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Abstract: We calculate the nonzero-temperature correction to the beta equilibrium condition in
nuclear matter under neutron star merger conditions, in the temperature range 1 MeV < T . 5 MeV.
We improve on previous work using a consistent description of nuclear matter based on the IUF
and SFHo relativistic mean field models. This includes using relativistic dispersion relations for
the nucleons, which we show is essential in these models. We find that the nonzero-temperature
correction can be of order 10 to 20 MeV, and plays an important role in the correct calculation of Urca
rates, which can be wrong by factors of 10 or more if it is neglected.

Keywords: nuclear matter; neutron star merger; beta equilibration; weak interaction

1. Introduction

Nuclear matter in neutron stars settles into beta equilibrium, meaning that the proton
fraction is in equilibrium with respect to the weak interactions. In this paper, we will
study the conditions for beta equilibrium in ordinary nuclear matter (where all the baryon
number is contributed by neutrons (n) and protons (p)) in the temperature range 1 MeV .
T . 5 MeV. This regime, which arises in neutron star mergers [1–4], is cool enough so
that neutrinos are not trapped, but warm enough so that there are corrections to the low-
temperature equilibrium condition. It has previously been shown [5] that in this regime
the full beta equilibrium condition is

µn = µp + µe + ∆µ , (1)

where ∆µ is a correction that arises from the violation of detailed balance (neutrino trans-
parency) and the breakdown of the Fermi surface approximation (see Section 2). In nuclear
matter in the temperature regime discussed here, the proton fraction will equilibrate to-
wards the value given by Equation (1). Even if equilibrium is not reached on the timescale
of a merger, one needs to know the correct equilibration condition in order to analyze
phenomena associated with this relaxation process, such as bulk viscosity and neutrino
emission. At low temperatures (T � 1 MeV) ∆µ is negligible, but in the temperature
regime under consideration here it has been estimated to be up to tens of MeV [5]. The
calculation in Ref. [5] went beyond the Fermi surface approximation by performing the
phase space integral for the equilibration rate over the entire momentum space. However,
it used a very crude model of the in-medium nucleons, assigning them their vacuum mass
and assuming that their kinematics remained nonrelativistic at all densities.

In this paper, we improve on the analysis of Ref. [5]. We treat nuclear matter consis-
tently using relativistic mean field models [6,7] with fully relativistic dispersion relations
for the nucleons. We show that this makes a considerable difference to the beta equilibra-
tion rates because in these models the nucleons at the Fermi surface become relativistic
at densities of a few times nuclear saturation density n0. We calculate the direct Urca rate
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using the entire weak-interaction matrix element rather than its nonrelativistic limit, and
evaluate the full phase space integral.

Other authors have evaluated direct Urca phase space integrals in calculations of the
direct Urca rate, the neutrino emissivity, or the neutrino mean free path. Fully relativistic
computations of direct Urca phase space integrals are uncommon in the literature, but
they do appear. Refs. [8–11] calculate the neutrino mean free path using a fully relativistic
formalism, while integrating over the full phase space. Ref. [10] calculates the direct Urca
electron capture rate using a fully relativistic formalism and performs the full phase space
integration. Although these calculations perform the full integration over phase space, they
focus on high temperatures (T & 5 MeV) where neutrinos are trapped and where the direct
Urca threshold is blurred over a wide density range. In this temperature regime, which can
be reached in mergers as well [1,12–14], beta equilibrium is given by

µn + µν = µp + µe , (2)

with µν being the neutrino chemical potential. As discussed in more detail in Section 2,
the neutrino-trapped beta equilibration condition does not require an additional finite-
temperature correction. This paper will examine the phase space integral at lower tempera-
tures where the direct Urca threshold is apparent and a key feature in the physics of beta
equilibration or neutrino emission.

Other works use the relativistic formalism, but assume the nuclear matter is strongly
degenerate (using the Fermi surface approximation, described below), and thus their re-
sults have a sharp direct Urca threshold density [15–17]. Ref. [18] uses the Fermi surface
approximation, but develops a way to incorporate the finite 3-momentum of the neutrino,
slightly blurring the threshold at finite temperature. Some works do the full phase space
integration, but use nonrelativistic approximations for the matrix element and nucleon
dispersion relations [5,19–21]. The vast majority of calculations use nonrelativistic approx-
imations of the matrix element and the nucleon dispersion relations, together with the
Fermi surface approximation [22–34]. All of these calculations are approximations of the
full phase space integration using the fully relativistic formalism. Under certain condi-
tions, the approximations match well with the full calculation, and have the advantage of
being simple.

In Section 3 we introduce the two relativistic mean field models, IUF and SFHo, that
we use. Section 4 describes our calculation of the rate of direct Urca processes, where we
integrate over the entire phase space in order to include contributions from the region that
would be kinematically forbidden in the low-temperature limit. Section 5 describes our
calculation of the modified Urca contribution to the rate, where we use the Fermi surface
approximation since there is no kinematically forbidden region for those processes in the
density range that we consider. Section 6 presents our results, and Section 7 provides
our conclusions.

We work in natural units, where h̄ = c = kB = 1.

2. Beta Equilibration

Beta equilibration in npe− matter is established by the Urca processes [35]. The
modified Urca processes

N + n→ N + p + e− + ν̄ (3)

N + p + e− → N + n + ν,

(here, N represents a “spectator” neutron or proton) operate at all densities in the core of
the neutron star. In uniform npe− matter, the proton-spectator modified Urca process only
operates at densities where xp > 1/65 [25,31], though this condition is only violated (if
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ever) in the inner crust of neutron stars [36] where the matter is not uniform and thus the
calculations in this paper would not apply. The direct Urca processes

n→ p + e− + ν̄ (4)

p + e− → n + ν,

are exponentially suppressed when the temperature is much less than the Fermi energies
and the density is in the range where kFn > kFp + kFe. In nuclear matter, the proton fraction
rises as the density rises above n0 and eventually may reach a “direct Urca threshold”
where kFn = kFp + kFe. Above this threshold density beta equilibration is dominated by
direct Urca, since (when kinematically allowed) it is faster than modified Urca.

In nuclear matter at temperatures greater than, say, 10 MeV, the neutrino mean free
path is short and the nuclear matter system (for example, a protoneutron star) is neutrino-
trapped and has conserved lepton number YL = (ne + nν)/nB. In this case, the Urca
processes (3) and (4) can proceed forward and backward, as the nuclear matter contains a
population of neutrinos (or antineutrinos). In beta equilibrum, the forward and reverse
processes have equal rates (detailed balance), and the beta equilibrium condition is given
by balancing the chemical potentials of the participants in the equilibration reactions [6,37]

µn + µν = µp + µe (ν-trapped). (5)

In cooler nuclear matter, at the temperatures considered in this work, the neutrino
mean free path is comparable to or longer than the system size and therefore neutrinos are
not in thermodynamic equilibrium: they escape from the star. Neutrinos can then occur
in the final state but not the initial state of the Urca processes. Beta equilibrium is still
achieved, but now by a balance of the neutron decay and the electron capture processes.
However, the principle of detailed balance is not applicable because electron capture is not
the time-reverse of neutron decay.

There is then no obvious equilibrium condition that can be written down a priori.
In the limit of low temperature (T � 1 MeV) the Fermi surface approximation becomes
valid: the particles participating in the Urca processes are close to their Fermi surfaces, and
the neutrino carries negligible energy ∼ T. The beta equilibrium condition can then be
obtained by neglecting the neutrino, so that neutron decay and electron capture are just
different time orderings of the same process n↔ p e−, and detailed balance gives

µn = µp + µe (low temperature, ν-transparent). (6)

The same condition on the chemical potentials can be reached by examining the phase
space integrals for the direct Urca neutron decay and electron capture rates, taking the limit
where the neutrino energy and momentum go to zero [38]. At temperatures T & 1 MeV
corrections to the Fermi surface approximation start to become significant, particularly
for the protons whose Fermi energy is in the 10 MeV range. Then one cannot neglect the
finite-temperature correction to (6)

µn = µp + µe + ∆µ (general, ν-transparent). (7)

The correction ∆µ is a function of density and temperature, and its value in beta
equilibrium is found by explicitly calculating the neutron decay and electron capture rates
and adjusting ∆µ so that they balance [5] (see also [39], where a similar calculation was
done in the context of a hot plasma). In this paper, we perform that calculation.

For weak interactions we use the Fermi effective theory, which is an excellent approxi-
mation at nuclear energy scales. The main approximations arise in our treatment of the
strong interaction. To describe nuclear matter and the nucleon excitations we use two
different relativistic mean field models, both consistent with known phenomenology and
chosen to illustrate a plausible range of behaviors. We describe these models in Section 3.
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For the modified Urca process we model the nucleon-nucleon interaction with one-pion
exchange [31,40].

3. Nuclear Matter Models

We will use two different equations of state, IUF [41] and SFHo [42], to calculate the
Urca rates and the nonzero-temperature correction ∆µ. These are both consistent at the 2σ
level with observational constraints on the maximum mass and the radius of neutron stars.

IUF predicts a maximum mass of neutron star to be 1.95M�, and SFHo predicts
2.06M�. Both are consistent with the observed limits, which are:

• Mmax > 2.072+0.067
−0.066 M� from NICER and XMM analysis of PSR J0740+6620 [43];

• Mmax = 1.928+0.017
−0.017 M� from NANOGrav analysis of PSR J1614-2230 [44];

• Mmax = 2.01+0.14
−0.14 M� from pulsar timing analysis of PSR J0348+0432 [45].

For the radius of a star of mass 2.06 M�, SFHo predicts R = 10.3 km, consistent with
R = 12.39+1.30

−0.98 km from NICER and XMM analysis of PSR J0740+6620 [43]. For the radius of
a 1.4 M� neutron star, IUF predicts R = 12.7 km and SFHo predicts R = 11.9 km, consistent
with R = 11.94+0.76

−0.87 km obtained by a combined analysis of X-ray and gravitational wave
measurements of PSR J0740+6620 in Ref. [46].

It is still not determined whether there is a direct Urca threshold or not in nuclear
matter at neutron star densities [47–51], so we choose one equation of state (IUF) with a
threshold at 4.1n0 and one (SFHo) with no threshold, as shown in Figure 1. Our approach
could be applied to any equation of state where the beta process rates can be calculated. As
we will see in Section 6.3, the density dependence of the momentum surplus kFp + kFe− kFn
is an important factor in the behavior of the direct Urca rates at low temperature, but the
density dependence of the nucleon effective masses and Fermi momenta has a noticeable
impact as well.

SFHo

IUF dUIUF-thr.

dU allowed

1 2 3 4 5 6
-100

-80

-60

-40

-20

0

20

density nB/n0

k
F

p
+
k

F
e
-
k

F
n
[M

e
V
]

Direct Urca momentum surplus

Figure 1. Direct Urca momentum surplus kFp + kFe − kFn for IUF and SFHo equations of state at
T = 0 . When the surplus is negative, direct Urca is forbidden. IUF has an upper density threshold
above which direct Urca is allowed; SFHo does not.

The coupling constants for SFHo are shown in Appendix A. Notice that the constants
are taken from the online CompOSE database (https://compose.obspm.fr/, accessed on
27 April 2021), and are different from the values provided in Ref. [42].

A key feature of our calculation is that we use the full relativistic dispersion relations
for the nucleons. In Figures 2 and 3 we illustrate the importance of this in relativistic mean
field theories, where the nucleon effective mass drops rapidly with density. Although the
precipitous drop in the nucleon Dirac effective mass with increasing density is a common
feature in relativistic mean field theories [52,53], we note that in two recent treatments
that go beyond the mean field approximation, the drop in the effective mass was not as

https://compose.obspm.fr/
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dramatic [54,55]. We plot the Dirac effective mass [56] and the Fermi momentum of the
neutrons and protons in these two EoSs. Although around nuclear saturation density n0,
the nucleons are nonrelativistic, as the density rises to several times n0, the nucleon effective
mass has dropped significantly below its vacuum value. Neutrons on their Fermi surface
become relativistic at 2− 3n0, while protons on their Fermi surface remain nonrelativistic
until the density rises to 3− 6n0. In Figures 4 and 5, we show that using a nonrelativistic
approximation would lead to Urca rates that are incorrect by about an order of magnitude,
although for direct Urca neutron decay the discrepancy can be many orders of magnitude.
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Neutron effective mass and Fermi momentum

Figure 2. Density dependence of the neutron’s (Dirac) effective mass and Fermi momentum for the
IUF and SFHo EoSs, showing that neutrons at the Fermi surface become relativistic at densities above
2 to 3 n0.
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Figure 3. Density dependence of the proton’s (Dirac) effective mass and Fermi momentum for the
IUF and SFHo EoSs, showing that protons at the Fermi surface become relativistic starting at densities
between 3− 6n0.
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Figure 4. Direct Urca neutron decay rate calculated using relativistic, nonrelativistic and the vacuum
dispersion relations at T = 3 MeV for IUF.

Relativistic (n)

Non-Relativistic (n)
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modified Urca rate (IUF), T=3MeV

Figure 5. Modified Urca rate calculated using relativistic and nonrelativistic dispersion relations at
T = 3 MeV for IUF. (n) stands for neutron-spectator modified Urca and (p) stands for proton-spectator
modified Urca.

4. Beta Equilibration via Direct Urca

We calculate the in-medium direct Urca rates for neutron decay and electron capture
using the relativistic weak-interaction matrix element and the relativistic dispersion re-
lations for the nucleons and electrons. We also integrate over the full momentum phase
space, not relying on the Fermi surface approximation. This is important because in the
“dUrca-forbidden” density range the Fermi surface approximation would say the direct
Urca rate is zero, so nonzero-temperature corrections are the leading contribution. These
become significant (comparable to modified Urca) at the temperatures of interest here,
T & 1 MeV [5].



Universe 2021, 7, 399 7 of 28

In relativistic mean field models the dispersion relations for the neutrons, protons,
and electrons are

En =
√

m∗n2 + k2
n︸ ︷︷ ︸

E∗n

+Un

Ep =
√

m∗p2 + k2
p︸ ︷︷ ︸

E∗p

+Up (8)

Ee =
√

m2
e + k2

e

Eν = kν ,

where the nucleons’ effective mass m∗i and energy shift Ui depend on density and tempera-
ture [10]. The unshifted energies E∗i arise in the phase space normalization and the Dirac
traces [9].

4.1. Neutron Decay

The direct Urca neutron decay rate is [31,57]

Γnd =

∫
d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3 fn(1− fp)(1− fe)

∑
|M|2

(2E∗n)(2E∗p)(2Ee)(2Eν)

(2π)4δ(4)(kn − kp − ke − kν). (9)

For a more detailed explanation of this expression and its evaluation, see Appendix B.
As described there, it can be reduced to 5-dimensional momentum integral (43)

Γnd =
G2

16π6

∫ ∞

0
dkn

∫ kmax
p

0
dkp

∫ kmax
e

0
dkek2

nk2
pk2

e fn(1− fp)(1− fe)Θ(Eν)∫ zmax
p

zmin
p

dzp

∫ z+e

z−e
dze

4EνMφ0√
S2 − (E2

ν − R)2
, (10)

where R, S, andMφ0 are defined in Equations (24)–(26). The antineutrino energy Eν is
given by

Eν = En − Ep − Ee, (11)

which becomes a function of the remaining integration variables, kn, kp, and ke. Please note
that there are Fermi-Dirac distributions for the neutrons, proton vacancies, and electron
vacancies, but none for the neutrinos because we work in the neutrino-transparent regime
where neutrinos escape from the star and do not form a Fermi gas. We evaluate this integral
numerically using a Monte-Carlo algorithm.

4.2. Electron Capture

The expression for the electron capture rate can be obtained from that for neutron
decay (A10) by making the following changes: (1) the energy-momentum delta function
now corresponds to the process p e− → n ν, and (2) there are Fermi-Dirac distributions for
proton and electron particles, and neutron vacancies,

Γec =

∫
d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3 (1− fn) fp fe

∑
|M|2

(2E∗n)(2E∗p)(2Ee)(2Eν)

(2π)4δ(4)(kp + ke − kn − kν). (12)
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Evaluating this expression takes us through the same steps as for neutron decay,
except that the neutrino energy is now

Eν = Ep + Ee − En, (13)

and the requirement that this be positive leads to different limits on the momentum integrals,

Γec =
G2

16π6

∫ ∞

0
dkn

∫ ∞

0
dkp

∫ ∞

0
dkek2

nk2
pk2

e fn(1− fp)(1− fe)Θ(Eν)∫ zmax
p

zmin
p

dzp

∫ z+e

z−e
dze

4EνMφ0√
S2 − (E2

ν − R)2
. (14)

5. Beta Equilibration via Modified Urca

We calculate the rate of the modified Urca processes (3) using the relativistic dispersion
relations of the nucleons in the phase space integration, but unlike the direct Urca rate we
do not perform the phase space integration exactly, which would be difficult because the
involvement of the spectator particles would lead to an 11-dimensional numerical integral
over momentum. Instead we use the Fermi surface approximation. This is reasonable
for modified Urca as long as the Fermi surfaces are not too thermally blurred, i.e. when
the temperature is below the lowest Fermi kinetic energy, which is that of the proton.
The modified Urca processes do not have a density threshold in the range of densities we
consider here (see Section 2), so the Fermi surface approximation never predicts a vanishing
rate. In this work we explore the temperature range 1 MeV < T < 5 MeV, and the proton’s
Fermi kinetic energy is at least 10 MeV in the density range n > n0, so the Fermi surface
approximation is justified for modified Urca rates. The first paragraph of Section 4 contains
a discussion of why we need to go beyond the Fermi surface approximation in our direct
Urca rate calculations. For the matrix elements that arise in modified Urca (44) and (59),
we use the standard results (see, e.g., [31]), which were calculated assuming nonrelativistic
nucleons. It has been pointed out [58] that the standard calculation of the modified Urca
matrix element [40], which we use here, is based on a very crude approximation for
the propagator of the internal off-shell nucleon. A more accurate treatment would lead
to different modified Urca rates and shift our predicted values of ∆µ; we defer such a
calculation to future work.

5.1. Neutron Decay

Modified Urca can proceed with either a neutron spectator or a proton spectator. From
Fermi’s Golden rule, we have the rate for the neutron decay process

ΓmU,nd =

∫
d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3
d3kN1

(2π)3
d3kN2

(2π)3

(
s

∑
|M|2

26E∗nE∗pEeEνE∗N1
E∗N2

)
(2π)4δ(4)(kn + kN1 − kp − ke − kν − kN2) fn fN1(1− fp)(1− fe)(1− fN2). (15)

Here, s = 1/2 because of the identical particles appearing in the process. N1 and N2
are neutrons in the n-spectator process and for the p-spectator neutron decay process, N1
and N2 are protons. The matrix element is different for each process see Equations (44) and
(59). The detailed derivation of the modified Urca rates is in Appendix C. For n-spectator
neutron decay, allowing the system to deviate from the low-temperature beta equilibrium
condition (6) by amount

ξ =
µn − µp − µe

T
, (16)
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we obtain

ΓmU,nd(n)(ξ) =
7

64π9 G2g2
A f 4

(E∗Fn)
3E∗Fp

m4
π

k4
FnkFp

(k2
Fn + m2

π)2
F(ξ)T7θn, (17)

where f ≈ 1 is the N-π coupling [31],

F(ξ) ≡− (ξ4 + 10π2ξ2 + 9π4)Li3(−eξ) + 12(ξ3 + 5π2ξ)Li4(−eξ)

− 24(3ξ2 + 5π2)Li5(−eξ) + 240ξLi6(−eξ)− 360Li7(−eξ), (18)

and

θn ≡


1 kFn > kFp + kFe

1− 3
8
(kFp + kFe − kFn)

2

kFpkFe
kFn < kFp + kFe.

(19)

The functions Lin(x) are polylogarithms of order n [59]. For p-spectator neutron decay,
we obtain

ΓmU,nd(p)(ξ) =
1

64π9 G2g2
A f 4

(E∗Fp)
3E∗Fn

m4
π

(kFn − kFp)
4kFn

((kFn − kFp)2 + m2
π)2

F(ξ)T7θp, (20)

where

θp ≡



0 if kFn > 3kFp + kFe

(3kFp + kFe − kFn)
2

kFnkFe
if

kFn > 3kFp − kFe
kFn < 3kFp + kFe

4
3kFp − kFn

kFn
if

3kFp − kFe > kFn
kFn > kFp + kFe(

2 + 3
2kFp − kFn

kFe
− 3

(kFp − kFe)
2

kFnkFe

)
if kFn < kFp + kFe.

(21)

5.2. Electron Capture

The electron capture modified Urca rate can be obtained in a similar way to neutron
decay, by changing the sign of the neutrino 4-momentum in the energy-momentum delta
function and interchanging the particle and hole Fermi-Dirac factors,

ΓmU,ec =

∫
d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3
d3kN1

(2π)3
d3kN2

(2π)3

(
s

∑
|M|2

26E∗nE∗pEeEνE∗N1
E∗N2

)
(2π)4δ(4)(kp + ke + kN1 − kn − kν − kN2) fp fe fN1(1− fn)(1− fN2). (22)

Through a similar calculation, we find that the modified Urca neutron decay and
electron capture rates in the Fermi surface approximation are related by

ΓmU,ec(n)(ξ) = ΓmU,nd(n)(−ξ), (23)

and

ΓmU,ec(p)(ξ) = ΓmU,nd(p)(−ξ). (24)
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6. Results
6.1. Beta Equilibrium at Nonzero Temperature

Figures 6 and 7 show our final results for the nonzero-temperature correction ∆µ
required to achieve beta equilibrium, for the IUF and SFHo equations of state, respectively.
The key features are

• At low temperatures T . 1 MeV, the Fermi surface approximation is valid and beta
equilibrium is achieved with a negligible correction ∆µ (see Section 2).

• At the temperature rises through the neutrino-transparent regime, the value of ∆µ rises.
• We only provide results for temperatures up to 5 MeV because at temperatures of

around 5 to 10 MeV the neutrino mean free path will become smaller than the star,
invalidating our assumption of neutrino transparency.

• The figures indicate that the nonzero-temperature correction reaches values of 10 to
20 MeV before neutrino trapping sets in.

• The density dependence of ∆µ appears very different for different EoSs. For IUF the
largest values are reached at moderate densities, near the direct Urca threshold. For
SFHo, ∆µ has a minimum at those densities.

In the rest of this section we will explain these features of our results.
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Figure 6. Nonzero-temperature correction ∆µ required for beta equilibrium Equation (7) with the
IUF EoS.
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Figure 7. Nonzero-temperature correction ∆µ required for beta equilibrium Equation (7) with the
SFHo EoS.
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The temperature dependence follows from the breakdown of the Fermi surface ap-
proximation. At T . 1 MeV the Urca processes are dominated by modes close to the Fermi
surfaces of the neutron, protons, and electrons. The energy of the emitted neutrino is of
order T which is negligible, so the direct Urca process is effectively n ↔ p e−, for which
the equilibrium condition is µn = µp + µe, i.e., ∆µ = 0. As the temperature approaches
the Fermi energy of the protons, the Fermi surface approximation breaks down. Modes
far from the proton and electron Fermi surfaces begin to play a role, and the energy of
the emitted neutrino becomes important. The processes that establish beta equilibrium,
n→ p e− ν̄e and p e− → n νe, are not related by time reversal, so the principle of detailed
balance does not apply. This means that even below the direct Urca threshold density,
direct Urca processes can be fast enough and sufficiently different in their rates to require
a correction ∆µ to bring them into balance. As we will explain below, at ∆µ = 0 electron
capture is much less suppressed than neutron decay, requiring a positive value of ∆µ to
decrease the proton fraction and equalize the rates.

The density dependence of the correction ∆µ is more complicated, depending on
specific features of the equations of state. We will discuss this in more detail below.

6.2. Urca Rates

Figure 8 illustrates how, without a nonzero-temperature correction ∆µ (dashed lines),
the neutron decay (nd) and electron capture (ec) rates become very different when the
temperature rises to 3 MeV. For both EoSs, electron capture is significantly faster than
neutron decay, so a positive ∆µ will be required to balance the rates and establish beta
equilibrium (solid lines). This is because a positive ∆µ reduces the proton fraction. The
resultant change in the phase space near the neutron and proton Fermi surfaces enhances
the neutron decay rate and suppresses electron capture, bringing the two processes into
balance with each other.

nd IUF

ec IUF

nd SFHo

ec SFHo

IUF

SFHo

1 2 3 4 5 6
1.×10-16

5.×10-16
1.×10-15

5.×10-15
1.×10-14

5.×10-14

density nB/n0

Γ
[M
eV

4
]

Urca rates at T=3MeV

Figure 8. Urca (direct plus modified) rates for IUF and SFHo EoSs at T = 3 MeV. When ∆µ = 0
(dashed lines) the rates for neutron decay (nd) and electron capture (ec) do not balance. With the
correct choice of ∆µ (Figures 6 and 7) the neutron decay and electron capture rates (solid lines)
become equal, and the system is in beta equilibrium.

For IUF, the mismatch between electron capture and neutron decay is greatest just
below the IUF direct Urca threshold density of 4 n0, which explains why for IUF ∆µ reaches
its highest value there (Figure 6). For SFHo, the mismatch is smallest at that density, which
explains why for SFHo ∆µ reaches a local minimum there (Figure 7).

Figures 9 and 10 give further insight into the density dependence of the rates by
showing the separate contributions from direct and modified Urca.
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Urca rate (IUF), T=3MeV, Δμ=0

Figure 9. Urca rates calculated using the IUF EoS at T = 3 MeV. Because ∆µ = 0 there is a large
mismatch between the direct Urca rates for neutron decay and electron capture. Modified Urca (with
neutron spectator (n) and proton spectator (p)) rates are calculated in the Fermi surface approximation
and therefore match automatically.
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Figure 10. Urca rates calculated using the SFHo EoS at T = 3 MeV. Because ∆µ = 0 there is a
large mismatch between the direct Urca rates for neutron decay and electron capture. Modified
Urca (with neutron spectator (n) and proton spectator (p)) rates are calculated in the Fermi surface
approximation and therefore match automatically.

For IUF (Figure 9), in the dUrca-forbidden density range one would expect that the
direct Urca rates should be exponentially suppressed at low temperature, leaving the
modified Urca rates which automatically balance when ∆µ = 0 because they are calculated
in the Fermi surface approximation. We see that the direct Urca neutron capture rate is
indeed strongly suppressed, but the direct Urca electron capture rate only shows a slight
reduction below the threshold, and remains well above the modified Urca rates. This
mismatch is what leads to a positive correction ∆µ in beta equilibrium. We will explain
below why this is the case.

For SFHo (Figure 10), the analysis is similar: neutron decay is heavily suppressed
as expected in the dUrca-forbidden region (up to infinite density), but electron capture is
much less suppressed. In the middle density range (3 to 5 n0) where mUrca is dominant
there is no need for a correction, since the mUrca rates balance at ∆µ = 0. However, at
lower or higher densities the direct Urca electron capture rate becomes large enough to
dominate, so a positive ∆µ will be required to pull it down and establish equilibrium
between neutron decay and electron capture.

In the next subsection we analyze the imbalance between electron capture and neutron
decay rates in the dUrca-forbidden density range. This imbalance is the reason a nonzero
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∆µ is required in beta equilibrium. We can understand the difference in the rates, and
their density dependence, by looking at which parts of the phase space dominate the rate
integrals. This is largely determined by the Fermi-Dirac factors in the rate integrals, since
the matrix element depends only weakly on the magnitudes of the momenta.

6.3. Direct Urca Suppression Factors

The density and temperature dependence of the direct Urca rates is dominated by the
Fermi-Dirac factors. Below the dUrca threshold density, at zero temperature all direct Urca
processes would be forbidden, but at nonzero temperature the Fermi surfaces are blurred,
so there is some nonzero occupation of particle and hole states in regions of momentum
space where the direct Urca process is kinematically allowed. The rate is governed by the
Fermi-Dirac suppression factors for those momentum states.

At each density and temperature we search for the combination of momenta that is
least suppressed, i.e., that maximizes the product of Fermi-Dirac factors in the rate integral
while maintaining energy-momentum conservation. The magnitude of that product of
Fermi-Dirac factors tells us how suppressed the whole process will be, at that density
and temperature.

Below the direct Urca threshold density, considering particles near their Fermi sur-
faces, the neutron has a momentum larger than the sum of proton and electron momenta,
even if the proton and electron are coaligned (see Figure 1). In this regime, the direct Urca
kinematics will become essentially one-dimensional, as this is how the electron and proton
momenta can come closest to adding up to the large neutron momentum. We take the neu-
tron momentum to be positive, so a negative momentum indicates motion in the direction
opposite of the neutron. For momentum conservation to hold, the electron and proton will
have to be away from their Fermi surfaces. In the assumption of one-dimensional kine-
matics, we determine the optimal momenta {kopt

n , kopt
p , kopt

e , kopt
ν } as follows. For neutron

decay, we maximize fn(1− fp)(1− fe) and for electron capture we maximize (1− fn) fp fe.
Energy and (one-dimensional) momentum conservation impose two constraints on the
momentum, leaving two independent momenta over which to maximize.

The results of this maximization exercise are shown for the IUF EoS in Figures 11 and 12,
and for SFHo in Figures 13 and 14.
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Figure 11. The optimal kinematics for neutron decay for the IUF EoS. Left panel: the least suppressed kinematic arrange-
ment, showing the energy distance γ of each particle from its Fermi surface. Right panel: the Fermi-Dirac suppression factor,
e−|γe |/Te−|γn |Θ(γn)/T which is dominated by the difficulty of finding an electron hole at energy γe below its Fermi surface.
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Figure 12. The optimal kinematics for electron capture for the IUF EoS. Left panel: the least suppressed kinematic
arrangement, showing the energy distance γ of each particle from its Fermi surface. Right panel: the overall Fermi-Dirac
suppression factor, e−|γp |/Te−|γe |Θ(γe)/Te−|γn |Θ(−γn)/T , which is dominated by the difficulty of finding a proton at energy
γp above its Fermi surface.

n

p

e

ν

1 2 3 4 5 6
-300

-200

-100

0

100

200

300

density nB/n0

en
er
gy
ex
ce
ss

γ
[M
eV

]

T=3 MeV; SFHo; nd

1 2 3 4 5 6

10-9

10-6

0.001

density nB/n0

S
up
pr
es
si
on
F
ac
to
r

T=3 MeV; SFHo; nd

Figure 13. The optimal kinematics for neutron decay at T = 3 MeV for SFHo, obtained by maximizing the Fermi-Dirac
products. The suppression factor, e−|γe |/Te−|γn |Θ(γn)/T is dominated by the difficulty of finding an electron hole below its
Fermi surface.

The left panels show how far from their Fermi surfaces the particles are in the least
Fermi-Dirac-suppressed kinematic configuration. For each particle i we show γi ≡ Eopt

i −
EFi, which is the extra energy the particle with its optimal momentum has relative to its
Fermi energy. The curves only exist in the dUrca-forbidden region, which for IUF ends
at 4.1 n0. (In the dUrca-allowed region all particles can be on their Fermi surfaces, so the
curves would be trivially zero and are not shown). The right panels show the maximum
value of the Fermi-Dirac factor, which gives the overall suppression of the process.

6.3.1. Neutron Decay

Direct Urca neutron decay is suppressed because the neutrons at their Fermi surface
have just enough energy to make a proton and electron near their Fermi surfaces (this is a
consequence of the beta equilibrium condition (6)), but too much momentum (Figure 1).
The process can still proceed (with an exponential suppression factor) by exploiting the
thermal blurring of the Fermi surfaces. Figure 11 (IUF) and Figure 13 (SFHo) show that
the best option is to create a proton at energy γp above its Fermi surface and an electron
at energy γe = −γp which is below its Fermi surface. The co-linear proton and electron
now have more momentum then when they were both on their Fermi surfaces because the
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proton’s momentum rises rapidly with γp because the proton is less relativistic, whereas
the electron’s momentum drops more slowly as γe becomes more negative, because the
electron is ultrarelativistic. The creation of the proton incurs no Fermi-Dirac suppression
because states above the Fermi surface are mostly empty, but the creation of the electron
is suppressed by a Fermi-Dirac factor of e−|γe |/T reflecting the scarcity of electron holes
available to take such an electron. The net suppression of the rate, e−|γe |/Te−|γn |Θ(γn)/T ,
is shown in the right panels of Figure 11 (IUF) and Figure 13 (SFHo). For IUF we see the
strongest suppression at around 2 n0, which explains the density dependence of the IUF
neutron decay rate shown in Figure 9. For SFHo, since the dUrca-forbidden region extends
up to infinite density, and the momentum deficit remains large across the density range
surveyed, we see stronger suppression that does not relent at the upper end of the density
range, explaining the almost total suppression seen in Figure 10.
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Figure 14. The optimal kinematics for electron capture at T = 3 MeV for SFHo, obtained by maximizing the Fermi-Dirac
products. The suppression factor, e−|γp |/Te−|γe |Θ(γe)/Te−|γn |Θ(−γn)/T , is dominated by the difficulty of finding a proton
above its Fermi surface.

We can understand the density dependence of γp in terms of the one-dimensional
model within which the maximization was performed.

We assume that as seen in Figure 11 (IUF) and Figure 13 (SFHo), the neutron remains
on its Fermi surface, and the neutrino takes negligible energy/momentum, since lack
of momentum to build the final state is the main obstacle. Conservation of energy and
momentum then tells us that

kFn = kopt
p + kopt

e , (25)

EFn = Ep(k
opt
p ) + kopt

e . (26)

Using the dispersion relations (8) we can solve for kopt
p and kopt

e and, after using that
EFn = EFp + EFe (since we have assumed ∆µ = 0), we find

kopt
p − kFp =

∆k(2E∗Fp − ∆k)

2(E∗Fp + kFp − kFn)
, (27)

where ∆k ≡ kFn − kFp − kFe is the momentum deficit (we plotted the surplus −∆k in
Figure 1). From this analysis, we learn that the density dependence of γp, and therefore
the rate, not only depends on the momentum deficit ∆k, but on the relative behavior of the
neutron and proton Fermi momenta and their effective masses.

Although the momentum deficit ∆k in IUF monotonically shrinks with density, γp
shows a slight increase at low densities due to the fast drop of the effective proton mass
m∗p (see Figure 3). This fast decrease counter-intuitively leads E∗Fp to drop with density,
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while the real Fermi energy, which includes the nuclear mean field, Up, rises with density
as expected. Closer to the threshold density, the momentum deficit dominates the behavior
of γp and the rate, so that γp goes to zero at the threshold as ∆k approaches zero, leading
to kopt

p = kFp as expected.
For the SFHo EoS, the direct Urca momentum deficit is only varying weakly with

density (see again Figure 1). Although the momentum deficit is slowly falling, γp continues
to rise with density as shown in Figure 13. This is due to the neutron Fermi momentum
which rises fast enough that the denominator in Equation (27) decreases by more than
a factor of five in the studied density range while the momentum surplus stays nearly
constant in comparison.

6.3.2. Electron Capture

In the dUrca-forbidden density range, using the one-dimensional kinematics described
above, we find that the optimal kinematics for electron capture has a proton above its
Fermi surface and an electron close to its Fermi surface combining to make a neutron
slightly below its Fermi surface and a neutrino. The Fermi-Dirac suppression factor is
e−γp/Te−|γe |Θ(γe)/Te−|γn |Θ(−γn)/T , reflecting the scarcity of protons and electrons above
their Fermi surfaces, and of neutron holes below the neutron Fermi surface.

Figures 12 and 14 show the corresponding energy excesses γi and Fermi-Dirac suppres-
sion factors. In the right panels we see that in the dUrca-forbidden region, electron capture
is somewhat suppressed but not nearly as suppressed as neutron decay. This is because, as
we explain below, it is able to proceed using a proton that is much closer to its Fermi surface
than is possible for neutron decay, and there is correspondingly less Fermi-Dirac suppres-
sion (compare the left panels of Figure 11 vs. Figure 12, and Figure 13 vs. Figure 14).

The special feature of electron capture is that there is a very efficient way to exploit the
thermal blurring of the Fermi surfaces. Given a momentum shortfall ∆k ≡ kFn − kFp − kFe,
we can start with a proton whose momentum is less than ∆k above the Fermi surface. The
rarity of finding such a proton leads to a Fermi-Dirac suppression factor of e−|γp |/T . This
proton captures an electron near its Fermi surface with momentum parallel to the proton’s.
At this point their combined momentum is not enough to make a neutron on its Fermi
surface, and there is excess energy. However, we can use that excess energy to create,
along with a neutron on its Fermi surface, a neutrino whose momentum partly cancels the
neutron momentum, so the combined momentum of the proton and electron is enough to
create that final state.

Because of the “help” from the neutrino, the proton does not need to be as far above
its Fermi surface as the proton in neutron decay, so the electron capture rate is suppressed
by a smaller Fermi-Dirac factor,

The density dependence of the suppression factors (right panels of Figure 12 for IUF
and Figure 14 for SFHo) explain the density dependence of the direct Urca electron capture
rates shown in Figures 9 and 10.

To understand the density dependence of γp, we can perform a similar analysis as
for neutron decay. We now assume neutron and electron to be on their Fermi surfaces, as
shown in Figure 12 (IUF) and Figure 14 (SFHo), which is not as good as an assumption
compared to the neutron decay analysis, but still helps us to gain insight into the behavior
of the rates. Energy-momentum conservation again allows us to deduce that

kFn = kopt
p + kFe + kopt

ν , (28)

EFn + kopt
ν = Ep(k

opt
p ) + kopt

Fe , (29)

which leads, following the same procedure as in the neutron decay case, to

kopt
p − kFp =

∆k(∆k + 2E∗Fp)

2(E∗Fp + kFn − kFp)
. (30)
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For IUF at low densities, we can neglect the proton Fermi momentum compared to the
effective mass. The behavior of γp is then again dominated by the effective proton mass,
whose rapid decrease overcomes the rising neutron Fermi momentum at low densities.
This pushes the proton further away from its Fermi surface at low densities, before the
momentum surplus dominates the behavior of γp as the threshold is approached. As for
neutron decay, ∆k = 0 at the threshold, therefore the rate is again dominated by particles
on their respective Fermi surfaces.

For SFHo, the momentum surplus is becoming smaller from n0 to 3 n0 while the
combination of the effective masses and Fermi momenta in (30) varies slowly with density.
This allows the behavior of the momentum surplus ∆k to dominate the behavior of γp at
low densities, so both are increasing and therefore pushing the proton further away from its
Fermi surface initially. At higher densities, SFHo is seemingly approaching asymptotically
a direct Urca threshold. Both the momentum surplus and the Fermi momenta and effective
masses in Equation (30) are pushing the ideal proton momentum back closer to the Fermi
surface. Overall, the behavior of the electron capture rate in SFHo can therefore largely be
explained by the density dependence of the momentum surplus.

6.4. Nonrelativistic Rate vs. Relativistic Rate

In Section 3 we emphasized that as the density rises above about 2n0 relativistic
corrections become important in the nucleon dispersion relations. In this section, we
illustrate the importance of relativistic corrections in the neutron decay rate.

6.4.1. Direct Urca Neutron Decay

Figure 4 shows various approximations to the direct Urca neutron decay rate at
T = 3 MeV (with ∆µ = 0). We show the rate calculated with fully relativistic dispersion
relations, with the nonrelativistic dispersion relation

EN = m∗N +
p2

N
2m∗N

+ UN , (31)

and with the “vacuum dispersion relation” used in [5],

EN = meff,N +
p2

N
2mN

, (32)

where mN = 940 MeV, and meff,N is chosen such that EN(pF) = µN .
For the nonrelativistic curves, we use a corresponding nonrelativistic approximation

of the rescaled matrix element (12),

M = 1 + 3g2
A + (1− g2

A)
~pe · ~pν

EeEν
, (33)

see Refs. [5,31], and the derivation in Appendix C of [60]. We see that relativistic corrections
make an enormous difference to the rate. The nonrelativistic approximation is reasonably
accurate at low density (where the nucleons are indeed nonrelativistic) but overestimates
the rate by up to eight orders of magnitude (at T = 3 MeV) between 2 n0 and the direct
Urca threshold at 4.1 n0. Due to the breakdown of the nonrelativistic approximation, the
direct Urca threshold condition is incorrectly already fulfilled below two times saturation
density, which explains the steep increase of the nonrelativistic rate around this density.
For a detailed discussion of the density dependence of the relativistic rate, see Section 6.3.

The thermal blurring of the Fermi energy, which is proportional to the temperature
T, translates to a blurring in momentum space of order T/vF, where vF is the Fermi
velocity. In the correct relativistic treatment, vF has an upper bound of 1, whereas for the
nonrelativistic dispersion relation, the Fermi velocity grows without a limit. This leads to a
suppression of the nonrelativistic rate at higher densities which partially cancels the effects
of the earlier threshold.
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The “vacuum dispersion relation” gives a rate that is one to eight orders of magnitude
too large (at T = 3 MeV), and is less suppressed at higher densities since the corresponding
Fermi velocity stays comparatively small in the plotted density range.

6.4.2. Modified Urca Neutron Decay

Figure 5 shows the importance of using relativistic dispersion relations in calculating
modified Urca. The rates are calculated for the IUF equation of state in the Fermi surface
approximation at T = 3 MeV. The relativistic rate is about 1 to 2 orders of magnitude
smaller than the nonrelativistic rate. The modified Urca rates are not sensitive to the
direct Urca threshold because of the spectator providing extra momenta. Much of the
difference between the nonrelativistic calculation and the relativistic calculation comes
from the prefactors, as shown in Section 5 and Equations (57), (58), (60) and (61). The
relativistic rates are suppressed by

∏
i m∗i /E∗i , where i is the index for each of the nucleons

participating the interaction. Notice that the proton-spectator modified Urca rate is always
less than the neutron-spectator rate because the proton Fermi surface, and its accompanying
phase space, is smaller.

7. Conclusions

We have investigated the conditions for beta equilibrium in nuclear matter in neutron
stars, focusing on the temperature range where the material is cool enough so that neutrinos
escape (T . 5 MeV) but warm enough so that nonzero-temperature corrections to the Fermi
surface approximation play an important role (T & 1 MeV).

Previous work [5] found that a nonzero-temperature correction ∆µ to the traditional
beta equilibrium condition (Equation (7)) was required to balance the rate of neutron
decay against the rate of electron capture. We have improved on that calculation using a
consistent description of nuclear matter, based on two relativistic mean field models, IUF
and SFHo.

We find that when using relativistic mean field models it is important to use the full
relativistic dispersion relations of the nucleons. In these theories the effective masses drop
quickly with density, so the neutrons become relativistic at densities of 2 to 3 n0. Using
nonrelativistic nucleon dispersion relations can make the modified Urca rates wrong by an
order of magnitude and the direct Urca rates wrong by many orders of magnitude.

Our results for the nonzero-temperature correction ∆µ are shown in Figures 6 and 7.
We find that it rises with the temperature, and can be of order 10 to 20 MeV for temperatures
in the 3 to 5 MeV range. The density dependence is quite different for the two EoSs that we
studied, and we showed in detail how it depends on specific properties of the EoS.

We find that the nonzero-temperature correction plays an important role in the correct
calculation of Urca rates. Using the naive (low-temperature) beta equilibrium condition
µn = µp + µe at T = 3 MeV would yield electron capture rates that are too large by an
order of magnitude, and neutron decay rates that are too small by an order of magnitude
(Figure 8). This would significantly affect calculations of neutrino emissivity in the cooler
regions of a neutron star merger, and therefore the estimated energy loss due to neutrinos.
Currently used neutrino leakage schemes (e.g., Ref. [61] and references therein), which
often treat the temperature range T . 5 MeV as neutrino free streaming, need to be adapted
to the corrected beta equilibrium. Additionally, the bulk viscosity of nuclear matter [62]
depends on the rate of the Urca process which restores the system to beta equilibrium.
The improved calculation of the Urca rates presented here will modify the temperatures
and densities at which bulk viscosity reaches its maximum strength. Using the correct
beta equilibrium condition also affects the equation of state: a recent study estimated its
impact to be at the 5% level [63], and it would be interesting to evaluate the impact by
performing a merger simulation using an EoS that incorporates the finite-temperature
correction described in this paper.
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Appendix A. The SFHo Relativistic Mean Field Theory

The Lagrangian for the SFHo relativistic mean field model is given in Refs. [42,64]
and reads

L = LN + LM + Ll , (A1)

LN = ψ̄(iγµ∂µ −mN + gσσ− gωγµωµ −
gρ

2
τ · ρµγµ)ψ , (A2)

with bold symbols being vectors in iso-space, τ being the iso-spin generators, and

LM =
1
2

∂µσ∂µσ− 1
2

m2
σσ2 − bM

3
(gσσ)3 − c

4
(gσσ)4 − 1

4
ωµνωµν +

1
2

m2
ωωµωµ

+
ζ

24
g4

ω(ωµωµ)2 − 1
4

Bµν · Bµν +
1
2

m2
ρρµ · ρ

µ +
ξ

24
g4

ρ(ρµ · ρ
µ)2

+ g2
ρ

[ 6∑
i=1

aiσ
i +

3∑
j=1

bj(ωµωµ)j
]
ρµ · ρ

µ , (A3)

where

ωµν = ∂µων − ∂νωµ , (A4)

Bµν = ∂µρν − ∂νρµ . (A5)

The lepton contribution

Ll = ψ̄e
(
iγµ∂µ −me

)
ψe , (A6)

consists of free electrons with a mass of me = 0.511 MeV. In our calculations we use the
values of the masses and couplings given in the online CompOSE database. These are
listed in Table A1. In the table,

cσ = gσ/mσ , (A7)

cω = gω/mω , (A8)

cρ = gρ/mρ . (A9)
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Table A1. SFHo parameter values taken from CompOSE (https://compose.obspm.fr/eos/34,
accessed on 27 April 2021). The last three masses are taken from [42].

Quantity Unit Value

cσ fm 3.1791606374
cω fm 2.2752188529
cρ fm 2.4062374629
b 7.3536466626× 10−3

c −3.8202821956× 10−3

ζ −1.6155896062× 10−3

ξ 4.1286242877× 10−3

a1 fm−1 −1.9308602647× 10−1

a2 5.6150318121× 10−1

a3 fm 2.8617603774× 10−1

a4 fm2 2.7717729776
a5 fm3 1.2307286924
a6 fm4 6.1480060734× 10−1

b1 5.5118461115
b2 fm2 −1.8007283681
b3 fm4 4.2610479708× 102

mσ fm−1 2.3689528914
mω fm−1 3.9655047020
mρ fm−1 3.8666788766

mn MeV 939.565346
mp MeV 938.272013
M MeV 939

Appendix B. Direct Urca Neutron Decay Rate

From Fermi’s Golden rule, we have the rate Equation (9) [31,57]

Γnd =

∫
d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3

∑
|M|2

(2E∗n)(2E∗p)(2Ee)(2Eν)
(2π)4δ(4)(kn − kp − ke − kν)

fn(1− fp)(1− fe) . (A10)

There is no neutrino Fermi-Dirac factor because we assume the medium is neutrino-
transparent, i.e., neutrinos escape the star. The spin-summed matrix element is [11]∑

|M|2 =32G2[(g2
A − 1)m∗nm∗p(ke · kν) + (gA − 1)2(ke · kn)(kp · kν)

+ (1 + gA)
2(kp · ke)(kn · kν)] , (A11)

where G = GF cos θc, GF = 1.166× 10−11 MeV−2 is the Fermi constant and θc = 13.04◦ is
the Cabbibo angle. As they originate from spin summations (see Appendix B of [9]), the
4-vector dot products in the matrix element (A11) are kµ = (E∗, k).

It is convenient to define the rescaled dimensionless matrix element

M≡
∑
|M|2

32G2E∗nE∗pEeEν
(12)

=
(g2

A−1)m∗nm∗p(ke ·kν) + (gA−1)2(ke ·kn)(kp ·kν) + (1+gA)
2(kp ·ke)(kn ·kν)

E∗nE∗pEeEν
.

In the nonrelativistic limit, since gA ≈ 1,M≈ (1 + 3g2
A) ∼ 4 [11,20,31,34,65,66].

https://compose.obspm.fr/eos/34
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The neutron decay rate can now be written

Γnd =
2G2

(2π)8

∫
d3knd3kpd3ked3kνM δ(4)(kn − kp − ke − kν) fn(1− fp)(1− fe) . (13)

The 12-dimensional integral can be reduced to a 5-dimensional integral as follows.
Integrating over the 3-momentum conservation delta functions reduces the integral to
9 dimensions (compare (E.1) in Ref. [60])

Γnd =
2G2

(2π)8

∫
d3knd3kpd3keMδ(En − Ep − Ee − |~kn −~kp −~ke|) fn(1− fp)(1− fe) . (14)

The remaining delta function imposes energy conservation in the creation of the
neutrino: Eν = |~kν|, so the argument of the delta function is

g(φ) ≡ Eν − |~kn −~kp −~ke| , (15)

Eν ≡ En − Ep − Ee .

Each momentum integral can be written in polar co-ordinates as d3k = k2dkdzdφ
where z = cos θ. Setting up the following coordinate system (see Appendix E in [60])

~kn = kn(0, 0, 1) , (16)

~kp = kp(
√

1− z2
p, 0, zp) , (17)

~ke = ke(
√

1− z2
e cosφ,

√
1− z2

e sinφ, ze) , (18)

allows us to integrate over zn and φn yielding a factor of 4π and over φp yielding a factor
of 2π, which eliminates three angular integrals, so that (compare (E.5) in [60])

Γnd =
G2

16π6

∫ ∞

0
dkn

∫ kmax
p

0
dkp

∫ kmax
e

0
dkek2

nk2
pk2

e fn(1− fp)(1− fe) I(kn, kp, ke) , (19)

where

I(kn, kp, ke) ≡ Θ(Eν)

∫ 1

−1
dzp

∫ 1

−1
dze

∫ 2π

0
dφM δ(g(φ)) . (20)

Please note that for simplicity we label the electron azimuthal angle as φ (rather than
φe). The factor of Θ(Eν) restricts the integral to the region of momentum space where
the neutrino energy Eν(kn, kp, ke) is positive, which is a requirement for the emission of a
neutrino. This condition leads to the upper limits on the proton and electron momenta. If
we perform the integrals in the order shown in (19) then the electron momentum integral
is the inner integral, so it is performed for known values of kn and kp, so the constraint
Eν > 0 corresponds to Ee < En − Ep. Similarly, the kp integral is performed for a known
value of kn, so its range is constrained by requiring that there be enough energy to create
an electron (of unknown momentum) and a neutrino, Ep < En −me. This leads to upper
limits on the proton and electron integral,

kmax
p = Θ(En −Up −mp −me)

√
(En −Up −me)2 −m2

p , (21)

kmax
e = Θ(En − Ep −me)

√
(En − Ep)2 −m2

e . (22)
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In the delta function in Equation (20),

g(φ) = Eν −
√

R + S cos φ , (23)

where R ≡ k2
n + k2

p + k2
e − 2knkeze − 2knkpzp + 2kpkezpze , (24)

S ≡ 2kpke

√
1− z2

p

√
1− z2

e . (25)

Since g(φ) depends on φ only via cos φ there will be either zero or two solutions to
g(φ) = 0, so

I(kn, kp, ke) = 2 Θ(Eν)

∫ 1

−1
dzp

∫ 1

−1
dze Θ

(
S− |E2

ν − R|
) Mφ0

|g′(φ0)|
, (26)

whereMφ0 is the dimensionless rescaled matrix element (12) evaluated at φ0, which can
be either of the two solutions of g(φ) = 0,

cos φ0 =
E2

ν − R
S

. (27)

It does not matter which solution we use for φ0 because g is a function of cos φ and
M depends only on cos φ and sin2φ, so the integrand has the same value for both the
solutions. The theta function Θ(S− |E2

ν − R|) imposes the condition that there are two
solutions (rather than none), by limiting the integral to the domain where −1 < cos φ0 < 1.

We now use (23) and (27) to evaluate the integrand in (26).
First, the Jacobian of the delta function is

|g′(φ0)| =
√

S2 − (E2
ν − R)2

2Eν
. (28)

Using (28) in (26),

I = 4EνΘ(Eν)

∫ 1

−1
dzp

∫ 1

−1
dze

Θ
(
S− |E2

ν − R|
)√

S2 − (E2
ν − R)2

Mφ0 . (29)

Secondly, substituting (27) in to (A11) gives the matrix element

Mφ0 =
1
2
(gA − 1)2F1 + (gA + 1)2F2 + (g2

A − 1)F3

E∗nE∗pEeEν
, (30)

where

F1 =
(

k2
n + k2

e − k2
p − 2E∗pEν − E2

ν − 2knkeze

)(
knkeze − EeE∗n

)
, (31)

F2 =
(

k2
n + k2

p + k2
e + 2E∗pEe − E2

ν − 2kn(kpzp + keze)
)(

E∗nEν + kn(kpzp + keze − kn)
)

, (32)

F3 = m∗2n

(
k2

e − k2
n − k2

p + 2EeEν + E2
ν + 2knkpzp

)
. (33)
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Limits of Angular Integration

To speed up the numerical evaluation of (29) we implement the theta function as
limits on the range of integration over zp and ze. The condition S > |E2

ν − R| can be written
(using (24), (25)) as

|a + bze| < c
√

1− z2
e , (34)

where a ≡ q2 − k2
n − k2

p − k2
e + 2knkpzp , (35)

b ≡ 2ke(kn − kpzp) , (36)

c ≡ 2kekp

√
1− z2

p . (37)

The inequality (34) is obeyed for z−e < ze < z+e where

z±e =
−ab± c

√
c2 + b2 − a2

b2 + c2 . (38)

Please note that if the roots are real then they are always within the physical range
ze ∈ [−1, 1]. We can therefore put bounds on zp by requiring that (38) has real roots,

c2 + b2 > a2

⇒ 2kpEν > |E2
ν + k2

e − k2
n − k2

p + 2knkpzp| . (39)

This means that z−p < zp < z+p , where

z±p =
k2

n + k2
p − k2

e − E2
ν ± 2keEν

2knkp
. (40)

In this case, however, these bounds are not necessarily within the physical range
zp ∈ [−1, 1], so the true bounds on the zp integral are

[zmin
p , zmax

p ] = [z+p , z−p ] ∩ [−1, 1] . (41)

We can now write the angular integral as

I = 4EνΘ(Eν)

∫ zmax
p

zmin
p

dzp

∫ z+e

z−e
dze

Mφ0√
S2 − (E2

ν − R)2
. (42)

Using this in (19) we obtain

Γnd =
G2

16π6

∫ ∞

0
dkn

∫ kmax
p

0
dkp

∫ kmax
e

0
dke k2

nk2
pk2

e fn(1− fp)(1− fe)

Θ(Eν)

∫ zmax
p

zmin
p

dzp

∫ z+e

z−e
dze

4EνMφ0√
S2 − (E2

ν − R)2
. (43)

The second line corresponds to the I integral (20), (42). It is natural to group a factor of
Eν withMφ0 to cancel the factor of Eν in the denominator (30) which can cause numerical
problems at the edge of the kinematically allowed momentum range where Eν → 0.

The neutron decay rate can therefore be computed as a 5-dimensional momentum
integral (43), obtaining the integration ranges from (21), (22), (38) and (41), the matrix
element from (30), and the Jacobian (square root denominator) from (24), (25).
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C. Modified Urca Neutron Decay Rate

The matrix element is (4.16) in [31,60]

(
s

∑
|Mn|2

26E∗nE∗pEeEνE∗N1
E∗N2

)
= 42G2 f 4

m4
π

g2
A

E2
e

k4
Fn

(k2
Fn + m2

π)2
, (44)

where f ≈ 1 is the N-π coupling and s = 1/2 for the identical particles. The conventional
way of doing the integral is to divide the integral into an energy integral and an angular
integral (termed “phase space decomposition” [35])∫

dk3
ndk3

pdk3
e dk3

νdk3
N1

dk3
N2

=

∫
dkndkpdkedkνdkN1 dkN2 k2

nk2
pk2

e k2
νk2

N1
k2

N2

×
∫

dΩndΩpdΩedΩνdΩN1 dΩN2 . (45)

We use relativistic dispersion relations for nucleons

EN =
√

k2 + m∗2
N + UN , (46)

where U is the mean field contribution to the energy. We define E∗ ≡
√

k2 + m∗2 , then
dE∗ = kdk/E∗. We use ultrarelativistic dispersion relations for electron and neutrino,

E = k , (47)

then dE = dk (the electron mass me = 0.511 MeV is negligible compared to its momentum).
Therefore, we can convert the momentum integral to an energy integral, and the rate
integral becomes

ΓmU,nd(n) =
42G2g2

A f 4

(2π)14m4
π

∫
dΩndΩpdΩedΩνdΩN1 dΩN2

× δ(3)(~kn +~kN1 −~kp −~ke −~kN2)k
2
nk2

pk2
e k2

νk2
N1

k2
N2

1
E2

e

k4
Fn

(k2
Fn + m2

π)2

×
∫

dE∗ndE∗pdEedEνdE∗N1
dE∗N2

E∗n
kn

E∗p
kp

E∗N1

kN1

E∗N2

kN2

× δ(En + EN1 − Ep − Ee − Eν − EN2) fn fN1(1− fp)(1− fe)(1− fN2) . (48)

Notice that it is most common to set ~kν = 0 in the momentum conserving delta
function but keep Eν in the energy delta function.

In the Fermi surface approximation, we set all momenta to Fermi momenta and we
will have Ee = ke = kFe, kν = Eν.

Now, the rate integral becomes

ΓmU,nd(n) =
42G2g2

A f 4

(2π)14m4
π

k2
Fnk2

Fpk2
Fek2

FN1
k2

FN2

1
k2

Fe

k4
Fn

(k2
Fn + m2

π)2
E∗n
kFn

E∗p
kFp

E∗FN1

kFN2

E∗N2

kN2

×
∫

dΩndΩpdΩedΩνdΩN1 dΩN2 δ(3)(~kn +~kN1 −~kp −~ke −~kN2)

×
∫

dE∗ndE∗pdEedEνdE∗N1
dE∗N2

E2
ν fn fN1(1− fp)(1− fe)(1− fN2)

× δ(E∗n + E∗N1
− E∗p − Ee − Eν − E∗N2

+ (Un −Up)) . (49)
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For the energy integral, we do a change of variable,

x =
E∗ − µ∗

T
, (50)

then, dx = (1/T)dE∗ and µ = 0 for the neutrino. For the integral bounds, we have∫ +∞

m∗
dE∗ = T

∫ +∞

(m∗−µ∗)/T
dx = T

∫ +∞

−(µ∗−m∗)/T
dx ≈ T

∫ +∞

−∞
dx , (51)

where the approximation is valid because µ∗ � T. For neutrino, µ = 0 and m = 0, so the
lower bound is 0. Then, the energy integral, which we denote as I, becomes

I ≡
∫

dE∗ndE∗pdEedEνdE∗N1
dE∗N2

E2
ν fn fN1(1− fp)(1− fe)(1− fN2)

× δ(E∗n + E∗N1
− E∗p − Ee − Eν − E∗N2

+ (Un −Up))

=T7
∫

dxndxpdxedxνdxN1 dxN2 x2
ν f (xn) f (xN1)(1− f (xp))(1− f (xe))

× (1− f (xN2))δ(xn + xN1 − xp − xe − xν − xN2 +
µn − µp − µe

T
)

=T7
∫ +∞

0
dxνx2

ν

∫ +∞

−∞
dxndxpdxedxN1 dxN2 f (xn) f (xN1) f (−xp) f (−xe)

× f (−xN2)δ(xn + xN1 − xp − xe − xν − xN2 +
µn − µp − µe

T
)

=T7
∫ +∞

0
dxνx2

ν

∫ +∞

−∞
dxndxpdxedxN1 dxN2 f (xn) f (xN1) f (xp) f (xe) f (xN2)

× δ(xn + xN1 + xp + xe − xν + xN2 +
µn − µp − µe

T
) . (52)

One can use Mathematica to obtain an analytical expression,

I =
1
12

F(ξ) , (53)

where ξ ≡ (µn − µp − µe)/T , and

F(ξ) ≡− (ξ4 + 10π2ξ2 + 9π4)Li3(−eξ) + 12(ξ3 + 5π2ξ)Li4(−eξ)

− 24(3ξ2 + 5π2)Li5(−eξ) + 240ξLi6(−eξ)− 360Li7(−eξ) . (54)

For the angular integral, we can look up [25], which calculated the n-dimensional
angular integral for n=3,4,5, and obtain

A =
32π(2π)4

k3
n

θn , (55)

where

θn =


1 kFn > kFp + kFe

1− 3
8
(kFp + kFe − kFn)

2

kFpkFe
kFn < kFp + kFe .

(56)

Therefore, the neutron decay modified Urca rate with n-spectator under Fermi surface
approximation is

ΓmU,nd(n)(ξ) =
7

64π9 G2g2
A f 4

(E∗Fn)
3E∗Fp

m4
π

k4
FnkFp

(k2
Fn + m2

π)2
F(ξ)T7θn . (57)
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Similarly, we can calculate the electron capture mU rate with n-spectator

ΓmU,ec(n)(ξ) = ΓmU,nd(n)(−ξ) . (58)

For p-spectator processes, the matrix element is

(
s

∑
|Mp|2

26E∗nE∗pEeEνE∗N1
E∗N2

)
= 48G2 f 4

m4
π

g2
A

E2
e

(kFn − kFp)
4

((kFn − kFp)2 + m2
π)2

, (59)

where we still have s = 1/2. Then we have the mU rates with p-spectator

ΓmU,nd(p)(ξ) =
1

64π9 G2g2
A f 4

(E∗Fp)
3E∗Fn

m4
π

(kFn − kFp)
4kFn

((kFn − kFp)2 + m2
π)2

F(ξ)T7θp , (60)

ΓmU,ec(p)(ξ) = ΓmU,nd(p)(−ξ) , (61)

where

θp =



0 kFn > 3kFp + kFe
(3kFp + kFe − kFn)

2

kFnkFe
3kFp + kFe > kFn > 3kFp − kFe

4(3kFp − kFn)

kFn
3kFp − kFe > kFn > kFp + kFe

2 +
3(2kFp − kFn)

kFe
− 3(kFn − kFe)

2

kFnkFe
kFn < kFp + kFe .

(62)
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