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Abstract: Originally introduced in connection with general relativistic Coriolis forces, the term frame-
dragging is associated today with a plethora of effects related to the off-diagonal element of the metric
tensor. It is also frequently the subject of misconceptions leading to incorrect predictions, even of
nonexistent effects. We show that there are three different levels of frame-dragging corresponding to
three distinct gravitomagnetic objects: gravitomagnetic potential 1-form, field, and tidal tensor, whose
effects are independent, and sometimes opposing. It is seen that, from the two analogies commonly
employed, the analogy with magnetism holds strong where it applies, whereas the fluid-dragging
analogy (albeit of some use, qualitatively, in the first level) is, in general, misleading. Common
misconceptions (such as viscous-type “body-dragging”) are debunked. Applications considered
include rotating cylinders (Lewis–Weyl metrics), Kerr, Kerr–Newman and Kerr–dS spacetimes, black
holes surrounded by disks/rings, and binary systems.
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1. Introduction

The term “dragging” in the context of relativistic effects generated by the motion of
matter was first coined by Einstein in his 1913 letter to Mach [1], in connection with the
general relativistic Coriolis force generated in the interior of a spinning mass shell, causing
the plane of a Foucault pendulum to be “dragged around”. The term appeared again in
the papers by Lense and Thirring [2], namely, a “dragging coefficient” was defined as
the (inverse) ratio between the shell’s angular velocity (Ω), and the angular velocity (Ω′)
of the reference frame for which the Coriolis forces vanish in its interior (corresponding
to the local inertial frame). Although the notion was already implicit in these works, it
was not, however, until Cohen’s 1965 paper [3] that the designation “dragging of inertial
frames” first appeared; therein, Ω′ was dubbed “angular velocity of the inertial frames”
inside the shell. The underlying principle is the same as for the Coriolis forces that arise
near a spinning body, in a reference frame fixed to the distant stars. It is also the same
for the precession of gyroscopes placed therein [4,5], in which case one also talks about
dragging of the “compass of inertia” (the compass of inertia being defined as a system of
axes undergoing Fermi–Walker transport, and physically realized precisely by the spin
vectors of a set of guiding gyroscopes [6–8]). All these effects can be assigned [9] to the
action of a Coriolis or “gravitomagnetic” field generated by the source’s motion, and they
are all commonly refereed to as “frame-dragging” effects (e.g., [7,10–15]).

Later, another class of effects [10,16–18] started being dubbed frame-dragging as well.
They pertain to axistationary metrics, and include: the fact that the observers of zero
angular momentum (ZAMOs) have non-vanishing angular velocity in a coordinate system
fixed to the distant stars (dragging of the ZAMOs); and, conversely, objects with zero
angular velocity have non-zero angular momentum. These are facets of a principle which,
as we shall see, is different from the frame-dragging class mentioned above.

More recently [19], yet another type of effect—a local (i.e., tidal) one, stemming
from the curvature tensor—has been rightfully dubbed frame-dragging: the precession
of a gyroscope with respect to a system of axes attached to guiding gyroscopes at an
infinitesimally close point (“differential precession”).

In order to gain intuition into the “frame-dragging” effects, two analogies have been
put forth: the electromagnetic analogy, in particular, between the magnetic field and the
general relativistic Coriolis field (thus dubbed “gravitomagnetic field”), and the fluid-
dragging analogy. The former is based on solid equations, best known in weak field slow
motion approximations [7,20–25], but with exact versions [13,26–35] holding in arbitrarily
strong fields, and is known for providing a familiar and reliable formalism. The fluid
analogy, initially proposed in [5,36], and then supported by other authors (e.g., [7,12,13]),
consists of an analogy drawn between the effects created by the rotation of a body immersed
in a fluid, and the frame-dragging effects. Albeit providing (to a limited extent) a certain
qualitative intuition for the second class of effects mentioned above (dragging of the
ZAMOs), it is generically misleading, and the source of most misconceptions and incorrect
predictions concerning frame-dragging. Some of these were noticed already in the literature,
most notably in a paper by Rindler [37], where, in the framework of a linearized theory
approximation, several inconsistencies of the fluid-dragging model are pointed out, and
the gravito-electromagnetic analogy is recommended instead.

In this paper, we start (Section 2) by observing that the three classes (or levels) of
“frame-dragging” effects are governed by distinct mathematical objects (the gravitomag-
netic potential 1-form A, the gravitomagnetic field, and the gravitomagnetic tidal tensor)
corresponding to different orders of differentiation of A, and underlying physical prin-
ciples (dragging of the ZAMOs, and dragging or differential dragging of the compass
of inertia); moreover, these levels are largely independent, there existing solutions dis-
playing only the first or second levels, as well as phenomena where different levels of
frame-dragging act oppositely (Sections 2.3 and 2.4). Section 3 is devoted to debunking the
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common wrong notion that when a source (e.g., a black hole) spins, it forces test bodies
around into rotation (“body-dragging”). We start by generalizing Rindler’s paper to the
exact theory, using the exact 1+3 “gravitoelectromagnetic” (GEM) formalism, exemplify-
ing with an imaginary space station around a spinning black hole. We consider also the
reciprocal problem (a rotating ring around a non-spinning black hole), and, to clear any
doubt that no such effect takes place, the static equilibrium positions for test particles in
the equatorial plane of spinning black hole spacetimes (Kerr-de Sitter and Kerr–Newman).
Finally, we consider a notable phenomenon driven by frame-dragging—bobbings in binary
systems—where the body-dragging picture predicts the opposite of the true effect.

Notation and conventions.— We use the signature (−+++); Greek letters α, β, γ, . . .
denote 4D spacetime indices, running 0–3; Roman letters i, j, k, . . . denote spatial indices,
running 1–3; εαβγδ ≡

√−g[αβγδ] is the 4-D Levi–Civita tensor, with the orientation
[1230] = 1 (i.e., in flat spacetime, ε1230 = 1); εijk ≡

√
h[ijk] is the Levi–Civita tensor

in a 3-D Riemannian manifold of metric hij. Our convention for the Riemann tensor is
Rα

βµν = Γα
βν,µ − Γα

βµ,ν + .... ? denotes the Hodge dual (e.g., ?Fαβ ≡ ε
µν

αβ Fµν/2, for a 2-form
Fαβ = F[αβ]). The basis vector corresponding to a coordinate φ is denoted by ∂φ ≡ ∂/∂φ,
and its α-component by ∂α

φ ≡ δα
φ.

2. Distinct Effects under the Same Denomination

We will derive here the exact equations describing the different types of frame-dragging
(equations of “gravitoelectromagnetism”, or GEM), considering stationary spacetimes, where
their formulation (the so called 1+3 “quasi-Maxwell” formalism [26–28,31–34,38]) is particu-
larly simple and intuitive. A generalization for arbitrary time-dependent fields is given in
Appendix A.

The line element ds2 = gαβdxαdxβ of a stationary spacetime can generically be written
in the form

ds2 = −e2Φ(dt−Aidxi)2 + hijdxidxj , (1)

where e2Φ = −g00, Φ ≡ Φ(xj),Ai ≡ Ai(xj) = −g0i/g00, and hij ≡ hij(xk) = gij + e2ΦAiAj.
Observers of 4-velocity

uα ≡ uα
lab = (−g00)

−1/2∂α
t = e−Φ∂α

t ≡ e−Φδα
0 (2)

(i.e., whose worldlines are tangent to the timelike Killing vector field ∂t) are at rest in the
coordinate system of (1); they shall be called “laboratory” observers. The quotient of the
spacetime by the worldlines of the laboratory observers yields a 3-D manifold Σ in which
hij is a Riemannian metric, called the spatial or “orthogonal” metric. It can be identified in
spacetime with the projector orthogonal to uα (space projector with respect to uα),

hαβ ≡ uαuβ + gαβ , (3)

and yields the spatial distances between neighboring laboratory observers, as measured
through Einstein’s light signaling procedure [26].

2.1. Sagnac Effect and Dragging of the ZAMOs

Unlike translational motion, which is inherently relative, rotation is not, and is physi-
cally detectable. A way of detecting the absolute rotation of an apparatus (i.e., its rotation
relative to the “spacetime geometry” [10], whose meaning shall be clear below) is the
Sagnac effect [34,35,39–43]. It consists of the difference in arrival times of light-beams prop-
agating around a closed path in opposite directions. In flat spacetime, where the concept
was first introduced (see e.g., [35,39,40,43] and references therein), the time difference is
originated by the rotation of the apparatus with respect to global inertial frames (thus to
the “distant stars”), see e.g., Figure 1 in [34]. In a gravitational field, however, it arises also
in apparatuses, which are fixed relative to the distant stars (i.e., to asymptotically inertial
frames) [34,40–43]; in this case, one talks about “frame-dragging”. Both effects can be read
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from the spacetime metric (1), encompassing the flat Minkowski metric expressed in a
rotating coordinate system, as well as arbitrary stationary gravitational fields. Along a

photon worldline, ds2 = 0; by (1), this yields two solutions dt = Aidxi ± e−Φ
√

hijdxidxj,

the + sign corresponding to the future-oriented worldline;1 therefore

dt = Aidxi + e−Φdl ,

where dl ≡
√

hijdxidxj is the spatial distance element. Consider photons constrained to
move within a closed loop C in the space manifold Σ; for instance, within an optical fiber
loop, as depicted in Figure 1a. Using the + (−) sign to denote the anti-clockwise (clockwise)
directions, the coordinate time it takes for a full loop is, respectively, t± =

¸
±C dt =¸

C e−Φdl ±
¸

CAidxi; therefore, the Sagnac coordinate time delay ∆t is (e.g., [34])

∆tS ≡ t+ − t− = 2
˛

C
Aidxi = 2

˛
C
A , (4)

where we identified Aidxi with the 1-form A ≡ Aidxi on the space manifold Σ.
Consider now an axistationary spacetime, whose line element (1) simplifies to (in

spherical-type coordinates)

ds2 = −e2Φ(dt−Aφdφ)2 + hrrdr2 + hθθdθ2 + hφφdφ2 . (5)

In spite of being at rest, the laboratory observers (2) have, in general, non-zero angular
momentum. The component of their angular momentum along the symmetry axis is, per
unit mass [10,34,44],

uφ = u0g0φ =
g0φ√−g00

= eΦAφ , (6)

which is zero iff Aφ = 0. This manifests physically as follows. Take an observer at r = r0,
and consider a circular optical loop (e.g., an optical fiber) of the same radius around the
axis θ = 0, see Figure 1a. Such an observer will measure a Sagnac effect; i.e., it will see light
beams emitted in opposite directions along the loop not completing it at the same time, the
difference in (coordinate) arrival times being, according to Equation (4),

∆tS = 2
˛

C
Aφdφ = 4πAφ . (7)

Only observers with zero angular momentum (ZAMOs) measure no Sagnac effect.
These observers are such that (uZAMO)φ = 0, i.e., have angular velocity

ΩZAMO ≡ ΩZAMO(r, θ) =
uφ

ZAMO

u0
ZAMO

= −
g0φ

gφφ
. (8)

That the Sagnac effect vanishes for them can easily be seen by performing a local
coordinate transformation φ̄ = φ−ΩZAMO(r0)t, leading to a coordinate system where the
ZAMO at r0 is at rest. The metric form thereby obtained is diagonal at r0: ḡ0φ̄(r0) = 0,
hence, ∆t̄S = 0. This singles out the ZAMOs as those who regard the ±φ̄ directions as
geometrically equivalent; for this reason, they are said to be those that do not rotate with
respect to “the local spacetime geometry” [10].

If2 gαβ
r→∞→ ηαβ, the coordinate system in (5) corresponds to a rigid frame anchored to

the asymptotic inertial frame at infinity (i.e., to the distant stars). Hence,

• the “laboratory” observers, at rest in a frame fixed to the distant stars, have non-zero
angular momentum (6) (measuring a Sagnac effect);

• the zero angular momentum observers have non-zero angular velocity (8) in a coordi-
nate system fixed to the distant stars (or as “viewed” from an observer at infinity).
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These features are usually assigned to “frame-dragging”; we point out that it in fact consists
of the dragging of the ZAMOs, and the gravitomagnetic object governing it is the potential
1-form A (or equivalently, the gravitomagnetic vector potential ~A). These are the frame-
dragging effects involved in arranging the bodies’ angular momentum/angular velocities
in e.g., the black hole–ring and black hole–disk systems in [18,45], as well as in black saturn
systems [17], as discussed in Section 3 and Figure 2 below.

c∆
t S

(a) (b)

Black 
Hole

U x H

U U +

U x H+

(c)

Cylinder

H H = 0

Figure 1. (a) Sagnac effect in an optical loop around a spinning body (dragging of the ZAMOs): a “laboratory” observer, at
rest with respect to the distant stars, sends light beams propagating in opposite directions along the loop; they take different
times to complete the loop, the co-rotating one arriving first, by a time difference ∆tS < 0, Equation (7). (b) For particles in
circular geodesics around a Kerr black hole, it is the other way around: the co-rotating one has the longer period. This is
down to the combination of two oppositely competing effects: the dragging of the ZAMOs, tending to decrease the period
of the co-rotating orbit vs. the gravitomagnetic force mγ~U× ~H in Equation (9) (dragging of the compass of inertia), which is
repulsive/attractive for co/counter-rotating orbits, thereby slowing/speeding up the orbit, respectively. The latter effect
prevails, so that ∆tgeo = ∆tS + ∆tH > 0. (c) Around an infinite spinning cylinder of the Weyl class, ~H = 0; hence, only
the dragging of the ZAMOs subsists, and the situation for circular geodesics is opposite to (b) [thus similar to (a)]: the
co-rotating geodesic has the shortest period, the difference reducing exactly to the Sagnac time delay, ∆tgeo = ∆tS < 0.

2.2. Dragging of the Compass of Inertia: Gravitomagnetic Field and Lense-Thirring Effects

Consider a (point-like) test particle of worldline xα(τ), 4-velocity dxα/dτ ≡ Uα and
mass m. The space components of the geodesic equation DUα/dτ = 0 yield3, for the line
element (1) [26,27,31–34],

D̃~U
dτ

= γ
[
γ~G + ~U × ~H

]
=

~FGEM

m
, (9)

where γ = −Uαuα = eΦ(U0 −UiAi) is the Lorentz factor between Uα and uα,[
D̃~U
dτ

]i

=
dUi

dτ
+ Γ(h)i

jkU jUk ; Γ(h)i
jk =

1
2

hil
(

hl j,k + hlk,j − hjk,l

)
(10)

is the Levi–Civita covariant derivative with respect to the spatial metric hij, with Γ(h)i
jk the

corresponding Christoffel symbols, and

~G = −∇̃Φ ; ~H = eΦ∇̃ × ~A (11)

are vector fields living on the space manifold Σ with metric hij, dubbed, respectively,
“gravitoelectric” and “gravitomagnetic” fields. These play in Equation (9) roles analo-
gous to those of the electric (~E) and magnetic (~B) fields in the Lorentz force equation,
DUi/dτ = (q/m)[γ~E + ~U × ~B]i. The analogy also motivates dubbing ~A “gravitomagnetic
vector potential”. Here, ∇̃ denotes covariant differentiation with respect to the spatial
metric hij [i.e., the Levi–Civita connection of (Σ, h)], Equation (10) is the standard 3-D
covariant acceleration, and Equation (9) describes the acceleration of the curve obtained
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by projecting the time-like geodesic onto the space manifold (Σ, h), with ~U as its tangent
vector [identified in spacetime with the projection of Uα onto (Σ, h): (~U)α = hα

βUβ, see
Equation (3)]. The physical interpretation of Equation (9) is that, from the point of view
of the laboratory observers, the spatial trajectory will appear accelerated, as if acted upon
by the fictitious force ~FGEM (standing here for “gravitoelectromagnetic” force4). In other
words, the laboratory observers measure inertial forces, which arise from the fact that the
laboratory frame is not inertial; in fact, ~G and ~H are identified in spacetime, respectively,
with minus the acceleration and twice the vorticity of the laboratory observers:

Gα = −∇uuα ≡ −uα
;βuβ ; Hα = 2ωα = εαβγδuγ;βuδ . (12)

They may be regarded as the relativistic generalization of, respectively, the Newtonian
gravitational field and the classical Coriolis field, encompassing them as limiting cases [9].
It is ~H that governs, via Equation (9), the Coriolis (i.e., gravitomagnetic) forces generated
inside a spinning hollow sphere, noted by Einstein [1,46] and Thirring [2]; or those acting
on test particles in the exterior field of a spinning body, causing the Lense–Thirring orbital
precession [2,7]. It governs also the “precession” of gyroscopes with respect to the reference
frame associated to the coordinate system in (1): according to the Mathisson–Papapetrou
equations [24,47–50], under the Mathisson–Pirani spin condition [47,51], the spin vector
Sα of a gyroscope (i.e., a spinning pole-dipole particle) of 4-velocity Uα = dxα/dτ is
Fermi–Walker transported along its center of mass worldline xα(τ),

DFSα

dτ
= 0 ⇔ DSα

dτ
= SµaµUα (13)

where aα ≡ DUα/dτ. The spin vector is spatial with respect to Uα, SαUα = 0, and
so, for a gyroscope whose center of mass is at rest in the coordinates of (1), Uα = uα

[see Equation (2)], the space part of Equation (13) reads (using the Christoffel symbols in
footnote3, and noting that Sαuα = 0⇒ S0 = SiAi) [28,31,32,34]

d~S
dτ

=
1
2
~S× ~H , (14)

resembling the precession of a magnetic dipole ~µ in a magnetic field, D~S/dτ = ~µ × ~B.
Likewise, the Sagnac time delay in an optical gyroscope (i.e., a small optical loop C) is also
governed by the gravitomagnetic field ~H, as can be seen by applying the Stokes theorem
to (4), considering the surface S with boundary ∂S = C,

∆tS = 2
˛

∂S
A = 2

ˆ
S

dA = 2
ˆ
S

e−ΦHkdSk ≈ 2e−Φ~H · ~AreaS , (15)

where dA = Aj,idxi ∧ dxj = εijk Hke−Φdxi ∧ dxj/2, dSk = εijkdxi ∧ dxj/2 , εijk =
√

h[ijk]
is the Levi-Civita tensor of the space manifold (Σ, h), and ~AreaS the “area vector” of the
loop (see [34] and footnote on p. 7 therein).

The gravito-electromagnetic analogy {~G, ~H} ↔ {~E,~B} also extends to the field equations:

∇̃ · ~G = −4π(2ρ + Tα
α) + ~G2 +

1
2
~H2 ; ∇̃ × ~G = 0 ; (16)

∇̃ · ~H = −~G · ~H ; ∇̃ × ~H = −16π~J + 2~G× ~H , (17)

where the equations for ∇̃ · ~G and ∇̃ × ~H are, respectively, the time–time and time–space
projections of the Einstein field equations Rαβ = 8π

(
Tαβ −

1
2 gαβTγ

γ

)
, with ρ ≡ Tαβuαuβ

and Jα ≡ −Tαβuβ, and the equations for ∇̃ · ~H and ∇̃ × ~G follow directly from (11). They
strongly resemble the Maxwell equations in a rotating frame; see Table 2 of [32].
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Equation (13) tells us that the gyroscope’s axis is fixed with respect to a Fermi–Walker
transported frame, which mathematically defines a locally non-rotating frame (e.g., [6,10]);
it is said to follow the “compass of inertia” [6,7,32]. This agrees with the notion that
gyroscopes are objects that oppose changes in the direction of their rotation axes. Hence,
the gyroscope “precession” in (14) is thus in fact minus the angular velocity of rotation
~H/2 of the coordinate basis vectors relative to a locally non-rotating frame. Consider now
the case that gαβ

r→∞→ ηαβ, in which the coordinate system in (1) corresponds to a rigid
frame anchored to the asymptotic inertial frame at infinity. So, at infinity, the reference
frame is inertial; however, at finite distance from the mass-energy currents that [by (17)]
source ~H, one has, in general, ~H 6= 0, and so that same rigid frame is rotating (besides
being accelerated, as the observers at rest therein are not freely falling, ∇uuα = −Gα 6= 0).
One can thus say that the motion of the sources (or mass-energy currents, in general) drags
the local inertial frames, or the local compass of inertia. In some literature, this is cast as
the appearance of vorticity [52,53], the two notions being equivalent5 via Equation (12).

2.3. Competing Effects—Circular Geodesics

Let Uα be the 4-velocity of a test particle moving along an equatorial circular geodesic
in an axistationary spacetime (with reflection symmetry about the equatorial plane [54]),
and L = gµνUµUν/2 the corresponding Lagrangian. The angular velocity Ωgeo ≡ dφ/dt =
Uφ/U0 of the circular geodesics is readily obtained from the Euler–Lagrange equations,

d
dτ

(
∂L

∂Uα

)
− ∂L

∂xα
= 0 , (18)

whose r-component dUr/dτ = gµν,rUµUν/2 yields, for Uα = U0(δα
0 + Ωgeoδα

φ),

gφφ,rΩ2
geo + 2g0φ,rΩgeo + g00,r = 0 .

Its solution is

Ωgeo± =
−g0φ,r ±

√
g2

0φ,r − gφφ,rg00,r

gφφ,r
, (19)

the + (−) sign corresponding, for gφφ,r > 0 and g00,r < 0 (i.e., attractive ~G), to prograde
(retrograde) geodesics, i.e., positive (negative) φ directions. This equation tells us that,
when g0φ depends on r, the periods tgeo± = 2π/|Ωgeo±| of prograde and retrograde
geodesics differ; this effect has been dubbed the gravitomagnetic “clock effect” [55–58].
The difference is given by

∆tgeo = 2π(Ω−1
geo+ + Ω−1

geo−) = −4π
g0φ,r

g00,r
.

Using g0φ = −g00Aφ, noticing that reflection symmetry implies, in the equatorial
plane, Aφ,θ = 0, we have, by (11), Aφ,r = e−Φεrφi Hi = −e−2Φ√−gHθ , and so (cf. [34])

∆tgeo = ∆tS + ∆tH ; ∆tS = 4πAφ; ∆tH =
2π
√−g

Gre2Φ Hθ . (20)

Hence, the gravitomagnetic clock effect consists of the sum of two contributions orig-
inating from the two types of frame-dragging in Sections 2.1 and 2.2: the Sagnac time
delay (7) around the circular loop, due to the dragging of the ZAMOs, governed by Aφ,
plus a term due to the gravitomagnetic (or Coriolis) forces generated by the dragging of
the compass of inertia, governed by the gravitomagnetic field ~H. The physical interpre-
tation of the latter is as follows: for circular orbits, the gravitomagnetic force mγ~U × ~H
in Equation (9) is radial (since ~H = Hθ∂θ and ~U = Uφ∂φ), being centrifugal or centripetal
depending on the ±φ direction of the orbit, thus respectively decreasing or increasing the
overall attraction, and, consequently, the velocity of the orbits. See Figure 1b.
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It is important to notice that the two contributions in (20) are independent. In fact,
there are solutions for which ~H vanishes whilst ~A is non-zero, as is the case of the Lewis
metric of the Weyl class, describing the exterior gravitational field produced by infinitely
long rotating cylinders. The metric is given, in star-fixed (“canonical”) coordinates, by
Equation (61) of [34], yielding, in the form (1),

e2Φ =
r4λm

α
; A = − j

1/4− λm
dφ; hrr = hzz = r4λm(2λm−1); hφφ = αr2(1−2λm) ,

hik = 0 for i 6= k. Here 0 ≤ λm < 1/4 and j are, respectively, the Komar mass and angular
momentum per unit length, and α the parameter governing the angle deficit (j > 0, for a
cylinder spinning in the positive φ direction). Trivially dA = 0⇒ ~H = 0, hence ∆tH = 0
and so

∆tgeo = ∆tS = 4πAφ = − 4π j
1/4− λm

< 0 ,

i.e., the difference in period between co- and counter-rotating circular geodesics equals
precisely the Sagnac time delay for photons, the co-rotating one having a shorter period.

The two contributions can even be opposing, as is the case for the Kerr metric. We
have, in this case, in the equatorial plane,

e2Φ = 1− 2M
r

; Gr = −
M

r2 − 2Mr
; g = −r4; Aφ =

2aM
2M− r

; ~H = − 2aM
r3(r− 2M)

∂θ ;

(21)
and so (observe that always6 r > 2M, in order for the counter-rotating orbit to exist)

∆tgeo = ∆tS + ∆tH = 4πa ; ∆tS = − 8πaM
r− 2M

(< 0) ∆tH =
4πar

r− 2M
(> 0) , (22)

i.e., the two contributions have opposite signs. Namely, the dragging of the ZAMOs tends
to decrease the period of the orbit co-rotating with the black hole by ∆tS, as compared to the
counter-rotating orbit; however, the gravitomagnetic force mγ~U× ~H (dragging the compass
of inertia) does the opposite, tending to increase the period of the co-rotating orbit (case in
which ~U × ~H is repulsive), as compared to the counter-rotating orbit (case in which ~U × ~H
is attractive), by ∆tH , see Figure 1b. Since ∆tH > −∆tS, it is the gravitomagnetic force that
prevails, making the co-rotating orbits slower overall than the counter-rotating ones.

The gravitomagnetic force and the corresponding ∆tH have a close electromagnetic
analogue in the magnetic force q~U× ~B exerted on charged test particles orbiting a spinning
charged body, see Equation (30) of [34]—only with a different sign, which manifests
that (anti-) parallel mass/energy currents have a repulsive (attractive) gravitomagnetic
interaction, as opposed to magnetism, where (anti-) parallel charge currents attract (repel)
(see [59] and Section 13.6 of [60]).

2.4. Gravitomagnetic “Tidal” Effects: “Differential” Dragging and Force on Gyroscopes

A third class of frame-dragging effects that has been (more recently) discussed in
the literature [19,61,62], distinct from those in Sections 2.1 and 2.2, is the “differential
precession” of gyroscopes. It consists of the precession of a gyroscope relative to a frame
attached to the spin axes of guiding gyroscopes at a neighboring point. The effect was
originally derived7 in [19]; we briefly re-derive it below in a straightforward manner, using
Fermi coordinates.

The spin vector of a gyroscope in a gravitational field is Fermi–Walker-transported
along its worldline, according to the Mathisson–Papapetrou–Pirani Equation (13). Consider
an orthonormal tetrad eα̂ Fermi–Walker-transported along the worldline L(τ) of the set of
gyroscopes 1. There is a coordinate system {Xα}, rectangular at L, and adapted to such
tetrad (∂/∂Xα|L = eα̂), the so-called [64] “Fermi coordinates”, where the metric takes, to
order O(X2), locally the form

ds2 = −
[
(1 + aiXi)2 + R0i0jXiX j

]
dT2 − 4

3
R0jikX jXidTdX j +

(
δij −

1
3

Ril jmXlXm
)

dXidX j (23)
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(cf. e.g., Equation (18) in [65], setting therein ωi = 0). Here, aα = DUα/dτ is the
acceleration of the fiducial worldline L(τ) = L(T), and Rαβγδ ≡ Rαβγδ(T) are components
of the curvature tensor evaluated along L. Let eα ≡ ∂/∂Xα denote the coordinate basis
vectors and Γα

βγ its Christoffel symbols, Γα
βγeα = ∇eβ

eγ. Along L, the vectors eα are Fermi–

Walker-transported, so
〈
∇e0ei, ej

〉
|Xk=0 = Γj

0i(L) = 0. Hence, gyroscopes moving along
L (by definition), or momentarily at rest (Ui = 0) at some event P1 : (T1, Xi

1) = (T1, 0)
of L, do not precess relative to this frame, d~S/dT|Xi=0 = DF~S/dτ|Xi=0 = 0, by virtue
of Equation (13). However, at some location Xi

2 outside L (Xi
2 6= 0), we have Γj

0i(X2) =

Rj
ik0Xk

2 6= 0, and so the basis vectors eα are no longer Fermi–Walker-transported. That
means that gyroscope 2, at the location Xi

2, will precess with respect to this coordinate
system. If the gyroscope is therein at rest (Ui

2 = 0), we have

dSi
2

dτ2
= −Γi

0j(X2)S
j
2U0

2 = −Ri
jk0Xk

2Sj
2 = −Ri

jγτUτδxγSj
2 , (24)

where, in the first equality, we noticed that S0
2 = O(X2), and, in the second, that U0

2 =
(−g00)

−1/2 = 1 + O(X2), while only terms to first order in X are to be kept in (24) to the
accuracy at hand. In the last equality, we noticed that Uα = δα

0 , and that, by the definition of
the coordinate system {Xα} (see e.g., Figure 13.4 of [10]), Xk

2 = δxk are components of the
vector δxα = (0, δxi) at L tangent to the (unique) spatial geodesic emanating orthogonally
from L and passing through the eventP2 : (T2, Xi

2), whose length equals that of the geodesic
segment. It can be interpreted as the “separation vector” between P2 and the simultaneous
(T2 = T1) event P1 ∈ L. Using the space projection relation (cf. Equation (5) in [32])
hµ

α hν
βRµνγτ = εµαβλUλ ?Rµ

νγτUν which, in the coordinate system {Xα} (orthonormal at L),

reads: Rijγτ = εijµλ ?Rµ
νγτUνUλ, we have

dSi
2

dτ2
= −εi

jk0δΩkSj
2 ⇔ d~S2

dT
= δ~Ω× ~S2 , δΩk ≡ Hk

γδxγ , (25)

where Hαβ ≡ ?RαµβνUµUν = ε σλ
αµ RσλβνUµUν/2 is the “gravitomagnetic tidal tensor” (or

“magnetic” part of the Riemann tensor) as measured along L, and in the second equation, we
noted that d~S2/dτ2 = d~S2/dT + O(X3). Thus, δ~ΩG is the angular velocity of precession of
gyroscopes at location Xi

2 with respect to the Fermi frame locked to the guiding gyroscopes
at the neighboring worldline L (of course, this is just minus the angular velocity of rotation
of the basis vectors ei|X2 relative to Fermi–Walker transport). We can cast this effect as a
“differential dragging” of the compass of inertia.

Another effect governed by the gravitomagnetic tidal tensor is the spin-curvature
force exerted on a gyroscope, described by the Mathisson–Papapetrou equation [24,47–50]

Fα ≡ DPα

dτ
= −1

2
Rα

βµνSµνUβ = −HβαSβ , (26)

where Sαβ is the body’s spin tensor, and in the second equality, we employed the Mathisson–
Pirani [47,51] spin condition SαβUβ = 0, under which one can write Sµν = εµντλSτUλ. This
force is of different nature from the inertial GEM “forces” in the geodesic Equation (9), in
that it is a physical, covariant force, causing the body’s 4-momentum Pα to change, and its
motion to be non-geodesic, DUα/dτ 6= 0.

Both Equations (25) and (26) have exact (up to constant factors) electromagnetic
analogues in terms of the magnetic tidal tensor Bαβ = ?Fαµ;βUµ [50,66], namely, the
differential precession of magnetic dipoles δΩi

EM = −σBi
γδxγ (σ ≡ µ/S) [67], and the

force on a magnetic dipole Fα
EM = Bβαµβ [32,50,66].

Another manifestation is in the geodesic deviation equation D2δxα/dτ2 = −Rα
βγδδxγUβUδ

(e.g., [7,10]). In vacuum, one can decompose the Riemann tensor in terms of the gravi-
toelectric (Eu)αβ ≡ Rαµβνuµuν and gravitomagnetic (Hu)αβ = ?Rαµβνuµuν tidal tensors
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as measured by some laboratory observer uα, see decomposition (44) of [50]; hence, with
respect to such an observer, the relative acceleration of nearby test particles (of 4-velocity
Uα) comes in part from (Hu)αβ, which could thus be measured through gravity gradiome-
ters [68].

Finally, observe that, around the origin of the Fermi coordinate system in (23), the
gravitomagnetic field as given by Equation (12), Hα = ε

αβ
γδuγ

;βuδ, uα = (−g00)
−1/2δα

0
(which is generally valid, cf. Appendix A), reads

Hi = ε
ij

k0uk
;j = ε

ij
k0Γk

0j = ε
ij

k0Rk
jl0Xl = −2Hi

lX
l ⇔ Hi

j = −
1
2

∂jHi .

Moreover, in the coordinate system of the stationary metric (1), we have [32]

Hij = −
1
2

[
∇̃jHi + (~G · ~H)hij − 2Gj Hi

]
(27)

(for aHαβ—~H relation valid for orthonormal frames in arbitrary spacetimes; see Equation (110)
of [32]). We can thus say that Hαβ is essentially [to leading order, in the case of (27)] a
derivative of the gravitomagnetic field ~H. So, we can cast the different frame-dragging
effects in the literature into the three levels of gravitomagnetism in Table 1, corresponding
to three different orders of differentiation of the gravitomagnetic 1-form A.

Table 1. The different effects under the denomination “frame-dragging”, cast into three levels of
gravitomagnetism, corresponding to different orders of differentiation of the gravitomagnetic vector
potential ~A.

Levels of Gravitomagnetism/“Frame-Dragging”

Governing gravitomagnetic object Physical effect

~A
(gravitomagnetic
vector potential)

Dragging of the ZAMOs:

• Sagnac effect
• part of gravitomagnetic

“clock effect”

~H
(gravitomagnetic
field = eφ∇× ~A)

Dragging of the compass of inertia:

• gravitomagnetic force
mγ~U × ~H
• gyroscope precession

d~S/dτ = ~S× ~H/2

• local Sagnac effect in
light gyroscope

• part of gravitomagnetic
“clock effect”

Hαβ

(gravitomagnetic
tidal tensor ∼ ∂i∂jAk)

• Differential precession of gyroscopes
δΩi = Hi

βδxβ

• force on gyroscope
DPα/dτ = −HβαSβ

We emphasize that these levels are independent: there exist solutions where only the
first level (A) is intrinsically non-zero, as we have seen in Section 2.3; and others possessing
the first two levels, but where the third vanishes. Examples of the latter are the Gödel
universe and the uniform Som–Raychaudhuri metrics which, as discussed in detail in
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Section VII.B.3 of [69], are stationary solutions possessing zero gravitoelectric field (~G = 0)
and non-zero uniform gravitomagnetic field ~H, leading, by virtue of Equation (27), Hαβ to
vanish for the rest observers therein, whilst both ~H 6= 0 and A 6= 0. In such metrics, by
Equation (26), no force acts on gyroscopes at rest (whose worldlines are geodesic); and, by
Equation (25), they moreover do not precess with respect to neighboring guiding gyroscopes.

3. Frame-Dragging Is Never “Draggy”8—No Body-Dragging

It is a widespread myth that when a massive body (e.g., a black hole) rotates, it drags
everything around it. It seemingly originates from the fluid dragging analogy proposed
originally in [5,36] and reinforced in [12,13], disseminating in the subsequent literature
that the dragging of inertial frames can be explained in analogy with the dragging of
a viscous fluid by an immersed rotating body. It is sometimes also portrayed as the
whirlpool analogy [13,70]. Such mental pictures can be extremely misleading [22,37,70];
frame-dragging, in none of its levels, produces that type of effects. What are dragged
are the ZAMOs, and the compass of inertia. The former leads to Sagnac and other akin
global effects (having no local effect on the motion of test particles); the latter originates
Coriolis (or gravitomagnetic) inertial forces on test particles. Such forces, however, affect
only bodies moving with respect to the chosen reference frame, and are orthogonal to the
body’s velocity; hence, never of the viscous/dragging type. This later aspect was stressed
in an illuminating paper by Rindler [37], based on linearized theory, in the framework of a
weak field and slow motion approximation.

Rindler’s conclusion can be readily generalized to the exact theory using Equation (9)
[for stationary spacetimes, or with Equation (A2) of Appendix A for arbitrary fields].
Imagine that an advanced civilization builds a circular space station around a Kerr black
hole, as illustrated in Figure 2a, and imagine that it is initially set fixed with respect to the
distant stars (which can be set up by pointing a telescope to a distant star). Regardless
of the black hole’s rotation, the station will not be dragged into any rotational motion:
since, initially, ~U = 0, by Equation (9) the only inertial force (per unit mass) acting on any
of its mass elements is the radial force produced by the gravitoelectric field (i.e., by the
relativistic generalization of the Newtonian field): ~FGEM/m = γ2~G = γ2Gr∂r; this force is
counteracted by the stresses in the station’s structure (which prevent it from collapsing),
and so ~U = 0 for all mass elements at all times. That is, the station remains static, with, e.g.,
its hatches pointing to the same fixed stars. It is, in particular, unaffected by the dragging
of the compass of inertia. The situation is only distinct from that around a static black hole
in that here the station’s angular momentum per unit mass in non-zero [cf. Equation (6)],

uφ|R = (eΦAφ)|R = − 2aM
R
√

1− 2M/R
(R ≡ station’s radius)

implying, e.g., that a Sagnac effect will be measured in an optical fiber loop along the
station; see Section 2.1 and Figure 1a [the difference in arrival times for beams propagating
in opposite directions along the station being given by ∆tS in (22), making therein r = R].
It implies also that it is impossible for the crew members along the station to all have their
clocks synchronized (see, e.g., [34] Sections 5.3.2–5.3.3).

Imagine now that a crew member starts throwing objects (test particles); by having a
non-zero velocity (~U 6= 0) with respect to the star-fixed reference frame, gravitomagnetic
(i.e., Coriolis) forces mγ~U × ~H will now act on them, cf. Equation (9). The gravitomagnetic
field ~H in the equatorial plane of the Kerr spacetime is given by Equation (21); it is
orthogonal to the plane, pointing up. Consider, in particular, as depicted in Figure 2a,
one test particle dropped from rest from the station, and another one launched with an
initial outwards radial velocity. The in-falling particle is indeed deflected in the direction
of the black hole’s rotation; however, the outgoing one is deflected in the opposite direction,
contradicting the naive fluid dragging picture. This exemplifies how different Coriolis
forces are from viscous dragging-type forces. In other words, the dragging of the compass
of inertia is a phenomenon very different from “body-dragging.”
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Figure 2. (a) A space station (radius R = 5M) around a spinning Kerr black hole (a = 0.9M). It is not “dragged” around:
if initially static, it remains so, each hatch pointing to the same distant star. The dragging of the compass of inertia does
not affect it: the gravitomagnetic (i.e., Coriolis) forces vanish, the gravitational forces (9) exerted on the station reducing
to gravitoelectric (i.e., “Newtonian”) forces, ~FGEM/m = γ2~G, which are radial. It is affected only by the dragging of the
ZAMOs, causing it to have a non-zero angular momentum, manifesting e.g., in a Sagnac effect along optical fiber loops
around the station. A particle dropped from rest is deflected, along its infall, in the direction of the BH’s rotation, by the
gravitomagnetic force mγ~U × ~H; however, a particle launched with initial outwards radial velocity (v = 0.3 for the blue
dashed trajectory) is deflected in the opposite direction, contradicting again the naive body-dragging picture. [Red and blue
dashed trajectories are plots in Boyer–Lindquist coordinates obtained by numerically solving the geodesic equation]. (b) A
rotating ring around a ‘non-spinning’ BH. The BH does not acquire any angular acceleration, and the configuration remains
stationary. The consequence of the ring’s rotation is (via the dragging of the ZAMOs) causing a zero angular momentum
BH (J = 0); to have non-zero horizon angular velocity (ΩBH 6= 0) and, conversely, a BH with zero angular velocity to have
non-zero angular momentum.

Another example of this difference is provided by the circular geodesics around the
black hole, depicted in Figure 1b: the orbits are stationary; their motion is not acceler-
ated/decelerated by the black hole’s rotation (as would be the case if there were some
viscous coupling). The Coriolis forces mγ~U × ~H are in this case radial, consequently just
changing the overall gravitational attraction. Since they are repulsive (attractive) for co-
(counter-) rotating orbits, their effect is to actually (for a fixed radius r) make the co-rotating
geodesic slower than the counter-rotating one, somewhat at odds with the naive dragging
picture, as pointed out in [22,70,71].

It is also instructive to consider the reciprocal of the setting in Figure 2a, i.e., a non-
spinning black-hole perturbed by a rotating ring or disk around it. The gravitational field
produced by such setting is given by the perturbative treatments in [45] (for a ring),
and in [18] (for a disk perturbing a Schwarzschild black hole). Again, regardless of
the ring/disk’s rotating motion, the black hole is not dragged around, in the sense of
acquiring any “angular acceleration”. In fact, these solutions are stationary. The impact
of ring/disk’s rotation is (via the dragging of the ZAMOs) causing a black hole with zero
angular momentum to have a non-zero horizon angular velocity [18,45,72] and, conversely,
a non-rotating black hole to have a non-zero angular momentum [45,72]—thereby even
introducing a certain ambiguity in a black hole’s spinning/non-spinning character. Let
us see this in detail. First observe that (uZAMO)α ∝ δ0

α = ∇αt , and so the ZAMOs are
orthogonal to the hypersurfaces of constant time t, i.e., such hypersurfaces are their rest
spaces. We can thus say that, at each point, these hypersurfaces are rotating, with respect
to Boyer–Lindquist coordinates (anchored to inertial observers at infinity) with an angular
velocity ΩZAMO(r, θ) = −g0φ/gφφ, cf. Equation (8) (also called the “dragging angular
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velocity” e.g., [18]). The horizon is a 2-surface embedded in a hypersurface of constant t,
having the special property that therein ΩZAMO(r+) ≡ ΩBH becomes independent9 of θ;
so, the horizon rotates rigidly with angular velocity ΩBH, sometimes dubbed the “black
hole’s angular velocity” [10,74,75]. The black hole’s angular momentum is given [18,45,76]
by the Komar integral associated with the axisymmetry Killing vector field ξα = ∂α

φ:
J = −(1/16π)

´
SBH

?dξ, for SBH some 2-surface enclosing the black hole but not the
ring (in the case of the disk, S is the BH horizon). The ring’s angular momentum is
JR = −(1/16π)

´
S ?dξ − J, for S enclosing the whole system. For a BH-ring system, when

the BH’s angular momentum is zero (J = 0), the horizon angular velocity is non-zero, and
given by Equations (75) and (68) of [45],

ΩBH|J=0 =
2JR

R3 ,

where R is the ring’s circumferential radius. Conversely, when the horizon’s angular
velocity is zero (ΩBH = 0), the BH’s angular momentum is non-zero (negative):

J|ΩBH=0 = −
π−3/2 A3/2

BH
8R3 JR ,

where ABH is the horizon’s area, cf. Equations (76), (68), and (26) of [45].
It is also worth mentioning that entirely analogous conclusions to the above can be

drawn using “black saturns” [17], which are exact (4 + 1)-dimensional solutions describing
a black hole surrounded by a black ring.

3.1. Test Particles in Static Equilibrium around Spinning Black Holes

Perhaps the sharpest counter-examples to the notion of body-dragging, and how
drastically actual frame-dragging (in any of its levels) differs from it, is the existence of
static equilibrium positions for test particles around some spinning black hole spacetimes,
such as the Kerr-de Sitter and (for charged particles) the Kerr–Newman spacetimes. The
metrics of both these spacetimes are encompassed in the line element (Kerr–Newman–dS
metric [77])

ds2 = − ∆r

χ2Σ

(
dt− a sin2 θdφ

)2
+

Σ
∆r

dr2 +
Σ
∆θ

dθ2 +
∆θ sin2 θ

χ2Σ

[
adt− (a2 + r2)dφ

]2
; (28)

∆r ≡ r2 − 2Mr + a2 + Q2 − Λ
3

r2(r2 + a2) ; χ ≡ 1 +
Λ
3

a2 ; (29)

∆θ = 1 +
Λ
3

a2 cos2 θ ; Σ ≡ r2 + a2 cos2 θ , (30)

where Λ is the cosmological constant, and Q the black hole’s charge.

3.1.1. Kerr-de Sitter Spacetime

This metric is obtained by setting Q = 0 in (28)–(30). The gravitoelectric field [i.e.,
minus the acceleration of the laboratory observers, Equation (12)] is, in the equatorial plane
(θ = π/2),

~G = − (3M− r3Λ)∆r

3r2(∆r − a2)
∂r .

It vanishes at r =
3√3MΛ−1 ≡ rstatic (“static radius” [78]), where the cosmological

repulsion exactly balances the gravitational attraction. By virtue of Equation (9), this
means that no gravitational inertial force is exerted on a particle at rest at r = rstatic,
~FGEM = mD̃~U/dτ = 0; i.e., particles placed there remain static (dxα/dτ = 0), while
following a geodesic worldline (DUα/dτ = d2xα/dτ2 = 0). They are not dragged in any
way by the black hole’s rotation, no tangential force being needed to hold them in place,
unlike one might think based on the viscous fluid dragging analogy. Frame-dragging has



Universe 2021, 7, 388 14 of 27

no detectable effect on such particles, only causing them (via the dragging of the ZAMOs)
to have non-zero angular momentum,

Uφ = uφ = − a(r2 + a2 − ∆r)

rχ
√

∆r − a2
.

3.1.2. Kerr–Newman Spacetime

An analogous situation occurs in the Kerr–Newman spacetime, in this case for charged
particles. This metric is obtained by setting Λ = 0 in (28)–(30); the corresponding electromag-
netic 4-potential 1-form is A = Qr(a sin2 θdφ− dt)/Σ. Consider now a (point-like) test parti-
cle of 4-velocity Uα, mass m, and charge q. Its equation of motion is DUαdτ = (q/m)FαβUβ,
whose space part, in the “laboratory frame”, reads, cf. Equations (9) and (A7),

D̃~U
dτ

= γ
[
γ~G + ~U × ~H

]
+

q
m

[
γ~E + ~U × ~B

]
,

where ~E and ~B denote, respectively, the space components of the electric field (Eu)α ≡
Fαβuβ and magnetic field (Bu)α ≡ ?Fαβuβ as measured by the laboratory observers (2). In
the equatorial plane, ~E and ~G read

~E =
Q∆r

r3
√

∆r − a2
∂r ; ~G =

(Q2 −Mr)∆r

r3(∆r − a2)
.

The equilibrium positions are given by the condition D̃~U/dτ = 0 = ~U; noticing that
~U = 0⇒ Uα = uα ⇒ γ = 1 [cf. Equation (2), and recall that γ ≡ −Uαuα], this condition
becomes (in the equatorial plane)

~G = − q
m
~E ⇔ qQ

m

√
∆r − a2 = Mr−Q2 ,

which, in the non-naked scenario M2 > Q2 + a2, and outside the ergosphere, r > M +√
M2 −Q2, yields the single solution [79]

rstatic =
Q2

M− |q|
√
(M2 −Q2)/(q2 −m2)

,

with Q and q having the same sign (as expected), and |q| > m. Hence, a particle with such
a charge, placed at r = rstatic, remains at rest, with no gravitomagnetic nor magnetic force
acting on it since ~U = 0⇒ ~U × ~H = ~U × ~B = 0.

3.2. “Bobbings” in Binary Systems

Frame-dragging plays a crucial role in the dynamics of binary systems. Among other
effects, it is at the origin of the bobbings observed in numerical simulations [80,81] of
nearly identical black holes with anti-parallel spins along the orbital plane (“extreme kick
configurations”, see Figures 3 and 4), in which the whole binary (i.e., its center of mass)
oscillates “up and down.” They are an example of a setting where the naive viscous fluid
analogy, and its associated “body-dragging” misconception, lead to predictions opposite to
the real effects.

The setting is illustrated in Figure 3; according to the fluid dragging analogy, in phases
A and C, there would be no dragging forces, which would be maximum in B and D, each
black hole dragging the other into the plane of the illustration in phase B, and outwards in
phase D. None of this is true, however.
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Figure 3. Incorrect prediction of the bobbing motions of “extreme kick” spinning black hole binaries, as would follow from
the body-dragging misconception (illustration based on Figure 5 of [82]). Each black hole would be acted by a viscous-type
dragging force (~FDrag) originated by the spin of the other black hole; such forces would vanish when the black holes’ spins
lie along the axis connecting them (phases A and C), and be maximum when the spins are orthogonal to such an axis
(phases B and D), each black hole dragging the other inwards of the plane of the illustration in phase B, and outwards in
phase D. None of these forces exist, however.
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Figure 4. (a) The field lines of the gravitomagnetic field ~H produced by a spinning black hole (of spin vector~J); it is similar
(far from the BH) to that of a magnetic dipole oriented oppositely to~J. (b) The actual picture of the corresponding spin-orbit
gravitomagnetic forces M~v× ~H involved in the bobbing motion, with phase D suppressed, since the result is similar to
B. The situation is opposite to that in Figure 3: the forces vanish when the spins are orthogonal to the axis connecting the
black holes (phases B and D, as therein ~v1 ‖ ~H2, ~v2 ‖ ~H1), and have maximum magnitude when they lie along such an axis,
pushing the pair out of the plane of the illustration in phase A, and inwards in phase C.

The gravitomagnetic field of a body (or black hole) with spin vector ~J is given, at
leading order, and in its post-Newtonian (PN) rest frame, by (e.g., [7,9])

~H = 2
~J
r3 − 6

(~J ·~r)~r
r5 , (31)

similar to that of a magnetic dipole, with −2~J in the place of the magnetic moment ~µ.
Its field lines are depicted in Figure 4a. The gravitomagnetic force exerted by black
hole 1 (BH 1) on black hole 2 (BH 2) is, in the former’s PN instantaneous rest frame,
~FGM1,2 = γM2~U2 × ~H1 ≈ M2~v21 × ~H1, where ~v21 = ~v2 −~v1 is the velocity of BH 2 relative
to BH 1, and in the last equality, we used Uα = U0(1,~v), and approximated ~U ≈ ~v ≡ d~x/dt.
Using the vector identity (5.2a) of [83], it reads

~FGM1,2

M2
= ~v21 × ~H1 = − 4

r3
21
~v21 ×~J1 −

6~r21[(~v21 ×~r21) ·~J1]

r5
21

− 6(~v21 ·~r21)~J1 ×~r21

r5
21

= − 4
r3

21
~v21 ×~J1 , (32)

where~r21 ≡ ~x2−~x1 is the position vector of BH 2 relative to BH 1, and in the second equality,
we noticed that (~v21 ×~r21) ·~J1 = 0, since the black hole’s spins lie in the orbital plane, and
~v21 ·~r21 ≈ 0 for quasi-circular motion. The analogous expression for ~FGM2,1 = M1~v12 × ~H2
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follows by interchanging 1 ↔ 2 in (32). It is clear from Figure 4 that these forces vanish
in phases B and D, as therein the BHs’ velocities are aligned with their gravitomagnetic
fields: ~v1 ‖ ~H2, ~v2 ‖ ~H1. They have maximum magnitude in phases A and C, when each
black hole’s velocity is orthogonal to the other’s spin-vector, pointing out of the plane of
the illustration in phase A, and inwards in phase C. That is, the situation is opposite in
phasing to the “body-dragging” picture of Figure 3. (It is rather surprising that in [84],
where Figure 3 is reproduced, and at the same time equations equivalent to the above are
presented, this disagreement has seemingly gone unnoticed).

The Origin of the Bobbing

The gravitomagnetic forces (~FGM1,2 and ~FGM2,1) each black hole exerts on the other,
which are spin-orbit interactions, point in the same direction, seemingly causing the whole
pair to accelerate. Albeit true, it is not the whole story, as these are not the only spin-
orbit forces in this system. Each black hole also exerts a spin-curvature force given by
Equation (26), which is of the same order of magnitude [albeit of different nature; not
an inertial force but a “real”, covariant force, causing the body to deviate from geodesic
motion, as discussed in Section 2.4], as we shall now see.

Compact bodies such as black holes have angular momentum J . M2, hence the gravit-
omagnetic acceleration in Equation (32) is of the order vJ/r3 . vM2/r3 ∼ vU(∇U) ∼ O(5),
i.e., it arises at 1.5 order in the post-Newtonian (PN) expansion, see Appendix A.1. Thus, we
need equations of motion for spinning (pole-dipole) bodies accurate to 1.5 PN order. These
follow by taking the 1.5 PN limit of the Mathisson–Papapetrou Equation (26), which reduces
(see Appendix A.3) to (A8), with ~F the 1.5PN limit of the spin-curvature force Fi = −Hβi Jβ.

The force exerted by BH 2 on BH 1 is Fi
2,1 = −(H2)

i
β Jβ

1 , where (H2)αβ = ?RαµβνUµ
1 Uν

1 is the
gravitomagnetic tidal tensor produced by BH 2 as “measured” by BH 1 (Equations (88)–(89)
and (94) in [50]); it reads [50,85–87]

~F2,1 = −3M2

r3
12

[
~v12 ×~J1 +

2~r12[(~v12 ×~r12) ·~J1]

r2
12

+
(~v12 ·~r12)~J1 ×~r12

r2
12

]
=

3M2

r3
12

~v21×~J1 , (33)

where, again, in the second equality, we noticed that (~v12 ×~r12) ·~J1 = 0 for spins lying in
the orbital plane, that~v12 ·~r12 ≈ 0 for quasi-circular motion, and that~v12 = ~v1−~v2 = −~v21.
The analogous expression for ~F1,2 follows by interchanging 1↔ 2 in (33). Observe that it is
~F2,1 (not ~FGM2,1) which should be regarded (in the context of a PN approximation) as the
“reaction” to the gravitomagnetic force ~FGM1,2 in Equation (32), as these are the ones that
depend on~J1; and note that they do not cancel out:

~FGM1,2 + ~F2,1 = −M2
~v21 ×~J1

r3
12

=
1
4
~FGM1,2 6= 0 . (34)

That is, the spin–orbit interactions do not obey an action–reaction law [87]. It is
this mismatch that causes the whole binary to bob. Consider the PN frame momentarily
comoving with BH 1; the 1.5PN gravitational field generated by BH 1 is, in such a frame,
described by the metric (A3) in Appendix A.1,

ds2 = (−1 + 2w− 2U2)dt2 + 2Aidxi + δij(1 + 2U)dxidxj ,

with w given by Equation (A11) with ~v1 = 0, and U = M1/r1, ~A = 2~r1 × ~J1/r3
1, cf.

Equations (A12). The equation of motion for BH 2 is then, by Equation (A8),

d2~x2

dt2 = (1 + v2
21 − 2U)~G− 3

∂U
∂t

~v21 − 4(~G ·~v21)~v21 +
~FGM1,2 + ~F1,2

M2
+ O(6) (35)
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with ~G =∝ ~r21 [cf. Equation (A15) with ~v1 = 0]. The extreme kick configuration corre-
sponds to the case that M1 = M2 ≡ M, ~J1 = −~J2 ∈ xOy; hence, ~F1,2 = 3M~v12 ×~J2/r3

12 =

3M~v21 ×~J1/r3
12 = −3~FGM1,2/4, cf. Equation (32). Since ~v21 and ~G lie both in the orbital

plane xOy, by (35) the z-coordinate acceleration of BH 2 reduces to

d2z2

dt2 =
Fz

GM1,2 + Fz
1,2

M
=

(~J1 ×~v21)
z

r3
12

=
2vJ cos(Ωt)

r3
12

(36)

where J = |~J1| = |~J2|, v is the magnitude of the BH’s velocities ~v2 = −~v1 with respect to
the binary’s center of mass frame, Ω = v/r, and in the last equality, we assumed (without
loss of generality) the system to be at phase A of Figure 4 at t = 0. By analogous steps, one
finds the same z-coordinate acceleration for BH 1, d2z1/dt2 = d2z2/dt2; that is, the bobbing
is synchronous, the whole binary (thus its center of mass) oscillating up and down.

It should be stressed that such bobbing, and the mismatch between action and reaction
in the spin-orbit forces, do not imply a violation of any conservation principle; on the
contrary, as shown in [84], it is a necessary consequence of the interchange between
mechanical momentum of the bodies and field momentum (in the sense of the Landau–
Lifshitz pseudotensor [88]).

It should also be remarked that, in Ref. [82], where the scheme in Figure 3 was
originally presented, still the author was remarkably not misled into a qualitatively wrong
phasing. Therein a notion of “space dragging”, seemingly different from a viscous fluid
analogy, and seemingly imparting a maximum bobbing velocity at stages B and D is
used (hence apparently closer to the phenomena involved in the ZAMOs dragging, as if
each black hole was “trying” to maintain constant its orbital angular momentum about
the other). Such a notion agrees in phasing with Equation (36), which, integrating, yields
dz2/dt = 2vJ sin(Ωt)/(r3

12Ω): it is indeed in phases B and D (φ = Ωt = π/2 and φ = 3π/2,
respectively) that the bobbing velocities have maximum magnitude. However, we notice
that, as discussed in Section 2, the gravitomagnetic forces (dragging of the compass of
inertia) are actually of different origin from the ZAMOs dragging; and that such a notion
is, at best, complicated and much less intuitive than the gravitomagnetic picture.

Finally, we made use above of a PN frame momentarily comoving with BH 1, which
greatly simplified computations, since, in this case: the gravitomagnetic field ~H1 produced
by BH 1 reduces to that generated by its spin, Equation (31); the gravitomagnetic force
~FGM1,2 encodes the whole spin-orbit inertial force acting on BH 2, and ~G lies along~r12. In
other PN frames (such as one momentarily comoving with the binary’s center of mass, as
depicted in Figures 3 and 4), the description is more complicated, as ~H1 then includes a
contribution due to BH 1’s translational motion, Equation (A16), and part of the spin-orbit
inertial force is then encoded in the gravitoelectric field ~G [having then a non-vanishing
z-component, see Equation (A15)]; however, the total spin-orbit inertial force is the same,
and equal to (32). Likewise, the spin-curvature force does not depend on the chosen PN
frame, so neither does the z-coordinate acceleration, which holds for a generic PN frame,
cf. Equation (A20). The derivation for a generic PN frame is given in Appendix A.3.

4. Conclusions

Generically very feeble in the solar system, where they have been subject of different
experimental tests [89–96] (including dedicated space missions [91,95], as well as some
controversies [97–100]), gravitomagnetic effects become preponderant in the strong field
regime, shaping the orbits of binary systems and the waveforms of the emitted gravita-
tional radiation [101–105]. Yet, they are still commonly misunderstood; in particular, those
dubbed “frame-dragging”. Pertaining initially to the dragging of the compass of inertia,
the usage of the term has been extended to other gravitomagnetic effects, as well as to
persistent misconceptions fueled by the deceptive fluid-dragging analogy—possibly even
by the very term “dragging”. We aimed in this paper to deconstruct such misconceptions,
explaining what the different types of frame-dragging effects consist of, and the relationship



Universe 2021, 7, 388 18 of 27

between them. We split them into three different levels (Table 1), governed by three distinct
mathematical objects, corresponding to different orders of differentiation of the gravito-
magnetic potential 1-form A. The first level (Section 2.1), governed by A itself, may be cast
physically (in axistationary spacetimes) as the dragging of the ZAMOs, which comprises
effects such as the Sagnac effect in optical loops around the source, or the arrangement of
the bodies’ angular velocities/angular momentum in black holes surrounded by disks or
rings (Section 3). It contributes also to the gravitomagnetic clock effect (Section 2.3). The
second level, governed by the gravitomagnetic field ~H, and physically interpreted as the
dragging of the compass of inertia (Section 2.2), includes the gravitomagnetic (or Coriolis)
forces on test bodies and the Lense–Thirring orbital precessions, gyroscope precession,
and is also responsible for the remainder of the gravitomagnetic clock effect. The third
level (Section 2.4), governed by the gravitomagnetic tidal tensor Hαβ (“magnetic” part of
the Riemann tensor), and interpreted as a differential dragging of the compass of inertia,
physically manifests in the relative precession of nearby sets of gyroscopes, and in the
spin-curvature force on a gyroscope. These levels are largely independent, in that there
exist spacetimes possessing only the first (which we exemplified with spinning Lewis-Weyl
cylinders, Section 2.3), and others possessing only the first two levels, but missing the third
(e.g., the Gödel universe). In the case of the first two levels (dragging of the ZAMOs vs
dragging of the compass of inertia), their effects can actually be opposite, as exemplified
here by the case of circular geodesics in the Kerr spacetime (Section 2.3).

Two main analogies are commonly used to help to physically interpret the frame-
dragging effects: the analogy with magnetism (which created the term “gravitomagnetism”)
and the fluid dragging analogy. The former is clearly useful for the second and third levels
of frame-dragging, since not only the gravitational effects comprised therein have an
electromagnetic analogue, as the exact equations describing them exhibit, in the appropriate
formalism, exact analogies (up to constant factors) with the electromagnetic counterparts
(Sections 2.2–2.4). As for the first level, they have no analogue in classical electromagnetism
(only in quantum electrodynamics10). The fluid model, on the other hand, draws an
analogy with the dragging of a viscous fluid by a moving/rotating body. It gives some
qualitative intuition (in a loose sense) for the first level of frame-dragging, in that in all
the systems considered herein (black hole spacetimes, and infinite spinning cylinders)
the ZAMOs are dragged in the same direction of the source’s rotation. The parallelism
ends there however: other features of any fluid flow, such as the unavoidable dragging of
immersed bodies along with the flow, have no parallel in any of the frame-dragging levels.
The dragging of the compass of inertia, in particular (which was the original motivation for
such analogy), is a very different (sometimes opposite, cf. Sections 3 and 3.2) phenomenon
from body-dragging. Some of these inconsistencies have been pointed out in the literature,
namely in a paper by Rindler [37]—based, however, on a weak field slow motion linearized
theory approach, the question remaining as to whether the conclusions would fully hold in
the exact case. We generalized them here (Section 3) to the exact theory, using the exact 1 + 3
GEM formalism. We considered first (as an application akin, on the whole, to [37]) a space
station around a spinning black hole (seen to remain stationary, without acquiring any
rotation), as well as the situation for test particles launched from it, where those with initial
outwards radial velocity are deflected in the direction opposite to the black hole’s rotation.
We considered also the reciprocal problem—a rotating ring around a ‘non-spinning’ black
hole (either with zero angular momentum, or zero horizon angular velocity), pointing
out that the black hole acquires no angular acceleration of any sort, the solutions being
stationary. As a very physical, and perhaps sharpest example to convince the reader that
the (all too common) notion of “body-dragging” is wrong, and its underlying viscous
fluid-dragging analogy extremely misleading, we considered equilibrium positions for
test particles in spinning black hole solutions (namely Kerr–Newman and Kerr-de Sitter).
Finally, we considered a notable phenomenon which is driven by frame-dragging—the
bobbings in “extreme kick” binary systems—and where the viscous-dragging picture
predicts the exact opposite of the real effect.
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Appendix A. Inertial Forces—General Formulation

The exact formulation of the inertial GEM fields given in Section 2.2, and, in particular,
Equations (9)–(11), hold for stationary fields. We briefly present here its generalization for
arbitrary fields. Several such formulations have been given in e.g., [28–30,32,35,106]; we
will follow the exact approach in [32], which, in the corresponding limits, leads directly to
the GEM fields usually defined in post-Newtonian approximations, e.g., [20,25,94], and
(up to constant factors and sign conventions) in the linearized theory approximations,
e.g., [7,21–24].

Consider a congruence of observers of 4-velocity uα, and a (point-like) test particle of
worldline xα(τ) and 4-velocity dxα/dτ = Uα. Let U〈α〉 ≡ hα

βUβ be the spatial projection of
the particle’s velocity with respect to uα, cf. Equation (3); it yields, up to a γ (≡ −uαUα)
factor, the relative velocity of the particle with respect to the observers (cf. e.g., [28,50,63]).
It is the variation of U〈α〉 along xα(τ) that one casts as inertial forces (per unit mass); the
precise definition of such variation involves some subtleties, however. For that, we need
a connection ∇̃ (i.e., a covariant derivative) for spatial vectors that (i) in the directions
orthogonal to uα should equal the projected Levi–Civita spacetime connection: ∇̃XZα =
hα

β∇XZβ, for any Xα and Zα orthogonal to uα, so that it corrects for the trivial variation
of the spatial axes in the directions orthogonal to uα (for instance, of a non-rectangular
coordinate system in flat spacetime) which is not related to inertial forces and does not
vanish in an inertial frame; (ii) along the congruence, becomes an ordinary time-derivative
∂u, so that it yields the variation of U〈α〉 with respect to a system of spatial axes undergoing
a transport law specific to the chosen reference frame. The most natural of such choices
is spatial axes co-rotating with the observers (“congruence adapted” frame [32]; arguably,
the closest generalization of the Newtonian concept of reference frame [6,29]). For an
orthonormal basis eα̂, whose general transport law along the observer congruence can be
written as (e.g., [10,32])

∇ueβ̂ = Ωα̂
β̂
eα̂; Ωαβ = 2u[α∇uuβ] + ε

αβ
νµΩµuν ,

that amounts to choosing Ωα (the angular velocity of rotation of the spatial axes relative to
Fermi–Walker transport) equal to the observer’s vorticity: Ωα = ωα, as defined in (12). If
the congruence is rigid, this ensures that the axes eı̂ point to fixed neighboring observers.
The connection that yields the variation of a spatial vector Xα with respect to such a
frame is ∇̃αXβ ≡ hβ

γ∇αXγ + uαε
β
δγλuγXδωλ, cf. Equation (51) of [32]; and the inertial or

“gravitoelectromagnetic” force on a test particle as measured in such frame is the variation
of U〈α〉 along xα(τ) with respect to ∇̃, that is, ∇̃UU〈α〉 ≡ D̃U〈α〉/dτ. Since, for geodesic
motion,∇UUα = 0, it follows, using (3), that ∇̃UU〈α〉 = −γ(∇Uuα + ε

β
δγλuγUδωλ), where

γ ≡ −Uαuα. Finally, from the decomposition (e.g., Equation (135) of [69])

∇βuα ≡ uα;β = −uβ∇uuα − εαβγδωγuδ + σαβ +
θ

3
hαβ , (A1)
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where σαβ = hµ
α hν

βu(µ;ν) − θhαβ/3 and θ ≡ uα
;α are, respectively, the congruence’s shear and

expansion, we have (using ∇Uuα ≡ Uβ∇βuα) [32]

D̃U〈α〉

dτ
= γ

[
γGα + εα

βγδuδUβ Hγ − σα
βUβ − θ

3
hα

βUβ

]
≡

Fα
GEM
m

, (A2)

where the “gravitoelectric” Gα and “gravitomagnetic” Hα fields are again given by Equations (12)
(being, respectively, minus the observers’ acceleration, and twice their vorticity), and m
is the particle’s mass. For a congruence of observers (2) tangent to a time-like Killing
vector field in a stationary spacetime (or for any rigid congruence of observers in general),
σαβ = 0 = θ, and so Equation (A2) reduces to Equation (9).

Appendix A.1. Post-Newtonian Approximation

The post-Newtonian expansion is a weak field and slow motion approximation tai-
lored to bound astrophysical systems. It can be cast in different, equivalent ways; here,
following [10,69,87,88,107,108], we frame the expansion in terms of a small dimensionless
parameter ε, such that U ∼ ε2, where U is minus the Newtonian potential [i.e., taking
the Newtonian limit of Equation (1), Φ = −U], and the bodies’ velocities are assumed
such that v . ε (since, for bounded orbits, v ∼

√
U). In terms of “forces,” the Newtonian

force m∇U is taken to be of zeroth PN order [0PN, i.e., O(2)], and each factor ε2 amounts
to a unit increase of the PN order. Time derivatives increase the degree of smallness of
a quantity by a factor ε; for example, ∂U/∂t ∼ Uv ∼ εU. The 1PN expansion consists
of keeping terms up to O(4) in the equations of motion [107]. This amounts to retaining
terms up to O(4) in g00, O(3) in g0i, and O(2) in gij, effectively considering a metric of the
form [20,88]

g00 = −1 + 2w− 2w2 + O(6); gi0 = Ai + O(5); gij = δij(1 + 2U) + O(4) (A3)

(actually accurate to 1.5PN), where w consists of the sum of U plus non-linear terms of
order ε4, w = U + O(4). For observers (2) at rest in a given coordinate system, by (12)
Gi = Γi

00/g00, Hi = −ε
ij
k0Γk

0j/g00; hence11

~G = ∇w− ∂ ~A
∂t

+ O(6) ; ~H = ∇× ~A+ O(5) (A4)

(cf. e.g., Equation (3.21) of [20]). Moreover, σαβ . O(5), θ = 3∂tU + O(5), Ui = U0vi =

vi + O(3), ~v ≡ d~x/dt, and thus Equation (A2) becomes

~FGEM

m
≡ D̃~U

dτ
= (1 + v2)~G +~v× ~H − ∂U

∂t
~v + O(6) . (A5)

In terms of coordinate acceleration, noting that D̃~U/dτ = (U0)2d2~x/dt2 + 2~v∂tU − v2~G +
4(~G ·~v)~v + O(6), (U0)−2 = 1− v2 − 2U + O(4), we have

d2~x
dt2 =

~FIPN

m
= (1 + v2 − 2U)~G +~v× ~H − 3

∂U
∂t

~v− 4(~G ·~v)~v + O(6) , (A6)

(cf. Equation (7.17) of [20]), where ~FIPN stands for “post-Newtonian inertial force” (in order
to distinguish from ~FGEM). The absence of O(5) terms means that (A5) and (A6) are actually
accurate to 1.5PN order.

“Linear dragging”.—The contribution −∂ ~A/∂t to ~G in (A4) (and thus to ~FIPN) means
that a time-varying gravitomagnetic vector potential induces a velocity-independent in-
ertial force on a test particle. For instance, in the interior of an accelerating massive shell,
inertial forces are induced in the same direction of the shell’s acceleration, as first noted
by Einstein ([109], pp. 100–102; see also [110,111]). The effect has been studied in the
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framework of the exact theory in some special solutions (e.g., [112,113]), and has been
experimentally confirmed to high accuracy (albeit indirectly, one may argue) in the ob-
servations of binary pulsars [114]. It is sometimes dubbed “translational dragging” [111]
or “linear dragging” [112,115] (of inertial frames). We note that, in spite of such denom-
inations, it is a component of the gravitoelectric field ~G; as such, in the given reference
frame, it does not directly fit into the frame-dragging types in Table 1. It mixes, however,
with the gravitomagnetic inertial acceleration ~v× ~H (dragging of the compass of inertia)
in changes of frame; for instance, as exemplified in Sections 3.2 and Appendix A.3.1, an
inertial force which, in a given PN frame, consists solely of the gravitomagnetic term
m~v× ~H, in another frame can be partially incorporated in the term −m∂ ~A/∂t (this stems
from the transformation laws for ~G and ~H, which exhibit a certain analogy with their
electromagnetic counterparts, see [108]).

Appendix A.2. Non-Geodesic Motion

When the test body is acted upon by a covariant force Fα = DPα/dτ, and in the special
case that Pα = mUα (no “hidden momentum”) with the body’s rest mass m constant, then
Equation (A2) is readily generalized to

m
DUα

dτ
= Fα ⇔ m

D̃U〈α〉

dτ
= Fα

GEM + Fα , (A7)

and its post-Newtonian limit to

m
d2~x
dt2 = ~FIPN + [1 + O(2)]~F + O(6) . (A8)

Appendix A.3. Equations of Motion for Spinning Binaries

Consider a system of isolated spinning pole-dipole bodies interacting gravitationally.
Each body K is considered under the influence of the gravitational field “external” [20,86]
to it, described (in the harmonic gauge in [20,25,86,88,94]), by the metric (A3) with [86,88]

w = ∑
A 6=K

MA
rA

(
1 + 2v2

A − ∑
B 6=A

MB
rAB
− 1

2
~rA ·

d~vA
dt
− (~rA ·~vA)

2

2r2
A

)
+ 2 ∑

A 6=K

(~vA ×~JA) ·~rA

r3
A

;

(A9)

~A = −4 ∑
A 6=K

MA
rA

~vA − 2 ∑
A 6=K

~JA ×~rA

r3
A

; U = ∑
A 6=K

MA
rA

, (A10)

accurate to 1.5PN order. Here~rAB ≡ ~xA −~xB,~rA ≡ ~x−~xA, ~x is the point of observation,
~xA is the instantaneous position of body “A”, and ~vA = d~xA/dt = −d~rA/dt its velocity.
To this accuracy, d~vA/dt is to be taken in expression (A9) as the Newtonian “acceleration”
caused by the other bodies, d~vA/dt = −∑B 6=A MB~rAB/r3

AB + O(4).
For a binary of compact bodies (1 and 2), the metric “seen” by body 2 (K = 2) reduces

to (A3) with

w =
M1

r1

(
1 + 2v2

1 −
M2

r12
+

1
2
~r1 ·~r12

M2

r3
12
− (~r1 ·~v1)

2

2r2
1

)
+ 2

(~v1 ×~J1) ·~r1

r3
1

; (A11)

~A = −4
M1

r1
~v1 − 2

~J1 ×~r1

r3
1

; U =
M1

r1
. (A12)

The equation of motion for body 2 is the 1.5 PN limit of the Mathisson–Papapetrou
Equation (26). Under the Mathisson–Pirani spin condition employed in (26), dM2/dτ = 0
and, to the accuracy at hand, one can take Pα

2 ≈ M2Uα
2 (see [116]), hence DPα

2 /dτ ≈
M2DUα

2 /dτ (consistent also, to the accuracy at hand, with the Tulczyjew–Dixon and
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Ohashi–Kyrian–Semerák spin conditions; see [116–118] and Section 3.1 of the Supplement
in [50]), leading, by Equation (A8), to

M2
d2~x2

dt2 = ~FIPN + ~F1,2 + O(6) , (A13)

with the inertial force ~FIPN given by Equations (A4), (A6), and (A11)–(A12), and ~F1,2 the
1.5PN limit of the spin-curvature force exerted by body 1 on body 2, Fi

1,2 = −(H1)
i

β Jβ
2 ,

where (H1)αβ = ?RαµβνUµ
2 Uν

2 is the gravitomagnetic tidal tensor produced by body 1 as
“measured” by body 2 (Equations (88)–(89) and (94) in [50]). The latter force reads

~F1,2 = −3M1

r3
12

[
~v21 ×~J2 +

2~r21[(~v21 ×~r21) ·~J2]

r2
12

+
(~v21 ·~r21)~J2 ×~r21

r2
12

]
(A14)

(cf. [50,85–87]), where~r21 ≡ ~x2 −~x1, and ~v21 = ~v2 −~v1.

Appendix A.3.1. Extreme Kick Configuration

In this configuration, the bodies are assumed to be two black holes with approximately
equal masses M1 ≈ M2, and spins equal in magnitude but anti-parallel,~J1 ≈ −~J2, lying in
the orbital plane xOy. They are also assumed in a nearly circular orbit about the binary’s
center of mass. In this case, (~v21 ×~r21) ·~J2 = 0 and ~v21 ·~r21 ≈ 0 (similar relations holding
for ~v1 or ~v2 in the place of ~v21, and~J1) and so Equation (A14) reduces to ~F1,2 = −3M1~v21 ×
~J2/r3

12. By Equations (A4), (A11)–(A12), the gravitoelectric and gravitomagnetic fields as
“seen” by BH 2 are

~G = −M1
~r21

r3
12

(
1− 2

M1
r21

+ 2v2
1

)
+ 5

M1 M2

r4
12

~r21 +
4~v1 ×~J1

r3
21

(A15)

~H1 = ~Hspin + ~Htrans; ~Hspin = 2
~J1

r3
12
− 6

(~J1 ·~r21)~r21

r5
12

; ~Htrans = −4
M1

r3
12
~v1 ×~r21 (A16)

where we noticed that, at BH 2’s position (~x = ~x2), ~r1 ≡ ~x − ~x1 = ~r21. The last term
of ~G tells us that, in a generic reference frame, due to the translational motion of the
source (BH 1), part of the spin-orbit inertial force is incorporated in the gravitoelectric field.
Equation (A16) tells us that, in addition to the term ~Hspin due to BH 1’s spin, there is also
the translational contribution ~Htrans to the gravitomagnetic field ~H1 produced by BH 1. The
gravitomagnetic force exerted on BH 2 reads

~FGM1,2 = M2~v2 × ~H1 = −4M2

r3
21

(~v2 ×~J1 + M1v1v2~r21) , (A17)

where in~v2× ~Htrans, we again used the vector identity (5.2a) of [83]. Since~v1 ‖ ~v2 ⊥~r21, the
last two terms of ~FIPN in (A6) both vanish at BH 2’s position: ∂tU = M1(~r21 ·~v1)/r3

12 = 0;
(~G ·~v2)~v2 = −M1(~r21 ·~v2)~v2/r3

12 + O(6) = 0. The equation of motion for BH 2 is thus,
by (A13),

d2~x2

dt2 =
~FIPN + ~F1,2

M2
= (1 + v2

2 − 2
M1

r1
)~G +

~FGM1,2 + ~F1,2

M2
, (A18)
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with ~G, ~FGM1,2 and ~F1,2 given by Equations (A15), (A17), and (A14). Splitting the PN inertial
force into “monopole” and spin-orbit parts, ~FIPN = ~Fmono + ~FISO, we can re-write

d2~x2

dt2 =
~Fmono + ~FISO + ~F1,2

M2
; ~FISO = −4M2~v21 ×~J1

r3
21

; ~F1,2 = −3M1~v21 ×~J2

r3
12

;

(A19)

~Fmono = −M1M2

r3
12

(
1− 4M1 + 5M2

r12
+ v2

2 + 2v2
1 + 4v1v2

)
~r21 .

Hence, ~FISO matches the gravitomagnetic force (32) exerted on BH 2, as measured
in the PN frame momentarily comoving with BH 1, obtained in Section 3.2. That is: in
a generic frame, the gravitomagnetic force does not encode the whole spin-orbit inertial
force, part of it being encoded in the gravitoelectric force M2~G; however, the total spin-
orbit inertial force is the same in all PN frames. Since ~Fmono ∈ xOy, we have, for the z-
coordinate,

d2z
dt2 =

~FISO + ~F1,2

M
= − (~v21 ×~J1)

z

r3
12

, (A20)

matching the result (36) obtained in Section 3.2.

Notes
1 The future-pointing condition is kα∂α

t = k0 < 0 ⇔ dt > Aidxi, where kα ≡ dxα/dλ is the vector tangent to the photon’s
worldline.

2 Actually, the weaker condition that the congruence of observers at rest (2) is inertial at infinity suffices.
3 Computing the Christoffel symbols Γi

00 = −e2ΦGi, Γi
j0 = e2ΦAjGi − eΦ Hi

j/2, and Γi
jk = Γ(h)i

jk − eΦA(k H i
j) − e2ΦGiAjAk, where

Hij ≡ eΦ[Aj,i −Ai,j].
4 In [32] a different convention was used, in that ~FGEM (and the term “inertial force”) therein actually refers to the inertial force per

unit mass (i.e., the inertial “acceleration” ~FGEM/m, in the notation herein).
5 Indeed, the vorticity ωα of a congruence of observers corresponds precisely to the angular velocity of rotation of the connecting

vectors between neighboring observers with respect to axes Fermi–Walker transported, see e.g., footnote in p. 7 of [34].
6 The innermost circular geodesics, in each direction, are the photon orbits whose radius is rph± = 2M{1+ cos[2 arccos(∓a/M)/3]}

[16], and so rph− ≥ 3M.
7 In a perhaps less straightforward manner though, and with unnecessary restrictions. Namely, in [19], it is assumed that (besides

being momentary comoving) the gyroscopes at L and Xi
2 have the same acceleration. This is not necessary, as shown here; in

order for (25) to hold, one needs only Ui
2 = 0, i.e., that gyroscope 2 has momentarily zero “Fermi relative velocity” [63] with

respect to gyroscopes at L. Moreover, the results therein hold only for vacuum, as the magnetic part of the Weyl tensor is used
instead of Hαβ.

8 Inspired on the title of the session PT5 — “Dragging is never draggy: MAss and CHarge flows in GR” (where “draggy” had
however no such meaning), held at the sixteenth Marcel Grossmann Meeting (MG16), July 5-10 2021.

9 In any stationary black hole spacetime whose matter content obeys the weak energy condition and hyperbolic equations, the
horizon is orthogonal to a (null) Killing vector field, i.e., it is a “Killing horizon” (see [73,74] theorem 2.2).

10 Namely the analogy between the Sagnac and the Aharonov–Bohm effects (see e.g., [34,35] and references therein); it does not,
however, assist much in the understanding of the former, as the latter effect is, conceptually, more difficult.

11 For the expressions for the Christoffel symbols, see e.g., Equations (8.15) of [25], identifying w → U + Ψ, Ai → −4Ui in the
notation therein.
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