |x|

}
. (11)

The obtained form represents a Sanders-like gravity potential [75,89] adopted to fit
flat rotation curves of spiral galaxies. It can be written in the following form [88]:
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ΦST(r) = − GM
(1 + α)r

{
1 + α e−

√
1−3α mφr

}
. (12)

2.4. Modified Palatini Gravity Model

In the Palatini approach, the metric and the connection are considered as inde-
pendent fields. Metric and Palatini approaches are equivalent in the case of the linear
Einstein–Hilbert action, but this is not so for extended gravities, and in particular for
f (R) gravity [90]. The Palatini approach leads to second order differential field equations,
while the metric approach leads to fourth order coupled differential equations. A hybrid
metric-Palatini theory, F(R) = R + f (R), where the standard GR term R is metric while
the f (R) term is metric-affine, is also possible. For a review, see [87,91–95]. As discussed
in [92], it is always possible to reduce a hybrid metric-Palatini model to a scalar–tensor one
where the scalar field can be related to the the first derivative of the f (R) term.

In the weak field limit, the scalar field behaves as φ(r) ≈ φ0 + (2Gφ0M/3r)e−mφr,
where M is the mass of the system and r is the interaction length. The leading parameters
for hybrid Palatini gravity are mφ and φ0 and our aim is to evaluate them. The modified
gravitational potential can be written in the following form:

Φ(r) = − G
1 + φ0

[
1− (φ0/3)e−mφr]M/r , (13)

so that it can be considered as a Yukawa-like potential.
The parameter mφ represents a scaling parameter for gravity interaction and [mφ] =

[Length]−1 and we measure the parameter in AU−1 (AU is the astronomical unit) 1, φ0 is
dimensionless. Non-vanishing mφ and φ0 would indicate a potential deviation from GR.

2.5. Non-Local Gravity Model

Non-local theories of gravity have recently showed that they can suitably represent the
behavior of gravitational interaction at both ultraviolet and infrared scales. This behavior
could be important because it manages to describe gravitation phenomena without the
need for dark matter and dark energy at different astrophysical scales. The non-locality is
introduced by the inverse of the d’Alembert operator. In the references [96–98], the authors
studied the dynamics of the non-local theory and its Newtonian limit. See also [99,100] for
a discussion.

It is possible to show that the weak-field limit of this theory has the free parameters,
φc, rφ and rξ (see [60] for more details). We take specific values for φc = 1 (to obtain the
Newtonian limit), and constrain the parameter space of the rφ and rξ parameters. The weak
field potential for non-local gravity reads:

UNL = − GM
r

φc +
G2M2

2c2r2

[
14
9

φ2
c +

18rξ − 11rφ

6rξrφ
r
]
+

+
G3M3

2c4r3

[
7rφ − 50rξ

12rξrφ
φcr− 16φ3

c
27

+
2r2

ξ − r2
φ

r2
ξr2

φ

r2

]
. (14)

where non-local corrections are evident, where G is the Newtonian constant, M is the black
hole mass.

3. Results and Discussion

In this section, we first give a short overview of our previous results regarding the
study of the extending theories of gravity by the observed orbit of the S2 star, and then we
will evaluate parameters of Rn, Yukawa, Sanders, Palatini and non-local gravity theories
with the Schwarzschild precession of the S2 star, i.e., by assuming that the orbital precession
of the S2 star is equal to the corresponding theoretical quantity calculated in GR. In all
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studied cases, we confirmed that these gravity parameters must be very close to those
corresponding to the Newtonian limit of the gravity theory. It is rather natural since all
bounded orbits of bright stars are very close to ellipses and its foci are located at the Galactic
Center, therefore, the gravitational potential should be Newtonian.

In order to calculate the precession of the S2 star in modified gravity, we assume that
the weak field potential does not differ significantly from the Newtonian potential. The
used perturbing potential is of the form:

V(r) = Φ(r)−ΦN(r); ΦN(r) = −
GM

r
, (15)

and it can be used for calculating the precession angle according to the Equation (30) from
paper [52]:

∆θ =
−2L

GMe2

1∫
−1

z · dz√
1− z2

dV(z)
dz

, (16)

where r is related to z via: r =
L

1 + ez
and L = a

(
1− e2)

For our calculation we used the results presented in [39], according to which mass of
the SMBH of the Milky Way is M = 4.28× 106 M�, semi-major axis of the S2 star orbit is
a = 0.′′1255 , and its eccentricity e = 0.8839.

Figure 1 shows the simulated orbits of S2 star in GR. The lower panel represents an
enlarged part of the upper panel. GR predicts that pericenter of S2 star should advance by
0◦.18 per orbital revolution [35]. Since we assume that the orbital precession of the S2 star
is equal to the theoretical quantity calculated in GR, the orbits of S2-star will be very close
to the orbit in Figure 1 for all study cases. We tested the sensitivity and stability of the pre-
sented results for Schwarzschild precession of (0◦.18) by their comparison with the results
for slightly different values of Schwarzschild precession: (0◦.178) and (0◦.182). We found
that the calculations are stable under small perturbations of Schwarzschild precession.

Figure 2 shows the precession per orbital period for β–rc parameter space in the case
of Rn gravity potential (1). Locations in β–rc parameter space where precession angle
is the same as in GR are designated by white dashed line. The upper panel shows the
results obtained for β > 1, while the lower panel corresponds to the negative values of
β. In our previous papers regarding Rn gravity [24,55], we showed that when parameter
β was approaching zero, we could recover the Keplerian orbit for S2 star. Our fitting
indicated [24,55] that optimal value for β was around 0.01. The obtained results showed
that, in contrast to GR, Rn gravity gives retrograde direction of the precession of the S2
orbit for the values 0 < β < 1.

However, as it can be seen from the upper panel of Figure 2, for the values β > 1 (which
are not theoretically justified since β→ 1 when n→ ∞, according to the expression (2), so
it cannot be incorporated into the theory. In case when parameter β is close to −0.0015 (see
lower panel of Figure 2), we can also obtain precession like in GR. This value of β is theoret-
ically justified since it can be obtained from Equation (2) for n = 0.99933. Regarding rc, it is
not possible to obtain the reliable estimate without an additional independent astronomical
data set. That is why we believe that Rn gravity could be also considered as a candidate to
explain S2-like star orbit, because now findings of the GRAVITY collaboration [44] indicate
that precession is in the same direction like in GR case.

In our previous studies regarding the Yukawa gravity [54,57,58,62,88], we have two
parameters to constrain. We used the orbit of the S2 star around the Galactic Centre to
test and constrain theory of gravity. In [54], we investigated parameters δ and Λ, and
in [88] we investigated values of f1, f2. We find the minimal values of the reduced χ2 in
order to estimate f1 and f2 assuming f0 = 0 and in that way we reconstruct f (R) models
up to the second order [54,88]. Figure 3 shows the precession per orbital period for δ–Λ
parameter space in the case of Yukawa gravity potential. Locations in the δ–Λ parameter
space where precession angle is the same as in GR are designated by white dashed line.
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From our previous findings [54,88] we conclude that the most probable parameter Λ for
Yukawa gravity in the case of the S2 star, is around 5000 AU–7000 AU and that the current
observations do not enable us to obtain the reliable constraints on the universal constant δ.
Now, with this new strategy, we obtained higher value for parameter Λ, around 21,000 AU.
For vanishing parameter δ, we recover the Keplerian orbit of S2 star. In the case of the S2
star orbit we obtained the orbital precession in positive direction like in GR. For Yukawa
gravity parameters we obtain the following conclusion: it is not possible to get a reliable
constraint for δ based only on the requirement that precession angle is like in GR, and
so we need an additional astronomical data set; for δ � 1 the obtained values for Λ
are between 21,000 AU and 22,000 AU, while for the δ ∼ 1, the corresponding values
are smaller (Λ ' 15,000 AU), as it can be also seen from Table 2 in [58]. If we consider
additional parameters in our model, i.e., that bulk distribution of matter (includes stellar
cluster, interstellar gas distribution and dark matter) exists near SMBH in our Galactic
Center, we will obtain a lower value for parameter Λ (see paper [62] for more details).

0 500 1000 1500 2000
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−500

−250

0

250

500

y
(A

U
)

1950.0 1957.5 1965.0
x (AU)

−60

−40

−20

0

20

40

60

80

y
(A

U
)

Figure 1. The simulated orbits of S2-star in GR. Lower panel represents enlarged part of the upper
panel where the obtained values of orbital precession angle is 0◦.18 per orbital period.

We studied Sanders gravity [88] and we compared the observed and simulated S2
star orbits around the Galactic Centre in order to constrain the parameters of gravitational
potential derived from f (R, φ) gravity, i.e., Sanders-like potential. We fitted the NTT/VLT
astrometric observations of S2 star. The precession of S2 star orbit obtained for the best fit
parameter values (α = 0.00018 and mφ = −0.0026 AU−1) has the positive direction, as in GR.
Figure 4 shows the precession per orbital period for α–mφ parameter space in the case of
Sanders gravity potential. Locations in parameter space where precession angle is the same
as in GR are designated by white dashed line. In our previous paper [88], we obtained
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much larger orbital precession of S2 star in Sanders-like gravity than the corresponding
value predicted by GR. Now, with new strategy we obtained new values for parameters of
Sanders gravity: α is between 0 and 1/3 (vertical asymptote in the upper panel of Figure 4
is 1/3, as follows from Equation (12)) and mφ is between 0 and 0.3 (in AU−1 units). From
Equation (12), we can see that for α = 0 or α = 1/3, or mφ = 0, the Sanders potential is
reducing to the Newtonian one. If we want to evaluate mφ we need additional independent
astronomical data set. As it can be seen from the lower panel of Figure 4, for obtaining
precession like in GR, absolute value of mφ cannot be lower than ≈ 0.00065 AU−1, which
corresponds to α ≈ 0.16.
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Figure 2. The precession per orbital period for β–rc parameter space in the case of Rn gravity
potential. With a decreasing value of angle of precession, colors are darker. Locations in parameter
space where precession angle has the same value as in GR (0◦.18) are designated by white dashed
line. Lower panel represents the same like the upper panel, but for more extended region of β–rc

parameter space.
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Figure 3. The precession per orbital period for δ–Λ parameter space in the case of Yukawa gravity
potential. With a decreasing value of angle of precession colors are darker. Locations in parameter
space where precession angle has the same value as in GR (0◦.18) are designated by white dashed
line. Lower panel represents the same like the upper panel, but for a more extended region of δ–Λ
parameter space.
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Figure 4. The precession per orbital period for α–mφ parameter space in the case of Sanders gravity
potential. With a decreasing value of angle of precession colors are darker. Locations in parameter
space where precession angle has the same value as in GR (0◦.18) are designated by white dashed
line. Lower panel represents the same like the upper panel, but for positive values of mφ parameter.

In our previous paper regarding hybrid Palatini gravity [56] using the observed
positions of S2 star, we constrained the hybrid modified gravity parameters. We obtained
following results: the range of values for φ0 parameter is between −0.0009 and −0.0002;
the range of mφ is between −0.0034 AU−1 and −0.0025 AU−1; the precession of the S2
star orbit in hybrid Palatini gravity has the same direction as in GR, but the upper limit
in magnitude is much bigger than GR. Figure 5 shows the precession per orbital period
for φ0–mφ parameter space in the case of hybrid Palatini gravity potential. Locations in
φ0–mφ parameter space where precession angle is the same as in GR are designated by
white dashed line. According the obtained figures, we can evaluate parameters of hybrid
Palatini gravity. We obtained that φ0 is between −1 (vertical asymptote in upper panel
of Figure 5) and 0, which follows from Equation (13) and mφ is between −0.1 AU−1 and
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0.1 AU−1. If φ0 = 0 Palatini potential reduces to Newtonian. Like in the previous case, if
we want to evaluate values of mφ we need additional independent astronomical data set.
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Figure 5. The precession per orbital period for φ0–mφ parameter space in the case of Hybrid Palatini
gravity potential. With a decreasing value of angle of precession colors are darker. Locations in
parameter space where precession angle has the same value as in GR (0◦.18) are designated by
white dashed line. Lower panel represents the same like the upper panel, but for positive values of
mφ parameter.

We studied non-local gravity in our previous paper [60], and we obtained the values
for rφ and rξ parameters. We obtained that the most probable value for the scale parameter
rφ is approximately from 0.1 AU to 2.5 AU. We showed that it is not possible to obtain
reliable estimates on the parameter rξ of non-local gravity using only observed astrometric
data for S2 star. That length scale is associated with one of the scalar fields which is not
dynamical, but only plays an auxiliary role to localize the original non-local Lagrangian.
The value of obtained orbital precession of the S2 star has the same order of magnitude as
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in GR. Figure 6 shows the precession per orbital period for rφ–rξ parameter space in the
case of non-local modified gravity potential. As previously, the locations in rφ–rξ parameter
space where precession angle is the same as in GR are designated by white dashed line.
As it can be seen from the lower panel of Figure 6, for obtaining precession like in GR, rφ

cannot be higher than ≈0.0256 AU, while, it is not possible to obtain a unique value for rξ

without combinations of these results with some additional astronomical observations.
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Figure 6. The precession per orbital period for rφ–rξ parameter space in the case of non-local modified
gravity potential. With a decreasing value of angle of precession colors are darker. Locations in
parameter space where precession angle has the same value as in GR (0◦.18) are designated by white
dashed line. Lower panel represents the same like the upper panel, but for a more extended region of
rφ–rξ parameter space.

In this paper, we assume that the orbital precession of S2 star is equal to GR value. In
our previous papers, we fitted astronomical data of the S2 star orbit, and data was with
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much larger uncertainties. We can notice that results differ from the previous one, and
now it is much more precise. The main reason is that the GRAVITY Collaboration detected
the orbital precession of the S2 star and showed that it is close to the GR prediction and
direction is the same like in GR.

Lense–Thirring Precession of the S2 Star Due to Spin of Sgr A*

For the very precise calculations the Lense–Thirring (LT) precession caused by the
SMBH spin should be also taken into account in the overall pN precession. In the case of the
recently discovered ultra-eccentric S-stars S4711, S62, S4714 [101–104], the LT precession
was studied in [102] and it was found that it is much smaller than Schwarzschild precession.
Namely, the ratio between the LT precession for a rotating SMBH with dimensionless spin
χg = 0.5 and the Schwarzschild precession for these stars is around 2.7, 2.3 and 0.86%,
respectively [102].

In this paper, we considered the solutions of alternative theories of gravity for spheri-
cally symmetric and static gravitational field, which do not include the SMBH spin. Nev-
ertheless, we estimated the LT precession for S2 star using the expression (10) from [102]
and assuming a Kerr SMBH rotating with dimensionless spin χg = 0.5. We also calculated
the upper bound for the realistic value of the spin of Sgr A* [105]. The spin of Sgr A*
was estimated (χg less than 0.1) by the observed distribution of the orbital planes of the
S-stars [105]. The obtained dependence of LT precession on SMBH’s spin polar angles i
and ε for SMBH spin χg = 0.5 is presented in Figure 7.

Figure 7. The dependence of LT precession ω̇ (′′/yr) of S2 star on SMBH’s spin polar angles i (◦)
and ε (◦) for SMBH in Sgr A∗ with dimensionless spin χg = 0.5. SMBH mass is taken from [102] and
S2 star orbital elements from [44].

The maximum value of LT precession ω̇ = 0′′.423 yr−1 is obtained for the following
polar angles: i = 160◦.8, ε = 138◦.2. For the upper bond of the realistic value of the spin of
Sgr A* (χg = 0.1) LT precession of ω̇ = 0′′.0845 yr−1 is obtained for the same values of the
polar angles. Taking into account that the Schwarzschild precession of S2 star is equal to
40′′.5 yr−1, it can be seen that the LT precession in the first case is smaller by two orders of
magnitude. Therefore, in the case of S2 star, the LT precession is much smaller than in the
case of the recently discovered ultra eccentric stars S4711, S62 and S4714. Having this in
mind, as well as the fact that at the moment the Schwarzschild precession is detected only
in the case of S2 star, in our calculations we did not take into account the LT precession.
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4. Conclusions

In this paper, we evaluate parameters of the Extended Gravity theories with Schwarzschild
precession of the S2 star orbit. We assume that the orbital precession of S2 star is equal to
the 0◦.18 per orbital period, i.e., the corresponding GR estimate. It is a reasonable approxi-
mation since the observed precession angle is close to this quantity [44]. We evaluate the
parameters of the following extended theories of gravity: Rn, Yukawa, Sanders, Palatini and
non-local gravity. We can conclude that in all studied cases (Rn, Yukawa, Sanders, Palatini
and non-local gravity theories), depending on gravity parameters, we can recover prograde
orbital precession, like in GR. This is one important condition to evaluate parameters of
different modified gravities. Second condition is that value of orbital precession is 0◦.18
per orbital period. Using these two requests we obtained following values of parameters of
the extended theories of gravity:

1. Rn: if we take the conditions that the value of orbital precession is 0◦.18 per orbital
period and that it should be prograde like in GR, then β ≈ −0.0015.

2. Yukawa potential: for δ� 1, the obtained values for Λ are between 21,000 AU and
22,000 AU, while for the δ ∼ 1, the corresponding values are smaller (Λ ' 15,000 AU).

3. Modified Sanders gravity: α is between 0 and 1/3 (vertical asymptote). For α = 0 or
α = 1/3, or if mφ = 0, the Sanders potential is reducing to the Newtonian one.

4. Modified Palatini gravity: φ0 is between −1 (vertical asymptote) and 0. If φ0 = 0, the
Palatini potential is reduced to the Newtonian one.

5. Non-local gravity: rφ is between 0 and 0.0256 AU.
6. For all studied gravity models (described with two parameters) it is not possible to

evaluate the both parameters in a unique way only from conditions that orbital pre-
cession is prograde like in GR, and that the precession angle is 0◦.18 per orbital period.
In that way, one can use the presented results to find one of the parameters of the
studied gravity models, provided that the another one is evaluated in a different way.

If we compare the presented method with our previous studies, it can be seen that
now the approach is different and obtained values for parameters of gravity models are
not the same, but they are the same order of magnitude in both approaches and they are
compatible. In our previous papers we fitted astronomical observations of the S2 star orbit,
which were obtained with relatively large errors, especially in the first stage of observations
(data were collecting for decades). If all orbital parameters are fixed the precision of the
S2 star orbit reconstruction is about 1 mas [18], therefore, an astrometric accuracy must
be much better than this value, at least, for one orbital period of S2 star. In this paper, we
were not fitting observation data, we only assume that the orbital precession of S2 star is
equal to the GR value because recently the GRAVITY Collaboration detected the orbital
precession of the S2 star and showed that it is close to the GR prediction [44]. The Keck
collaboration did not declare yet that it detected the Schwarzschild precession for S2 star.

A modified theory of gravity needs to be constrained at different scales: laboratory
distances, solar systems, galaxies, binary pulsars, galactic clusters and cosmological scales.
Different scales provide constraints at different stringency. The orbit of S2 star is at the
sub-parsec scales (a few thousand AU), so we believe that in order to restrict the remaining
parameters, one should use additional constraints at similar scales, such as solar system
or binary pulsar observations. In our previous papers, we fitted astronomical data of the
S2 star orbit and in this paper we assume that the orbital precession of S2 star is equal to
GR value because the GRAVITY Collaboration detected the orbital precession of the S2
star and showed that it is close to the GR theoretical estimate. We hope that using this
method we can evaluate parameters of alternative models for a gravitational potential at
the Galactic Center.
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The following abbreviations are used in this manuscript:

GR General Relativity
pN post-Newtonian
SMBH Super massive black hole

Note
1 Since dimensions of the S2 star orbit are comparable with the Solar system size and the semi-major axis is around 970 AU, the

pericenter distance is around 120 AU.
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