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Abstract: We developed an X-ray detector using 36 arrays, each consisting of a 64-pixellated yttrium
oxyorthosilicate (YSO) scintillation crystal and a 64-channel multi-anode photomultiplier tube. The X-
ray detector was designed to detect X-rays with energies lower than 10 keV, primarily with the
aim of localizing gamma-ray bursts (GRBs). YSO crystals have no intrinsic background, which is
advantageous for increasing low-energy sensitivity. The fabricated detector was integrated into
UBAT, the payload of the Ultra-Fast Flash Observatory (UFFO)/Lomonosov for GRB observation.
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The UFFO was successfully operated in space in a low-Earth orbit. In this paper, we present the
responses of the X-ray detector of the UBAT engineering model identical to the flight model, using
241Am and 55Fe radioactive sources and an Amptek X-ray tube. We found that the X-ray detector can
measure energies lower than 5 keV. As such, we expect YSO crystals to be good candidates for the
X-ray detector materials for future GRB missions.

Keywords: gamma-ray burst; YSO; UBAT; UFFO

1. Introduction

Gamma-ray bursts (GRBs) are known to be the most luminous explosions and could
serve as signposts throughout the distant universe right up to the post-dark age. GRBs emit
not only high-energy photons but also span nine orders of magnitude in photon energy,
which provides a prime opportunity for synoptic observations. Owing to their association
with gravitational waves and possibly with ultra-high-energy particles, GRBs are also
believed to be powerful tools for multi-messenger astrophysics [1,2].

GRBs have been detected at a redshift of z > 6 [3,4]. Perspective research on the most
luminous sources in the sky is expected to explore the early universe of redshifts beyond
z = 6 [5], whereas supernovae SN 1a have been observed up to z = 2.26 [6].

As a leading observatory for the discovery of high-energy transients since 2004 [7],
Swift found the first GRBs at z = 6, 7, 8, and 9. The Swift observatory pinpointed the locations
of short-GRB afterglows [8] and identified nearby GRBs with and without supernovae [9].
The Fermi gamma-ray telescope [10], launched in 2008 with an unrivaled spectral range,
provides new data on gamma-ray emissions from GRBs. Other space missions for the obser-
vation of GRBs are INTEGRAL [11], AGILE [12], Suzaku [13], MAXI/ISS [14], the Interplan-
etary Network (IPN) [15,16] satellites, and the recent but short-lived BDRG/Lomonosov [17]
and UFFO/Lomonosov [18].

If forthcoming missions are to realize a deeper understanding of GRBs, there is a need
not only for large number of GRBs, but also for those with high z-values. For example,
the detection of ~1000 GRBs/year is necessary for selecting 50 and 5 GRBs at z > 10 and
20, respectively. Thus, a mission would have to have a lifetime of at least five years if
it were to provide answers to questions related to the early universe [19,20]. Future ex-
periments are expected to increase the detection area and/or volume of X-rays and the
aperture of UV/optical/IR telescopes, as well as improve the photometric, temporal, and
spectral sensitivities.

There has been an attempt to improve temporal and spectral sensitivities through
the use of a fast-slewing optical telescope and a low-energy X-ray-sensitive telescope.
The Slewing Mirror Telescope (SMT) aboard the Lomonosov spacecraft operated successfully
in space [18,21] and required approximately <2 s to target a GRB source for follow-up
observations following a trigger from X-rays [22]. In the following, we briefly describe
the X-ray detector on the Lomonosov spacecraft and present the dynamic range of its
energy response.

2. UFFO/Lomonosov for Observation of GRBs

The Ultra-Fast Flash Observatory (UFFO) is a new concept in space telescopes for
measuring the early photons from a GRB down to sub-second timescales. After detecting
X/gamma rays from a GRB, the main idea is to quickly target it with a UV/optical telescope
through a slewing mirror. This was proposed in 2009 [23]. The first mission of the UFFO
project UFFO/Lomonosov [18,21] was developed and fabricated onboard the Lomonosov
satellite, which was launched on 28 April 2016 [24]. After the launch, calibration of the
satellite and payloads, including the UFFO/Lomonosov, was carried out for approximately
seven months, but unfortunately, the operation was ended before any GRB data could be
acquired because of a power supply failure in the satellite.
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UFFO/Lomonosov consists of two telescopes: a UFFO Burst Alert and Trigger telescope
(UBAT) [25] and an SMT [26,27]. The UBAT is an X-ray trigger telescope, and the SMT is a
UV/optical telescope, as shown in Figure 1. The UBAT has a wide field of view (FOV) of
90◦ × 90◦. It is responsible for the localization of GRBs through the detection of X-rays and
the provision of a trigger to the SMT for rapid follow-up optical/UV observation. The SMT
only moves the slewing mirror once it has been triggered by the UBAT, and can start the
UV/optical observation within 2 s.
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Figure 1. The UFFO/Lomonosov flight model. It consists of an SMT and a UBAT. The housing, slewing
mirror (red cap), telescope (black cylinder), and electronics of the SMT are shown.

As shown at the top of the UBAT in Figure 1, the UBAT is equipped with a coded mask
covering the X-ray sky with a wide FOV of 1.8 sr. Its localization accuracy is ±5 arcmin
at more than 7σ. The specifications of the UBAT are summarized in Table 1. Details are
described in previous report [25].

Table 1. Specifications of the UFFO Burst Alert and Trigger telescope (UBAT).

UBAT Parameter Value

Aperture coded mask, random pattern, about 45% open

Field of view 1.8 sr (partially coded)

Pointing accuracy 10 arcmin for ≥7σ

Detector element 64-pixellated YSO crystal + MAPMT

Number of pixels 2304 pixels (48 × 48)

Detector area (effective area) 191.1 cm2 (165.5 cm2)

Detector thickness 3 mm

Detector energy range <5–200 keV

Detection efficiency 95.90% at 30–50 keV

3. X-ray Detector of UBAT
3.1. YSO Scntillation Crystals for X-ray Detection

The UBAT detector consists of 36 cesium-doped yttrium oxyorthosilicate (YSO,
Y2SiO5:0.04% Ce) scintillation crystal arrays. Each array is pixelated by 64 channels and
read out by a multi-anode photomultiplier tube (MAPMT) and associated electronics.
There is a total of 2304 pixels or channels. We chose to use a YSO crystal for the conversion
of X-rays to UVs because it offers many advantages that make it suitable for our experi-
ments. First, there is no intrinsic background. This increases the possibility of detecting
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low-energy X-rays. Next, it has a high light yield of 9.2–10 photons/keV, suitable for UBAT,
which has to localize a GRB with only a small number of photons. It also has a fast decay
time of ~35 ns [28], which is appropriate for the readout electronics of our analog–digital
conversion. In addition, it has good radiation-hard properties [29,30], allowing for at least
three years of space operation, as well as mechanical robustness, such as no cleavage planes
and non-hygroscopicity.

The size of one crystal pixel is 2.68 × 2.68 × 3 mm3. Five sides of the crystal (all except
the one that meets the bottom) were covered with a 200 µm dielectric reflector. The reflector
on the sides adjacent to other pixels reduces crosstalk by preventing the movement of
photons to neighboring pixels, and the reflector on the top side prevents photon loss by
total internal reflection. The total detection area of the UBAT is 191.1 cm2, whereas the
effective area is 165.5 cm2 which corresponds to the total area of the YSO crystals. Figure 2
shows the integrated flight model of the UBAT detector.
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Figure 2. UBAT detector. A rendering of an integrated UBAT detector (top left) and the integrated
flight model of a UBAT detector (top right). Bottom part of a UBAT detector. A high-voltage board
and a digital board are assembled in the detector structure. One FPCB is connected to the digital
board (bottom left). Integrated UBAT detector top and bottom part. The nine analog boards are
connected to the digital board and the high-voltage supply board, respectively (bottom right).

3.2. MAPMTs for Electric Signals

UV scintillation lights produced in a YSO crystal array enter a MAPMT (R11265-03-M64)
that was developed by RIKEN in collaboration with Hamamatsu Photonics K.K for the
JEM-EUSO space experiment [31]. The MAPMT also has 8 × 8 pixels, with each pixel
size 2.88 × 2.88 mm2. There are no gaps between the pixels. Each MAPMT can be readily
assembled underneath a YSO crystal array, affixed with a space-qualified optical glue.
The window material of the MAPMT is UV-enhanced glass with a thickness of 0.8 mm and
a spectral response range of 185–650 nm. Light passing through the window is converted
to photoelectrons in an ultra-bialkali photocathode with a spectral response range of
300–650 nm and a maximum quantum efficiency of 43% at a wavelength of 400 nm [32].
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3.3. Electronics

The UBAT has analog, digital, and high-voltage supply electronics. Each uses space-
qualified components and passed all space environment tests. The UBAT includes nine
analog boards. One analog board is connected to four MAPMTs and contains four Spatial
Photomultiplier Array Counting and Integrating Chips (SPACIROCs), an Application-
Specific Integrated Circuit (ASIC) [33], and two high-voltage dividers. One ASIC was
paired with one MAPMT with 64 channels. The analog boards perform photon counting
and energy measurements through a charge-to-time conversion. Each ASIC acquires data
every 2.5 µs, and the double pulse resolution is 50 ns. It also sets parameter values reaching
900 bits, including photon counting and energy measurement thresholds, gain, and channel
masking. The thresholds for photon counting and energy measurement can be changed
for each MAPMT, whereas the gain adjustment and channel masking are pixel by pixel.
These values were pre-programmed but can also be modified by commands sent from
the ground.

The UBAT has one digital board, and the main components are two field programmable
gate arrays (FPGAs), a static random-access memory (SRAM), and a NOR flash memory.
It receives analog signals from analog electronics, converts them into digital values via
8-bit ADCs, and then performs data processing on one FPGA and trigger calculations
on the other. Energy is measured by summing eight adjacent channels each with 8-bit
data, whereas so-called rate trigger calculations use the total number of photons and
therefore only require 1-bit data for each channel. In the case of a positive rate trigger, the
imaging of the coded mask pattern starts immediately. Raw data are stored in the SRAM.
The NOR flash memory holds the ASIC parameter setting values. In addition, the digital
board interfaces with the data acquisition system and the power distribution system of the
UFFO/Lomonosov. It also monitors the housekeeping parameters, including the voltage,
current, and temperature of the UBAT components.

The high-voltage electronic supplies the approximately 1000 V required to drive the
MAPMTs. It employs nine DC–DC converters to provide an output voltage of 500–1200 V
with a gain of 102. The nine high output voltages are routed to nine analog boards each
with four MAPMTs. The default input voltage of the MAPMT is approximately 1000 V and
can be adjusted in 100 V increments by sending a command.

4. Measurement of Energies with YSO and MAPMT

In addition to the flight model (FM) described above, we have an identical set of
UBATs on the ground called the engineering model (EM). When the UBAT FM acquires
data in space, it is stored in the SRAM of the digital board and transferred to the satellite
through a bus interface. For the report below on the energy response to UBAT, we used
the UBAT EM and a standalone data acquisition system that saved data stored in SRAM
directly to a laptop using a National Instruments (NI) device.

Figure 3 shows the measurement of energy using an Amptek X-ray tube source [25].
The exposure time for each dataset was 200 s. We identified energy resolutions of 109.80± 3.38%,
73.59 ± 5.34%, and 53.05 ± 2.37% at energies of 8.7, 13.4, and 26 keV, respectively. The en-
ergy resolution is defined as ∆E

E [%] = FWHM
E × 100. Note that X-ray tubes produce a

wide range of energies, including the continuous spectrum of bremsstrahlung X-rays and
characteristic lines of X-rays emanating from the target. These scatters from the target
degrade the energy resolution of the detector.
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Figure 3. Energy measurements of a UBAT in terms of ADC counts using the Amptek X-ray tube
with an Au target. Voltages applied to the tube were 10, 15, and 30 kV for energies of 8.7, 13.4, and
26 keV, respectively. In addition, for energies of 13.4 keV and 26 keV, an Mo filter with a thickness of
0.025 mm and a Cu filter with a thickness of 0.3 mm were used, respectively.

Figure 4 shows the measurement setup in which a radioactive source (yellow circle)
with a collimator was placed on top of a YSO crystal (silver). The green board is an analog
board. The collimator is made of lead and has a hole approximately 1 mm in diameter,
which covers an entire YSO crystal module such that the X-rays only enter the pixel that
measures the energy. We used an 241Am source with peaks at 18 and 60 keV, and an 55Fe
source with a peak at 5.9 keV.
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Figure 4. Setup for X-ray energy measurement. The top-right corner of the left-hand figure shows a
radioactive source (circle) placed on top of one of two YSO scintillation crystals (silver), the MAPMTs,
and an analog board below. The right-hand figure is a schematic side-view drawing of the setup with
a lead collimator between the X-ray source and the YSO scintillation crystal.

Figures 5 and 6 show the measured energy spectrum in the pixel for the 241Am and
55Fe X-ray sources, respectively. The exposure time for one frame was 1 ms, and each data
point was acquired for 70 s. Using a conversion factor of 1.837 keV per ADC count, we
obtained energy resolutions of 87.59 ± 12.67%, 85.32 ± 3.42%, and 29.38 ± 2.49% at 5.9,
18, and 60 keV, respectively. The linearity of the ADC measurement with respect to the
incident energy is plotted in Figure 7 as a function of the energy. The function ∆E

E can be
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expressed as a power law
(

a E−b
)

, and the values of a and b were found to be 287.95 and
0.519, respectively, which are consistent with measurements at high energies [34].
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represents the fit of the Gaussian plus the straight line.



Universe 2021, 7, 396 8 of 12Universe 2021, 7, x FOR PEER REVIEW 8 of 12 
 

 

 

Figure 7. Linearity between energy and ADC counts. Conversion factor is 1.837 keV per ADC count. 

5. Detection Threshold for the Observation of GRBs 

The aim of the UBAT is the localization of GRBs, which depends not only on the flux 

of the GRBs, but also on the background, which consists primarily of the cosmic X-ray 

background (CXB). The typical GRB spectrum is well described by the Band function [36] 

or by the Comptonized model (CPL, exponential cutoff power law) [37]. We adopted the 

CPL model for a typical long GRB for the fluence spectrum, that is, the time-integrated 

spectrum over the entire duration of the burst. Such a spectrum was derived using the 

Fermi GBM Burst Catalog (FERMIGBRST) [38] in [39]. For the differential photon flux NE 

in photons cm−2 s−1 keV−1 it holds:  

𝑁𝐸 = 𝐴 (
𝐸

𝐸𝑝𝑖𝑣
)

𝛼

𝑒𝑥𝑝 [−
(𝛼 + 2)𝐸

𝐸𝑝𝑒𝑎𝑘
] (1) 

where Epeak is the peak energy; A is a normalization constant; Epiv is the pivot energy, which 

is typically maintained at 100 keV; α is the spectral index; and E is in keV. The values for 

the typical long GRB are A = 8.9 × 10−3 photons cm−2 s−1 keV−1, Epeak = 183 keV, and α = −0.96 

[39]. Figure 8 shows the differential photon flux for a typical long GRB, where the function 

NE is multiplied by a factor of 0.5, which approximately corresponds to the fraction of 

photons blocked by the UBAT’s coded mask. 

The cosmic X-ray background is well described by two power laws in the range of 2 

keV–2 MeV [40]. For an overview of the different background components in low-Earth 

orbit, see [39]. Figure 8 shows the CXB spectrum multiplied by the FOV of the UBAT, 

which was 1.85 sr, and by a factor of 0.5, taking into account the blockage by the coded 

mask. At low energies, the CXB differential photon flux asymptotically approached 

NCXB~E−1.32. 
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This result shows that the YSO crystal provided a dynamic range of X-ray energies
down to a few keV. The thickness of the crystal used in the UBAT was 3 mm, which allowed
us to measure up to 200 keV with an efficiency of >70% [35]. By increasing the thickness of
the crystal, the upper bound of the energy measurement could be readily extended to MeV.
Therefore, the YSO crystal is a promising detector material that could be utilized in future
missions for the observation of GRBs.

5. Detection Threshold for the Observation of GRBs

The aim of the UBAT is the localization of GRBs, which depends not only on the flux
of the GRBs, but also on the background, which consists primarily of the cosmic X-ray
background (CXB). The typical GRB spectrum is well described by the Band function [36]
or by the Comptonized model (CPL, exponential cutoff power law) [37]. We adopted the
CPL model for a typical long GRB for the fluence spectrum, that is, the time-integrated
spectrum over the entire duration of the burst. Such a spectrum was derived using the
Fermi GBM Burst Catalog (FERMIGBRST) [38] in [39]. For the differential photon flux NE
in photons cm−2 s−1 keV−1 it holds:

NE = A

(
E

Epiv

)α

exp

[
− (α + 2)E

Epeak

]
(1)

where Epeak is the peak energy; A is a normalization constant; Epiv is the pivot energy, which
is typically maintained at 100 keV; α is the spectral index; and E is in keV. The values for
the typical long GRB are A = 8.9 × 10−3 photons cm−2 s−1 keV−1, Epeak = 183 keV, and
α = −0.96 [39]. Figure 8 shows the differential photon flux for a typical long GRB, where
the function NE is multiplied by a factor of 0.5, which approximately corresponds to the
fraction of photons blocked by the UBAT’s coded mask.

The cosmic X-ray background is well described by two power laws in the range of
2 keV–2 MeV [40]. For an overview of the different background components in low-Earth
orbit, see [39]. Figure 8 shows the CXB spectrum multiplied by the FOV of the UBAT, which
was 1.85 sr, and by a factor of 0.5, taking into account the blockage by the coded mask.
At low energies, the CXB differential photon flux asymptotically approached NCXB~E−1.32.
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Figure 8. Differential photon flux of a typical long GRB (fluence spectrum) and CXB as a function of
X-ray energy. Energy limits Elow and Ehigh, which are 5 and 200 keV here, respectively, define the
dynamic range of the detector. The fluxes are multiplied by a factor of 0.5, which approximately
corresponds to the fraction of photons blocked by the UBAT’s coded mask. The CXB flux is also
multiplied by the detector’s FOV of 1.85 sr.

Figure 9 shows how the detected integrated photon rates from the GRB and CXB
changed with the low-energy threshold of the detector, Elow, for a fixed Ehigh value of
200 keV. For an energy range of 5–200 keV, the photon detection rate expected from UBAT
would be 1.2 photons cm−2 s−1 from a GRB and 6.4 photons cm−2 s−1 from the cosmic X-
ray background. This estimate of the background is in a good agreement with the measured
rate in space from the UBAT, which was 4.5 photons cm−2 s−1. This smaller count rate may
have been due to the absorption of low-energy X-rays by the Kapton tape on top of the
coded mask and the black Tedlar that wrapped the crystal to block UV/optical light.

Lowering the detector’s energy threshold does not provide a significant gain in the
GRB detection, because the GRB spectrum has a power-law slope of −0.96 but CXB has
a power-law slope of −1.32. Thus, the slope of signal-to-noise ratio (SNR) will have
a power of −0.36. Note that SNR =

√
Adettc

NGRB√NCXB
where Adet is the detector area

and tc is the photon collection time. This shows that a larger detector area offers the
advantage of a shorter collection time. A sizable increase in the SNR provides so-called
rate trigger followed by image processing of the mask pattern for the localization of GRBs,
as implemented in the UBAT trigger algorithm. In Figure 9, we show the SNR of the UBAT
for the rate trigger for a detector area of 165.5 cm2 and assuming a photon collection time of
1 s. As shown in the figure, the UBAT rate trigger increased with a lower energy threshold
Elow. Here, we assumed that the prompt GRB spectrum could be extrapolated to a few keV.
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Figure 9. Integral photon flux of typical long GRB (fluence spectrum) and CXB as a function of the
low-energy threshold, with Ehigh fixed to 200 keV. The right-hand y-axis shows the SNR value of the
UBAT assuming a photon collection time of 1 s.

The energy spectrum of a GRB at a higher redshift was shifted towards lower energies,
as defined by the formula of Ez=z′ = Ez

1+z
1+z′ . The flux decreased as the object moved

further away. Although it is a simple assumption, we only considered the shift in energy
due to the cosmological redshift. In practice, GRBs exhibit a wide range of luminosities, so
there may be high redshift GRBs with a high luminosity but similar intrinsic energy spectra
so that the observed fluxes are the same. From this point of view, to investigate the full
energy spectrum of GRBs at a high redshift, the dynamic range of the energy measurements
should be as wide as possible, especially for low energy thresholds.

6. Conclusions

The UBAT, a coded mask-based X-ray telescope carried by the UFFO/Lomonosov,
employs a YSO scintillation crystal for the detection of X-rays. It was applied for the first
time to space experiments and was shown to operate successfully in space. We found from
the results of energy measurements on the engineering model of UBAT that a YSO crystal
can detect energies of <5 keV. It provides a wide dynamic range in energy measurements
from a few keV to MeV using a single detector material. This wide dynamic range is
advantageous for GRB observations, especially for energy spectral studies. It also helps in
the localization of high-redshift GRBs, as lowering the low energy threshold improves the
probability of observing GRBs to a power of −0.36 if the GRB’s dimming is not crucial.
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