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Abstract: We determine generalised asymptotic solutions for the inflaton field, the Hubble parameter,
and the equation-of-state parameter valid during the oscillatory phase of reheating for potentials that
close to their global minima behave as even monomial potentials. For the quadratic potential, we
derive a generalised asymptotic expansion for the inflaton with respect to the scale set by inverse
powers of the cosmic time. For the quartic potential, we derive an explicit, two-term generalised
asymptotic solution in terms of Jacobi elliptic functions, with a scale set by inverse powers of the
square root of the cosmic time. In the general case, we find similar two-term solutions where the
leading order term is defined implicitly in terms of the Gauss hypergeometric function. The relation
between the leading terms of the instantaneous equation-of-state parameter and different averaged
values is discussed in the general case. Finally, we discuss the physical significance of the generalised
asymptotic solutions in the oscillatory regime and their matching to the appropriate solutions in the
thermalization regime.

Keywords: inflationary universe; reheating; asymptotic expansions

PACS: 98.80.Cq; 02.30.Mv

1. Introduction

The reheating period in inflationary cosmology is a transition period connecting the
end of inflation to the radiation-dominated era [1–8]. During reheating, the energy of the
inflaton field Φ transforms into relativistic particles. A basic model for the inflaton decay is
given by the system of Equations [1,9,10]

Φ̈ + (3H + Γ)Φ̇ + V′(Φ) = 0, (1)

ρ̇γ = −4ργH + (1 + wΦ)ΓρΦ, (2)

where dots denote derivatives with respect to the cosmic time t, and V(Φ) is the inflaton
potential. The inflaton pressure, energy density, and equation of state (eos) parameter are
given, respectively, by

pΦ =
1
2

Φ̇2 −V(Φ), (3)

ρΦ =
1
2

Φ̇2 + V(Φ), (4)

wΦ = pΦ/ρΦ, (5)
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Γ is the total inflaton decay rate, ργ is energy density of the radiation, and the Hubble
parameter H satisfies the Friedmann–Lemaître Equation

H2 =
1

3MPl
2 (ρΦ + ργ), (6)

with MPl = 2.435× 1018 GeV being the reduced Planck mass.
The model (1)–(2) represents reheating in terms of an effective fluid with total pressure

p = pΦ + pγ and density ρ = ρΦ + ργ. The radiation eos pγ = ργ/3 leads to an eos
parameter during reheating given by [10]

wre =
p
ρ
=

1
2 Φ̇2 −V(Φ) + 1

3 ργ

1
2 Φ̇2 + V(Φ) + ργ

. (7)

The first phase of reheating can be described as an oscillatory phase around the true
minimum of the inflaton potential, wherein the inflaton is not yet effectively coupled to
the radiation fields, and the friction term ΓΦ̇ in Equation (1) can be neglected. During this
period, Equations (1) and (6) reduce to

Φ̈ + 3HΦ̇ + V′(Φ) = 0, (8)

H2 =
1

3MPl
2

(
1
2

Φ̇2 + V(Φ)

)
. (9)

Conversely, in the last phase of reheating, the term 3HΦ̇ can be neglected with respect
to ΓΦ̇ in (1), leading to the simple equation

Φ̈ + ΓΦ̇ + V′(Φ) = 0. (10)

During the oscillatory period, where ργ � ρΦ, wre reduces to wΦ, whereas, at the end
of reheating, ρ ∼ ργ and wre tends to 1/3, i.e., to the onset of the radiation era.

The aim of this paper is to determine generalised asymptotic solutions for the infla-
ton field Φ(t) and derived quantities valid during the oscillatory phase of reheating for
potentials that close to their global minima behave as the even monomial potentials

V(Φ) =
M4

p

(
Φ

MPl

)2p
, (p = 1, 2, . . .). (11)

Recently [8], it has been claimed that the origin of dark matter may reside in the
process of reheating with potentials of the form (11) with p > 1. We also mention that
asymptotic solutions similar to those derived in this paper have been recently used to study
the pre-inflationary (kinetic) and inflationary stages of inflaton models [11,12].

Turner [9], Mukhanov [5], and Rendall [13] emphasised that, during the oscillatory
phase, the model is approximated in some averaged sense by a perfect fluid with a linear
equation of state.

Since these generalised asymptotic solutions will be formally valid as the cosmic
time t tends to infinity, we raise the question of its physical relevance in comparison with
the exact solutions of the full Equations (1), (2) and (6), because the power-law-damped
oscillatory approximation will certainly break down when H ∼ Γ and ργ & ρΦ, and the
oscillations become exponentially damped.

However, typical values of the parameters for, e.g., the nondegenerate case p = 1,
are M = 3× 10−3MPl and Γ = 1.375× 109 GeV, and order-of-magnitude estimates and
numerical calculations confirm that there is a large time interval (several e-folds) in which
the asymptotic solutions in the oscillatory phase will be valid (see, for example, Figure 13
in Ref. [10]).
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If we write

Φ(t) =

√
2
3

MPl ϕ(τ), (12)

where
τ = mt, (13)

and

m =

√
3
p

(
2
3

)p/2 M2

MPl
, (14)

and substitute Equations (9) and (11) into (8), we find that the system is equivalent to the
single non-linear differential equation

ϕ′′(τ) + (ϕ′(τ)2 + ϕ(τ)2p)1/2 ϕ′(τ) + pϕ(τ)2p−1 = 0. (15)

Likewise, the Hubble parameter can be written in terms of ϕ as

H(t) =
m
3

h(τ), (16)

where, for later convenience, we introduced the reduced Hubble parameter

h(τ) = (ϕ′(τ)2 + ϕ(τ)2p)1/2. (17)

Incidentally, by differentiation, the former equation and using (15), we find that

h′(τ) = −ϕ′(τ)2. (18)

As usual, primes denote derivatives of ϕ with respect to its argument.
By introducing polar coordinates in the (ϕ, ϕ′) plane, Mukhanov [5] and Rendall [13]

find the first two terms of the asymptotic expansion of the inflaton field for the quadratic
potential corresponding to p = 1 in Equation (11). (In fact, Equation (24) of Ref. [13]
corrects a mistake in Equation (5.45) of Ref. [5].) For general values of p and using different
averaging procedures, the authors arrive at a common constant leading term for the
averaged value

〈wΦ〉 ∼
p− 1
p + 1

, (t→ ∞), (19)

i.e., to the above-mentioned averaged linear equation of state. Thus, 〈wΦ〉 ∼ 0 for p = 1
and 〈wΦ〉 ∼ 1/3 for p = 2, which correspond to a universe dominated by nonrelativistic
matter and to a universe dominated by radiation, respectively. It was noted by Turner [9]
that the amplitude of the inflaton oscillations decreases as τ1/p. However, for p ≥ 2, we
are not aware of any explicit results for the asymptotic form of the inflaton field.

In Section 2, we reconsider the nondegenerate harmonic potential discussed by
Mukhanov [5] and Rendall [13]. First, we present a method to calculate a generalised
asymptotic expansion for the inflaton field

ϕ(τ) ∼
∞

∑
n=1

ϕn(τ)

τn , (τ → ∞), (20)

where the coefficients ϕn are periodic (and therefore bounded) functions. To calculate these
expansions we substitute the ansatz (20) into Equation (15) and solve recursively the system
of differential equations for the ϕn. The requisite that ϕn be bounded is implemented by
imposing the cancellation of resonant terms in these equations. As a byproduct, we will
show how to calculate asymptotic expansions for derived quantities like H and wΦ. A
formal proof of the existence of the generalised asymptotic expansion (20) is deferred to
Appendix A.
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A straightforward generalisation of the ansatz (20) does not work for potentials (11)
with p > 1 because the resonant terms cannot be systematically eliminated past a certain
order. Therefore, we look for generalised asymptotic formulas with a finite number of
terms [14]. In Section 3, we discuss separately the quartic potential. This is a particularly
relevant potential because the corresponding oscillatory phase of reheating is radiation-
dominated, and the universe would be radiation-dominated since the end of inflation with
an ensuing reduction of the uncertainty on the period were the observable perturbations of
the universe were produced [15].

We obtain explicit asymptotic formulas for the inflaton field and derived quantities in
terms of Jacobi elliptic functions, which have appeared recently in perturbative approaches
to inflationary cosmology due to its relation to Hill’s Equation (16). In Section 4, we give
a general derivation valid for any value of p, where the leading term of the asymptotic
formula for the inflaton field is defined implicitly in terms of Gauss’ hypergeometric
function, whereas the second term can be given explicitly in terms of the first. We also
obtain the leading term of the instantaneous eos parameter wΦ and show how different
averaged values of wΦ coincide with the standard result (19).

In Section 5, we discuss the physical significance of the generalised asymptotic so-
lutions in the oscillatory regime and their matching to the appropriate solutions in the
thermalization regime. In particular, we provide values for the cosmic time that marks the
end of the oscillatory regime and of the Hubble parameter at that time. (The latter turns
out to be independent of the degree 2p of the potential close to its absolute minimum.) We
also illustrate these results with a numerical calculation. The paper ends with some brief
remarks on possible developments and applications of these generalised solutions.

2. The Harmonic Potential

In this section, we consider the nondegenerate harmonic potential discussed by
Turner [9], Mukhanov [5], and Rendall [13], which corresponds to setting p = 1 in
Equation (11), and for which Equation (15) reduces to

ϕ′′(τ) + (ϕ′(τ)2 + ϕ(τ)2)1/2 ϕ′(τ) + ϕ(τ) = 0. (21)

As we mentioned in the introduction, we look for a generalised asymptotic expansion
of ϕ(τ) with respect to the asymptotic sequence τ−n, (n = 1, 2, 3, . . .) (see Section 10.3
of [16]),

ϕ(τ) ∼
∞

∑
n=1

ϕn(τ)

τn , (τ → ∞) (22)

where the ϕn(τ) are periodic functions. Substituting Equation (22) into Equation (21) and
arranging the result by inverse powers of τ (note that all the derivatives of the ϕn(τ)
will also be periodic and, therefore, bounded), we find an infinite system of differential
equations for the ϕn(τ). The first three, which are enough to show the pattern, are:

ϕ′′1 + ϕ1 = 0, (23)

ϕ′′2 + ϕ2 = (2− ((ϕ′1)
2 + ϕ2

1)
1/2)ϕ′1, (24)

ϕ′′3 + ϕ3 = 4ϕ′2 − 2ϕ1 −
ϕ2

1 ϕ′2 − 2ϕ1(ϕ′1)
2 + ϕ2 ϕ1 ϕ′1 + 2(ϕ′1)

2 ϕ′2 − ϕ3
1

((ϕ′1)
2 + ϕ2

1)
1/2

. (25)

Equation (23) is a harmonic oscillator, whose general solution can be written as

ϕ1(τ) = b cos(τ − τ0). (26)

Substituting this solution into the right hand side of Equation (24), we find

ϕ′′2 + ϕ2 = b(b− 2) sin(τ − τ0). (27)
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Note that since the natural frequency of the the homogeneous equation ϕ′′2 + ϕ2 = 0 is
ω = 1, the inhomogeneous term sin(τ− τ0) is resonant, as would be cos(τ− τ0). (Terms in
sin(ω(τ− τ0)) or cos(ω(τ− τ0)) with ω 6= 1 appearing below are not resonant.) Therefore,
the solution for ϕ2(τ) would be unbounded unless we set b = 2 (b = 0 leads to a trivial
solution for ϕ1(τ)), and we have again a harmonic oscillator with general solution

ϕ2(τ) = c cos(τ − τ0) + d sin(τ − τ0). (28)

Substituting this solution into the right-hand side of Equation (25) we find,

ϕ′′3 + ϕ3 = (1 + 2d) cos(τ − τ0)− cos(3(τ − τ0)). (29)

The first term in the right-hand side is again resonant, and the solution for ϕ3(τ)
would be unbounded unless we set d = −1/2. The coefficient c remains free.

This recursive procedure can be easily programmed in a computer: at each stage,
the function ϕn(τ) is substituted into the right-hand side of the equation for ϕn+1(τ) and
resonant terms eliminated. It turns out that all the coefficients depend only on τ0 and c.
The first four coefficients are:

ϕ1(τ) = 2 cos(τ − τ0), (30)

ϕ2(τ) = c cos(τ − τ0)−
1
2

sin(τ − τ0), (31)

ϕ3(τ) =
1
16

(
8c2 + 9

)
cos(τ − τ0)−

c
2

sin(τ − τ0) +
1
8

cos(3(τ − τ0)), (32)

ϕ4(τ) =
c

32

(
8c2 + 27

)
cos(τ − τ0)−

1
192

(
72c2 + 7

)
sin(τ − τ0) (33)

+
3c
16

cos(3(τ − τ0))−
5
32

sin(3(τ − τ0)). (34)

In light of these four coefficients one might conjecture the general form

ϕn(τ) =
n

∑
k=1,k odd

cn,k cos(k(τ − τ0)) + dn,k sin(k(τ − τ0)), (35)

with dn,n = 0 for n odd. (In fact, the most efficient way to calculate the expansion is to use
this ansatz and to equate coefficients of the inverse powers of τ.) A formal proof of the fact
that Equation (35) is indeed true is deferred to Appendix A.

To illustrate the accuracy of this generalised asymptotic solution, in Figure 1 we plot
the results of a numerical integration of the differential Equation (21) with initial conditions
ϕ(1) = 0, ϕ′(1) = 1, as well as the leading term of the asymptotic expansion (22). The
numerical solution quickly tends to the asymptotic solution. The dashed lines are the
envelopes ±2/τ that set the scale for the generalised asymptotic expansion (22). (The
factor 2 is precisely the 2 in Equation (30) for ϕ1(τ).) Other initial conditions lead to similar
plots and are not represented to avoid clutter in the figure.

As a consequence of the main expansion (22), we can calculate the corresponding
expansion for the reduced Hubble parameter (17),

h(τ) ∼
∞

∑
n=1

hn(τ)

τn , (36)

whose first terms are

h1(τ) = 2, (37)

h2(τ) = c + sin(2(τ − τ0)), (38)

h3(τ) =
1
4
(3 + 2c2) +

3
2

cos(2(τ − τ0)) + c sin(2(τ − τ0)). (39)
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Figure 1. Numerical integration (blue line) with initial conditions ϕ(1) = 0, ϕ′(1) = 1 and leading
term of the asymptotic expansion (brown line) for the differential Equation (21) corresponding to the
quadratic potential. The dashed lines are the envelopes ±2/τ that set the scale for the generalised
asymptotic expansion (22).

In Figure 2, we plot three typical asymptotic trajectories on the phase map of the
differential Equation (21). Note that, for sufficiently large times, the approximation of the
representative point to the origin is monotonic: in fact, for the quadratic potential, the
distance of the representative point to the origin of the phase plane is simply the reduced
Hubble constant h(τ) ∼ 2/τ, as shown in Equation (37).

Using Equation (16), we find the expansion for the Hubble parameter

H(t) ∼ 2
3t

+
c + sin(2m(t− t0))

3mt2

+
3 + 2c2 + 4c sin(2m(t− t0)) + 6 cos(2m(t− t0))

12m2t3 · · · .
(40)

Here, m is the value of Equation (14) for p = 1, i.e., m =
√

2M2/MPl, and τ0 = mt0.
In this case, the inflaton potential reduces to

V(Φ) =
1
2

m2Φ2, (41)

i.e., m is the p = 1 inflaton mass. Likewise, using

wΦ(t) = −1− 2
3

Ḣ
H2 , (42)

we find the expansion for the equation of state parameter
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wΦ(t) ∼− cos(2m(t− t0)) +
3 sin(2m(t− t0)) + sin(4m(t− t0))

2mt

+
1

16m2t2

(
4 + 23 cos(2m(t− t0)) + 12c sin(2m(t− t0))

+ 20 cos(4m(t− t0)) + 4c sin(4m(t− t0)) + 3 cos(6m(t− t0))
)
+ · · · .

(43)

Note that these first two terms of the complete asymptotic expansion for wΦ(t) are
independent of c. Note also that the average of the leading term is trivially zero.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

φasy

φ
' a
sy

Figure 2. Three typical asymptotic trajectories on the phase map of the differential Equation (21)
corresponding to the quadratic potential. Note that, for sufficiently large times, the approximation of
the representative point to the origin is monotonic.

3. The Quartic Potential

In this section, we discuss the quartic potential, which corresponds to setting p = 2 in
Equation (15):

ϕ′′(τ) + (ϕ′(τ)2 + ϕ(τ)4)1/2 ϕ′(τ) + 2ϕ(τ)3 = 0. (44)

As was noted by Turner [9] and numerical calculations confirm, the solutions of
this differential equation oscillate with a maximal amplitude that decreases as 1/τ1/2.
Therefore, one might try a generalised asymptotic solution similar to Equation (22) but
with τ replaced by τ1/2 on the right-hand side of that equation. It turns out that resonant
terms cannot be systematically eliminated at fourth order, and, as a consequence, there is
an undetermined constant at third order. Therefore, we look for a two-term generalised
asymptotic solution of the form

ϕ(τ) ∼ ϕ1(σ)

σ
+

ϕ2(σ)

σ2 + o(1/σ2), (45)
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where
σ = τ1/2, (46)

ϕ1(σ) and ϕ2(σ) are periodic functions of σ. By substituting the ansatz (45) into Equation (44),
we find the following equations for ϕ1(σ) and ϕ2(σ), which are the analogues of
Equations (23) and (24):

ϕ′′1 + 8(ϕ1)
3 = 0, (47)

ϕ′′2 + 24(ϕ1)
2 ϕ2 = (3− ((ϕ′1)

2 + 4ϕ4
1)

1/2)ϕ′1. (48)

Equation (47) for ϕ1(σ) is a nonlinear differential equation whose solutions can be
written in terms of the Jacobi elliptic function sn of modulus −1 [17]:

ϕ1(σ) = b sn(2b(σ− σ0)| − 1). (49)

By substituting this solution into Equation (48), we find

ϕ′′2 + 24(ϕ1)
2 ϕ2 = (3− 2b2)ϕ′1. (50)

Incidentally, that the square root ((ϕ′1)
2 + 4ϕ4

1)
1/2 in Equation (48) reduces to the

constant 2b2 is just the law of energy conservation for Equation (47) considered as a
one-dimensional dynamical system. This fact, which also follows from the explicit form
of the solution (49), will be essential in our discussion of the general case in the next
section. Equation (50) is a nonhomogeneous linear differential equation with a non-constant
coefficient. However, it is immediate to find two linearly independent solutions of the
homogenous equation, namely u1(σ) = ϕ′1(σ) and u2(σ) = ϕ1(σ) + σϕ′1(σ), and using the
method of variation of constants, to find the general solution:

ϕ2(σ) = cϕ′1(σ) + d(ϕ1(σ) + σϕ′1(σ)) +
3− 2b2

3

(
σϕ1(σ) +

σ2

2
ϕ′1(σ)

)
. (51)

The condition that ϕ2(σ) be bounded requires that

d = 0, b =

√
3
2

, (52)

and we obtain explicit formulas for the coefficients ϕ1(σ) and ϕ2(σ) in the generalised
asymptotic solution (45),

ϕ1(σ) =

√
3
2

sn(
√

6(σ− σ0)| − 1), (53)

ϕ2(σ) = cϕ′1(σ) (54)

= 3c cn(
√

6(σ− σ0)| − 1)dn(
√

6(σ− σ0)| − 1), (55)

where cn and dn denote Jacobi elliptic functions [17]. Note that, again, the generalised
asymptotic solution depends on two constants σ0 and c, and that since σ = τ1/2 = (mt)1/2,
the frequency of the oscillations is not constant.

In Figure 3, we plot the results of a numerical integration of the differential Equation (44)
with initial conditions ϕ(1) = 0, ϕ′(1) = 1, as well as the leading term of the asymptotic
expansion (45). In this case, the dashed lines are the envelopes ±(3/(2τ))1/2 that set the
scale for the generalised asymptotic expansion (45), and the factor (3/2)1/2 is the prefactor
in Equation (53) for ϕ1(τ).

As in the quadratic case, in Figure 4, we plot three typical asymptotic trajectories
on the phase map of the differential Equation (44). Even for arbitrarily large times, the
approximation of the representative point to the origin is not monotonic. (In this case, h(τ)
does not admit the same geometric interpretation as in the quadratic case.)
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Figure 3. Numerical integration (blue line) with initial conditions ϕ(1) = 0, ϕ′(1) = 1 and leading
term of the asymptotic expansion (brown line) for the differential Equation (44) corresponding to
the quartic potential. The dashed lines are the envelopes ±(3/(2τ))1/2 that set the scale for the
generalised asymptotic solution (45).
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Figure 4. Three typical asymptotic trajectories on the phase map of the differential Equation (44)
corresponding to the quartic potential. Even for arbitrarily large times the approximation of the
representative point to the origin is not monotonic.
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Again, using Equations (16) and (17), we find the asymptotic formula for the Hubble
parameter,

H(t) ∼ 1
2t
− 3m

(6mt)3/2 sn(s(t)| − 1) cn(s(t)| − 1)dn(s(t)| − 1) + · · · , (56)

where
s(t) =

√
6mt−

√
6mt0, (57)

and using Equation (42), the corresponding formula for the eos parameter,

wΦ(t) ∼ 1− 2 sn(s(t)| − 1)4 + · · · . (58)

At this order, wΦ(t) is independent of c. In the following section, we show that the
leading term of the usual averages of this eos parameter is 1/3.

4. The General Case

In this section, we discuss the generalised asymptotic solution of Equation (15) for any
value of p. The results of this section include as particular cases the quadratic potential
(p = 1) and the quartic potential (p = 2) studied in the previous sections, but the results
obtained there were sharper than the results we obtain in this section. In the quadratic
case, we could find explicit formulas and a complete asymptotic expansion. In the quartic
case, we could still find explicit formulas although we had to limit ourselves to a two-term
asymptotic solution. In this section, ϕ1(σ) is defined as the solution of an implicit equation.

The general equation, which we repeat here for convenience, is

ϕ′′(τ) + (ϕ′(τ)2 + ϕ(τ)2p)1/2 ϕ′(τ) + pϕ(τ)2p−1 = 0. (59)

In analogy with the quartic case, we look for a two-term generalised asymptotic
solution of the form

ϕ(τ) ∼ ϕ1(σ)

σ
+

ϕ2(σ)

σ2 + o(1/σ2), (60)

where
σ = τ1/p, (61)

and the conditions on the coefficients are the same as in the previous section. By substituting
the ansatz (60) into Equation (59), we find the following equations for ϕ1 and ϕ2:

ϕ′′1 + p3(ϕ1)
2p−1 = 0, (62)

ϕ′′2 + p3(2p− 1)(ϕ1)
2p−2 ϕ2 = (p + 1− ((ϕ′1)

2 + p2 ϕ
2p
1 )1/2)ϕ′1. (63)

(Again, primes denote derivatives of the functions with respect to their arguments, in
this case σ.)

In general, Equation (62) cannot be solved in closed form. However, it is readily
interpreted as the Newton’s equation of motion with respect to the time σ of a unit-
mass particle with position ϕ1 under the confining potential U(ϕ1) = p2(ϕ1)

2p/2. The
corresponding conserved energy is

E =
1
2
(ϕ′1)

2 +
p2

2
(ϕ1)

2p, (64)

and the solution ϕ1(σ) is implicitly defined by

σ− σ0 =
∫ ϕ1

0

d x√
2E− p2x2p

, (65)
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or, equivalently, by

σ− σ0 =
ϕ1√
2E

2F1

(
1
2

,
1

2p
, 1 +

1
2p

,
p2

2E
(ϕ1)

2p
)

, (66)

where 2F1 denotes the Gauss’ hypergeometric function. Therefore, ϕ1(σ) represents a
periodic motion on the interval −(2E/p2)1/2p ≤ ϕ1 ≤ (2E/p2)1/2p.

Equation (63) is, again, a nonhomogeneous linear differential equation with a non-
constant coefficient. Two linearly independent solutions of the homogenous equation are
u1(σ) = ϕ′1(σ) and u2(σ) = ϕ1(σ) + (p− 1)σϕ′1(σ), and, using the method of variation of
constants, we find the general solution for ϕ2(σ) in terms of ϕ1(σ), namely

ϕ2(σ) =cϕ′1(σ) + d(ϕ1(σ) + (p− 1)σϕ′1(σ))

+

(
1−
√

2E
p + 1

)(
σϕ1(σ) +

p− 1
2

σ2 ϕ′1(σ)

)
.

(67)

The condition that ϕ2(σ) be bounded is that the terms proportional to σ and σ2 vanish,
which leads to

d = 0, E =
1
2
(p + 1)2, (68)

and to
ϕ2(σ) = cϕ′1(σ). (69)

We may also determine the first terms of the expansion of the reduced Hubble param-
eter (17),

h(τ) ∼ h1(σ)

σp +
h2(σ)

σp+1 + o(1/σp+1), (70)

where
h1(σ) =

1
p
(ϕ′1(σ)

2 + p2 ϕ1(σ)
2p)1/2, (71)

h2(σ) =
1

p2h1(σ)
(ϕ′1(σ)ϕ′2(σ) + p3 ϕ1(σ)

2p−1 ϕ2(σ)− ϕ1(σ)ϕ′1(σ)). (72)

As a consequence of (62), (64), (68) and (69) we have

h1(σ) =
p + 1

p
, (73)

h2(σ) = − 1
p(p + 1)

ϕ1(σ)ϕ′1(σ). (74)

Then the leading term of the eos parameter is

wΦ(t) ∼
p− 1
p + 1

− 2p
(p + 1)2 h′2(σ) (75)

= 1− 2p2

(p + 1)2 ϕ1(σ)
2p. (76)

In particular, the first terms of Equation (43) and of Equation (58) are, respectively, the
cases p = 1 and p = 2 of Equation (76). That, at this order, wΦ(t) is independent of c is,
thus, a general result.

As we mentioned in the introduction, different averaging procedures lead to the same
leading contribution of the eos parameter (19). Equation (75) leads to the same result if we
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average over a period of the variable σ as an immediate consequence of this equation and
of the periodicity of h2(σ) in σ (see Equation (74)):

〈wΦ〉1 =
1

Tσ

∫ Tσ

0
wΦ(σ)dσ ∼ p− 1

p + 1
. (77)

It is also easy to derive the same result for other averages used in the literature. For
example, Rendall [13] uses the averaging procedure defined by

〈wΦ〉2 =

∫ ∞

t
pΦ(t)d t∫ ∞

t
ρΦ(t)d t

. (78)

In the variable τ,

pΦ(τ) =
M4

p

(
2
3

)p
(ϕ′(τ)2 − ϕ(τ)2p), (79)

ρΦ(τ) =
M4

p

(
2
3

)p
(ϕ′(τ)2 + ϕ(τ)2p). (80)

Using Equation (18), we find that,∫ ∞

τ
ϕ′(τ)2dτ = h(τ) ∼ p + 1

p
1
τ

, (81)

where the asymptotic estimate follows from Equations (70) and (73). Furthermore, using
the following consequence of Equations (15) and (17),

pϕ(τ)2p = −h′(τ)− 1
2

ϕ(τ)2 ϕ′(τ)2 − d
d τ

(
ϕ(τ)ϕ′(τ) +

1
2

h(τ)ϕ(τ)2
)

, (82)

we note that, as τ → ∞

h(τ)
(

1 +
1
2

ϕ(τ)2
)
= O(1/τ), (83)

ϕ(τ)ϕ′(τ) = O(1/τ1+1/p), (84)

and ∫ ∞

τ
ϕ(τ)2 ϕ′(τ)2dτ = O(1/τ1+2/p). (85)

Therefore, ∫ ∞

τ
ϕ(τ)2pdτ ∼ p + 1

p2
1
τ

, (86)

and from (81) and (86), we obtain that

〈wΦ〉2 ∼
p− 1
p + 1

. (87)

5. Connection between the Oscillatory Period and the Thermalization Period

As we said in the introduction, the oscillatory phase of reheating is an intermediate
period between the end of inflation and the beginning of thermalization. Let us denote
by tend the cosmic time corresponding to the end of inflation and by tosc the cosmic
time corresponding to the end of the oscillatory period. There are several criteria to
determine the value of the inflaton Φ at the end of inflation, which typically give results
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differing in factors of order unity. For concreteness we quote Equations (2.23) and (2.25) of
Ellis et al. [18] for the monomial potentials (11), which, with our conventions, lead to

Φ(tend) =

(
4p− 1
2
√

2

)
MPl, (88)

Φ̇(tend) =

(
4p− 1
2
√

2

)p M2
√

p
. (89)

However, these (or similar) values cannot be used directly to relate the parameters
σ0 (or t0) and c in the generalised asymptotic solutions (45) and (60) to the parameters
of the model M and p for at least two reasons: First, the translational invariance of the
inflaton models and the existence of an attractor in the phase plane [5,19] make it physically
dubious relating t0 to a specific moment of physical significance; second, as discussed
in Refs [16,20], in general successive terms in generalised asymptotic expansions are not
successively smaller at every time: they essentially fix the overall scale of the oscillatory
process. (This is the case of Φ(t) and Φ̇(t).)

However, suitable truncations of the generalised expansions may be free or the ambi-
guities discussed in the previous paragraph and can be used to link the parameter c to the
values of physical magnitudes at t0. For concreteness, consider the first two terms of the
expansion (40) for H(t) in the harmonic case, which we repeat here for convenience:

H(t) ∼ 2
3t

+
c + sin(2m(t− t0))

3mt2 · · · . (90)

The idea is that the leading term in Equation (90) is not oscillating and, therefore,
dominates the following terms at any large time, and that c in the next term is also not
multiplied by an oscillating function. Therefore, setting t = t0, we find that

c = 3mt2
0H(t0)− 2mt0. (91)

Finally, let us briefly discuss the connection between the generalised asymptotic
solutions in the oscillatory period to suitable asymptotic solutions in the thermalization
period. To this end, we will denote by tosc the end of the oscillatory period, and by ΦI and
ΦII the respective asymptotic forms of the inflaton field.

We consider first the harmonic case. From (12) and (30), we have that the leading term
of the asymptotic expansion (22) is given by

ΦI(t) = 2

√
2
3

MPl
cos(m(t− t0))

mt
. (92)

Furthermore, Equation (10) for the inflaton in the thermalization regime reduces in
the harmonic case to

Φ̈ + ΓΦ̇ + m2Φ = 0, (93)

whose exact solution can be written as

Φ(t) = A e−
Γ
2 t cos(ω(t− t1)), (94)

where

ω =

√
m2 − Γ2

4
, (95)

and where A and t1 are arbitrary constants. In addition, for typical situations m� Γ and,
therefore, ω ≈ m. Thus, we take

ΦII(t) = A e−
Γ
2 t cos(m(t− t1)). (96)
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Again, since the expansion (22) is a generalised asymptotic series, by the same ar-
guments used above it is physically meaningful to match the envelopes and the first
derivatives of the envelopes of ΦI and ΦII at t = tosc, instead of matching instantaneous
values at a certain time. Thus, we have

2

√
2
3

MPl
mtosc

= A e−
Γ
2 tosc , (97)

2

√
2
3

MPl

mt2
osc

= A
Γ
2

e−
Γ
2 tosc . (98)

Hence, we obtain

tosc =
2
Γ

, (99)

and
A =

e√
3

(MPl
M

)2
Γ. (100)

Since ω ≈ m, we can also set t1 = t0. Moreover, if we approximate the Hubble
parameter H by the first term of (40), we obtain the following estimate of Hosc ≡ H(tosc),

Hosc ≈
Γ
3

. (101)

To illustrate graphically the result (99) for tosc, in Figure 5, we present a numerical
calculation similar to that of Figure 13 in Ref. [10]. More concretely, we performed a numer-
ical integration of Equations (1)–(6) with the same parameters quoted in the introduction.
In Figure 5a, we show the eos parameter (7) as a function of the e-fold number N. The
dashed vertical line marks the matching point (99). Perhaps more informative is Figure 5b,
in which we show the energy densities of the inflaton (4) and of the radiation as a function
of the e-fold number. Again, the dashed vertical line marks the matching point (99), which
turns out to be 0.38 e-folds to the right of the point where the energy densities become
equal.

61 62 63 64 65 66 67

-1.0

-0.5

0.0

0.5

1.0

e-fold number N

w

(a)

61 62 63 64 65 66 67

-25

-20

-15

e-fold number N

lo
g 1
0
(ρ
/M

P
l
4
) ργ /MPl

4

ρΦ/MPl
4 (b)

Figure 5. Numerical integration of Equations (1)–(6) with the parameters quoted in the introduction.
(a) The eos parameter wre as a function of the e-fold number N. (b) Inflaton and radiation energy
densities. In both cases, the dashed vertical line marks the matching point tosc = 2/Γ.

For general p, the first term of the asymptotic expansion (22) is given by

ΦI(t) =

√
2
3

MPl
ϕ1(σ)

σ
, (102)

where σ = (mt)1/p and ϕ1(σ) is a periodic function of σ, which satisfies Equation (62). As a
consequence of Equations (64) and (68), ϕ1 has a maximal amplitude given by (1+ 1/p)1/p.
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Then, from (102), it follows that ΦI is a damped oscillatory function of t with envelope
given by

Φ(env)
I (t) =

√
2
3

(
1 +

1
p

)1/p MPl

(mt)1/p . (103)

Furthermore, for general p, the Equation (10) for the thermalization regime is a
nonlinear Liénard differential equation of the form

Φ̈ + ΓΦ̇ +
2M4

MPl
2p Φ2p−1 = 0, (104)

which describes a nonlinear oscillator with linear damping. Cveticanin [19] proved that
the approximate solution of this equation describes a vibration with decreasing amplitude
of the form (cf. Equations (72) and (73) in Ref. [19])

Φ(env)
II (t) = A e−

Γ
p+1 t . (105)

If we match the envelopes Φ(env)
I and Φ(env)

II and their first derivatives at tosc, we
obtain at once

tosc =

(
1 +

1
p

)
1
Γ

, (106)

and

A =

√
2
3

MPl

(e Γ
m

)1/p
(107)

=
( p

3

)1/(2p) MPl
1+1/p

M2/p (e Γ)1/p. (108)

In addition, if we approximate the Hubble parameter H by the first term of (70), we
obtain the following p-independent estimate of Hosc

Hosc ≈
Γ
3

. (109)

Finally, note that the matching of the oscillatory factor for p > 1, although feasible, is
complicated by the fact that the oscillations are not isochronous [19].

6. Conclusions

We analysed the asymptotic properties of the dynamical equation of the inflaton
during the oscillatory phase of reheating to extend the existing results for the quadratic
case, to provide new explicit results for the quartic case, and implicit results (that include
the former as particular cases) for potentials that close to their global minima behave as
even monomial potentials.

We paid special attention to the derivation of explicit expressions for the instantaneous
eos parameter wΦ, whose averages turn out to be in agreement with the averaged values
found in the literature. Several studies assumed that, during part or the whole reheating
period, the constant value wrhe ≈ 〈wΦ〉, thus, neglecting the coupling between the inflaton
field and the radiation [10,21,22]. A more realistic yet manageable approach is to use
a range of values for wrhe [23,24]. For instance, a typical range of values for p = 1 is
0 = 〈wΦ〉 ≤ wrhe ≤ 0.25. In this spirit, our results may be useful to formulate constraints
on effective eos parameters wrhe based on the instantaneous values wΦ(t) rather than on
the averaged values 〈wΦ〉.

Finally, as a line of future development, we mention the possible existence of a finer
scale than τ1/p that might permit the calculation of full asymptotic expansions for the
inflaton, instead of the truncated asymptotic formulas derived in the present paper for the
degenerate potentials.
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Appendix A

In this appendix, we prove that the ansatz (35) leads to a recurrence procedure that
can be carried out to arbitrary order. To this end, first note that (for any p) the main
Equation (15) and the definition (17) for h(τ) imply that

ϕ′′(τ) + h(τ)ϕ′(τ) + pϕ(τ)2p−1 = 0, (A1)

h′(τ) = −ϕ′(τ)2. (A2)

Conversely, since the system (A1)–(A2) implies that

d
d τ

(
h2 − ((ϕ′)2 + ϕ2p)

)
= 0, (A3)

and ϕ, ϕ′ and h tend to zero, it follows that the system (A1)–(A2) and the main Equation (15)
are equivalent [13].

Hereafter, we set p = 1. In addition to the expansions (22) for ϕ(τ), and (36) for h(τ),
it is convenient to introduce an expansion for ϕ′(τ),

ϕ′(τ) =
∞

∑
n=1

ψn(τ)

τn , (A4)

where
ψn(τ) = ϕ′n(τ)− (n− 1)ϕn−1(τ), (A5)

and we set ϕ0(τ) ≡ 0. Then, the system (A1)–(A2) leads to the following system of
differential equations:

ϕ′′n + ϕn = (n− 1)(2ϕ′n−1 − (n− 2)ϕn−2)−
n−1

∑
l=1

ψlhn−l , (A6)

h′n = (n− 1)hn−1 −
n−1

∑
l=1

ψlψn−l . (A7)

For n = 1, these equations are

ϕ′′1 + ϕ1 = 0, (A8)

h′1 = 0, (A9)

and their general solutions are

ϕ1(τ) = c1,1 cos(τ − τ0), (A10)

h1(τ) = f1,0, (A11)
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respectively, where c1,1 and f1,0 are arbitrary real constants.
For n ≥ 2, the solution of (A6)–(A7) can be written as

ϕn(τ) = cn,1 cos(τ − τ0) + dn,1 sin(τ − τ0) + ϕ
(p)
n (τ), (A12)

hn(t) = fn,0 + h(p)
n (τ), (A13)

where ϕ
(p)
n (τ) and h(p)

n (τ) are particular solutions of (A6) and (A7), respectively. To
avoid secular terms in the functions ϕ

(p)
n (τ) and h(p)

n (τ), we have to ensure that the
inhomogeneous part of (A6) is free of terms proportional to cos(τ− τ0) or sin(τ− τ0), and
that the inhomogeneous part of (A7) does not contain a constant term.

We now prove that this process of eliminating secular terms yields an expansion (22)
for ϕ(τ) with coefficients of the form (35), and that the corresponding expansion (36) is of
the form

hn(τ) =
n

∑
k=0,k even

fn,k cos(k(τ − τ0)) + gn,k sin(k(τ − τ0)), (A14)

with fn,n = 0 for even n.
Thus, for n = 2 the Equations (A6) and (A7) are

ϕ′′2 + ϕ2 = (2− h1)ϕ′1 (A15)

h′2 = h1 − (ϕ′1)
2. (A16)

Then, taking into account (A10), the inhomogeneous parts of (A15) and (A16) become

(2− h1(τ))ϕ′1(τ) = ( f1,0 − 2)c1,1 sin(τ − τ0), (A17)

h1(τ)− ϕ′1(τ)
2 = f1,0 −

c2
1,1

2
+

c2
1,1

2
cos(2(τ − τ0)). (A18)

Therefore, the particular solutions ϕ
(p)
2 (τ) and h(p)

2 (τ) of (A15) and (A16) are free of
the resonant terms provided

f1,0 = 2, c1,1 = 2. (A19)

Then, we obtain
ϕ1(τ) = 2 cos(τ − τ0), (A20)

h1(τ) = 2, (A21)

and
ϕ2(τ) = c2,1 cos(τ − τ0) + d2,1 sin(τ − τ0), (A22)

h2(t) = f2,0 + sin(2(τ − τ0)). (A23)

The same procedure for n = 3 leads to

c2,1 = f2,0 = c, d2,1 = −1
2

, (A24)

where c is a free parameter.
We proceed by induction and assume that, for any given integer n ≥ 3, we have

already obtained the coefficients ϕk and hk with k = 1, . . . , n− 1, of the form (35) and (A14).
The secular terms in Equation (A7) for hn come from

(n− 1)hn−1 − 2ψ1ψn−1 −
n−2

∑
l=2

ψlψn−l , (A25)
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and vanish provided that

− 2cn−1,1 + (n− 1) fn−1,0 = Rn−2, (A26)

where Rn−2 denotes a sum of terms depending on the coefficients ck,j dk,j with k ≤ n− 2.
Next, we note that the secular terms in Equation (A6) for ϕn come from the terms

(n− 1)
(
2ϕ′n−1 − (n− 2)ϕn−2

)
−

n−1

∑
l=1

ψlhn−l , (A27)

and are given by

−2(n− 2)(cn−1,1 sin(τ − τ0)− dn−1,1 cos(τ − τ0))

+ 2 fn−1,0 sin(τ − τ0)− Sn−2 sin(τ − τ0)− Tn−2 cos(τ − τ0), (A28)

where Sn−2 and Tn−2 denote sums of terms depending on the coefficients ck,j, dk,j, fk,j, gk,j,
with k ≤ n− 2 and on fn−1,2, gn−1,2. Therefore, to eliminate the secular terms in cos(τ− τ0)
and sin(τ − τ0), we must set

2(n− 2) dn−1,1 = Tn−2, (A29)

and
− 2(n− 2)cn−1,1 + 2 fn−1,0 = Sn−2, (A30)

respectively. Equation (A29) determines dn−1,1 in terms of the coefficients ck,j dk,j, fk,j,
gk,jwith k ≤ n − 2 and on gn−1,2. Furthermore, Equations (A26) and (A30) are a linear
system for cn−1,1 and fn−1,0 whose coefficient matrix has determinant 2n(n− 3). Thus, this
linear system is undetermined for n = 3 (with a free unknown c = c2,1 = f2,0), and it has a
unique solution for n > 3. In this way, it is clear that all the coefficients cn,1, dn,1, and fn,0,
with the exception of c2,1 = f2,0, are determined in terms of c.

Due to our induction hypothesis, from the structure of the right-hand side of the
Equation (A7), it is straightforward to deduce that hn is also of the form (A14). For
example, if n is odd (n = 2r + 1), then hn−1 is a linear combination of cos(2k(τ − τ0))
and sin(2k′(τ − τ0)) with k = 0, 1, . . . , r − 1 and k′ = 1, . . . , r. Similarly, the products
ψlψn−l with l = 1 . . . 2r in Equation (A7) are linear combinations of cos(2k(τ − τ0)) and
sin(2k(τ − τ0)) with k = 0, 1, . . . , r. Therefore, hn is of the form (A14).

A similar argument proves the ansatz (35) for ϕn.
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