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Abstract: This paper presents a relativistic version of Newtonian Fractional-Dimension Gravity
(NFDG), an alternative gravitational model recently introduced and based on the theory of fractional-
dimension spaces. This extended version—Relativistic Fractional-Dimension Gravity (RFDG)—
is based on other existing theories in the literature and might be useful for astrophysical and
cosmological applications. In particular, in this work, we review the mathematical theory for
spaces with non-integer dimensions and its connections with the non-relativistic NFDG. The Euler–
Lagrange equations for scalar fields can also be extended to spaces with fractional dimensions, by
adding an appropriate weight factor, and then can be used to generalize the Laplacian operator for
rectangular, spherical, and cylindrical coordinates. In addition, the same weight factor can be added
to the standard Hilbert action in order to obtain the field equations, following methods used for
scalar-tensor models of gravity, multi-scale spacetimes, and fractional gravity theories. We then apply
the field equations to standard cosmology and to the Friedmann-Lemaître-Robertson-Walker metric.
Using a suitable weight vt(t), depending on the synchronous time t and on a single time-dimension
parameter αt, we extend the Friedmann equations to the RFDG case. This allows for the computation
of the scale factor a(t) for different values of the fractional time-dimension αt and the comparison
with standard cosmology results. Future additional work on the subject, including studies of the
cosmological late-time acceleration, type Ia supernovae data, and related dark energy theory will be
needed to establish this model as a relativistic alternative theory of gravity.

Keywords: fractional-dimension gravity; modified gravity; dark matter; dark energy; cosmology

1. Introduction

This paper considers a possible relativistic generalization of Newtonian Fractional-
Dimension Gravity (NFDG), which was previously introduced as a non-relativistic alterna-
tive gravity model ([1–3], papers I, II, and III in the following). The main goal of NFDG
was to model galactic rotation curves without using the controversial Dark Matter (DM)
component (see also [4] for a general overview of NFDG). This was done by assuming that
galactic structures might behave like fractal media, with an effective spatial dimension
which could be lower than the standard value D = 3, including possible fractional, i.e.,
non-integer values. Each galaxy was then characterized by a particular form of this varying
dimension D = D(r), which can be a function of the radial distance from the galactic center.

In paper I [1], it was shown how NFDG is a natural extension of standard Newtonian
gravity to non-integer dimension spaces. Starting from a heuristic extension of Gauss’s law
for gravity to fractional-dimension spaces, we were able to generalize the gravitational field
and potential for extended mass sources, the Laplace and Poisson equations, the multipole
expansion, etc. Additionally, we modeled several types of spherically symmetric galactic
structures, such as Plummer models and others, showing that flat rotation curves can be
obtained in NFDG without resorting to DM.

In paper II [2], this analysis was extended to axially symmetric structures in order
to model real galactic data from the Spitzer Photometry and Accurate Rotation Curves
(SPARC) database [5]. In addition to exponential, Kuzmin, and other similar thin/thick
disk mass distributions, the case of the disk-dominated dwarf spiral galaxy NGC 6503 was
considered and it was shown that the rotation curve of this galaxy could be obtained by
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simply assuming D(r) ≈ 2 over most of the radial range. In other words, if this galaxy
were actually to behave like a fractal medium with (Hausdorff) dimension D(r) ≈ 2, its
dynamics would be fully explained by NFDG without any DM contribution.

In addition to NGC 6503, in paper III [3] we studied two additional galaxies with
our methods: NGC 7814 (bulge-dominated spiral) and NGC 3741 (gas-dominated dwarf).
Although these two galaxies seem to be characterized by different functions for the varying
dimension D = D(r), their rotation curves were also fully fitted with NFDG methods,
again without any DM. In paper III, the use of a variable dimension D(r) as a function of
the field point was also discussed and justified in terms of other similar existing studies.
In all these three papers, we pointed out that NFDG is only loosely based on the methods
of fractional calculus and fractional mechanics (see [6] and references therein), but is not
a fractional theory in the sense used by other gravitational models [7–20]. NFDG field
equations are of integer order, therefore local, as opposed to non-local field equations based
on fractional differential operators.

NFDG also shows possible connections with Modified Newtonian Dynamics
(MOND) [21–23], as discussed in detail in our previous papers [1–3]. In particular,
MOND phenomenology, including the recently reported Radial Acceleration Relation
(RAR) [24–26], might be explained by our varying dimension D = D(r), which provides
the link between the inherently non-linear MOND theory and the linear NFDG.

In this paper, we focus our efforts instead on a relativistic version of our model, which
will be called Relativistic Fractional-Dimension Gravity (RFDG). This extended version
of NFDG is very similar to Calcagni’s theory with ordinary derivatives [8,11], but uses
the weight factors introduced in our previous papers I–III. Other more limited analyses of
relativistic equations for non-integer dimension spaces are found in the literature [27,28],
but they do not fully explore the subject. These relativistic approaches to non-integer, lower-
dimension spaces should not be confused with past attempts to study General Relativity
(GR) in two or three-dimensional spacetimes [29–31]: in NFDG (or RFDG) the spacetime is
the usual 3 + 1, while we consider possible subsets X ⊂ R3 of the standard tri-dimensional
space, whose Hausdorff dimensions can be D 6= 3, and possibly also a fractional time
dimension in RFDG.

Our RFDG model follows the lines of the many existing modified gravity theories in
the literature (see [32] for a general review, or the more recent Ref. [33]) and their possible
cosmological consequences. As in standard GR [34], an alternative model of gravity should
be tested against experimental results of gravitational physics, or at least be consistent with
General Relativity at scales where Einstein’s theory is undisputed. For example, the MOND
model is well established as an alternative gravitational theory (for general reviews see
Refs. [35,36]) and its many implications for gravitation and cosmology have been studied
for decades, determining the strong and weak points of the model. On the contrary, our
NFDG and RFDG are very recent models with limited results and need to be analyzed in
more detail through future work, in order to become viable alternatives to standard GR.

In Section 2, we will describe the mathematical theory for spaces with fractional dimen-
sion and review the fundamental NFDG results from our previous papers. In Section 3, we
will review and expand the Euler–Lagrange equations for non-integer dimension spaces,
while in Section 4 we will detail the relativistic equations and apply them to standard
cosmology. Finally, in Section 5 conclusions are drawn and possible future work on the
subject is outlined.

2. Mathematical Theory for Spaces with Non-Integer Dimension and NFDG

The dimensions of space and spacetime play an important role in determining the
form of the physical laws and of the constants of nature. While we perceive space as
three-dimensional (and time as one-dimensional), discussions on a possible explanation of
the tri-dimensionality of space date back to Ptolemy and the early Greeks [37]. In modern
times, Ehrenfest’s famous article on the subject [38] explained how the tri-dimensionality
of space is inherently connected with fundamental physical laws, such as those of stable
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planetary orbits, atoms and molecules stability, and several others. More recent discussions
about the dimensionality of space can be found in the works by Barrow [37], Callender [39],
and references therein.

With more recent advances in mathematical theories and fractal geometries, it also be-
came possible to consider a continuous variation in the number of dimensions D for space,
i.e., not just positive integer dimensions, but any real (or even complex) spatial dimension
D. Although this possibility emerged in several areas of physics, it became popular in
dimensional regularization techniques commonly used in quantum field theory [40–42].
As part of these techniques (see also [43], page 249), the area of a unit hypersphere S in D
dimensions was evaluated as

∫
S dΩD = 2πD/2

Γ(D/2) , which yields familiar results for integer
values of D, such as 2 for D = 1, 2π for D = 2, 4π for D = 3, etc.

A more comprehensive theory for spaces with non-integer dimension was first intro-
duced by Stillinger in 1977 [44]. Starting from quantities depending explicitly on a variable
dimension D, such as the Gaussian integral

∫
dr exp

(
−αr2) = (π/α)D/2, or the radial

Laplace operator 1
rD−1

d
dr

(
rD−1 d

dr

)
= d2

dr2 +
(D−1)

r
d
dr , an axiomatic theory for metric spaces

of non-integer dimension was then introduced, based on weights, Wn(x1, . . . , xn|r1, . . . , rn),
for a fixed set of points x1, . . . , xn and distances r1, . . . , rn measured from them. The sim-
plest of these weights, W1, was computed as W1(r) = σ(D)rD−1 = 2πD/2

Γ(D/2) rD−1, with the
radial distance r measured from the origin.

This weight allows for the generalization of the integral of a spherically symmet-
ric function f = f (r) over a D-dimensional metric space as

∫ ∞
0 f (r)W1(r)dr = 2πD/2

Γ(D/2)∫ ∞
0 f (r)rD−1dr, and of the volume of the radius-R sphere as V(R, D) =

∫ R
0 W1(r)dr =

πD/2RD

Γ(1+D/2) .
In the same paper [44], Stillinger introduced a generalized Laplacian in polar coor-

dinates: ∇2g = [ 1
rD−1

∂
∂r (r

D−1 ∂
∂r ) +

1
r2 sinD−2 θ

∂
∂θ (sinD−2 θ ∂

∂θ )]g = [ ∂2

∂r2 +
(D−1)

r
∂
∂r +

1
r2 (

∂2

∂θ2 +
(D−2)
tan θ

∂
∂θ )]g, and applied it to the solution of the generalized two-dimensional Schrödinger’s

equation, with the angular solution expressed in terms of Gegenbauer polynomials.
As for the physical meaning of a non-integer dimension D, Stillinger roughly estimated

the possible uncertainty of the spatial dimension as D ' 3± 10−6 in our terrestrial locale
and also explored the possibility of the role of D as a field variable in geometric theories of
gravity. In particular, he stated [44]: “However a more general class of spaces can also be
generated within which D varies continuously from point to point (integration weights
Wn would exhibit the change explicitly)”. This seems to imply that the axiomatic bases
for non-integer dimension spaces would still be valid for the weight W1 generalized as
W1(r) = σ[D(r) ]rD(r)−1 = 2πD(r)/2

Γ[D(r)/2] r
D(r)−1, with D = D(r) an explicit function of the field

point. This assumption was used as the rationale for a varying fractional dimension D in
all our three NFDG papers.

A similar but different approach was later introduced by Svozil [45], within the frame-
work of the Hausdorff measure theory. This lead directly to the integral of a spherically
symmetric function f = f (r) over a D-dimensional metric space χ as follows:

∫
χ

f dµH =
2πD/2

Γ(D/2)

∫ ∞

0
f (r)rD−1dr, (1)

where µH denotes an appropriate Hausdorff measure over the space. This result is the same
obtained previously by Stillinger and was also connected by Svozil to the Weyl’s fractional
integral defined as W−D f (x) = 1

Γ(D)

∫ ∞
x (t − x)D−1 f (t)dt, so that Equation (1) can also

be written as
∫

χ f dµH = 2πD/2Γ(D)
Γ(D/2) W−D f (0), thus connecting the theory of non-integer

dimension spaces with fractional calculus.
In 2004, Palmer and Stavrinou [46] expanded the previous concepts into the theory of

the equations of motion in a non-integer-dimensional space using Svozil’s measure theory
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approach and multi-variable integration techniques. In particular, to integrate over a subset
X ⊂ R3 they assumed that X = X1 × X2 × X3, where each metric space Xi (i = 1, 2, 3) is
equipped with a Hausdorff measure µi(Xi) and a dimension αi. When αi = 1, the Hausdorff
measure simply becomes a Lebesgue measure. The Hausdorff measure for the product set
X can be defined as µH(X) = (µ1 × µ2 × µ3)(X1 × X2 × X3) = µ1(X1)µ2(X2)µ3(X3) and
the overall Hausdorff spatial dimension is then D = α1 + α2 + α3.

Applying Fubini’s theorem we have [46–50]:∫
X

f (x1, x2, x3)dµH =
∫

X1

∫
X2

∫
X3

f (x1, x2, x3)dµ1(x1)dµ2(x2)dµ3(x3), (2)

dµi(xi) =
παi/2

Γ(αi/2)
|xi|αi−1dxi, i = 1, 2, 3

where the infinitesimal measures dµi in the second line of the previous equations follow
from the original Stillinger’s weight W1 described above, and used in the integral in
Equation (1). The factor of two in the weight W1 is now omitted, assuming integration
between −∞ and +∞ in each sub-space Xi.

As was noted in paper I, it is easy to check that the integral in Equation (2) when
applied to a function f (x1, x2, x3) = f (r) in spherical coordinates (r, θ, ϕ), yields the
expression in Equation (1). This follows from the standard relations between rectangular
and spherical coordinates and from the definitions for the differential measures in the
second line of Equation (2): dµ1dµ2dµ3 = πα1/2

Γ(α1/2)
πα2/2

Γ(α2/2)
πα3/2

Γ(α3/2) rα1+α2+α3−1dr| sin θ|α1+α2−1

|cos θ|α3−1dθ| sin ϕ|α2−1|cos ϕ|α1−1dϕ. Performing the angular integrations, simplifying the
results, and using D = α1 + α2 + α3, the result in Equation (1) is readily obtained.

While this result is independent of how the dimensions αi arrange themselves to
act on the orthogonal coordinates and depends only on the overall dimension D, Palmer
and Stavrinou [46] also noted that in more general cases it is not clear if the non-integer
dimension D distributes itself over the n space coordinates (example: α1 = α2 = · · · =
αn = D/n) or on only one coordinate (example: α1 = α2 = · · · = αn−1 = 1 and αn =
D− (n− 1)), eventually favoring the latter case in Ref. [46]. In these more general cases,
the results of the integrations in Equation (2) will depend on how this choice for the αi
dimensions is made.

With all these assumptions, NFDG was developed in papers I–III [1–3] by extending
Gauss’s law for gravitation to lower-dimensional spacetime D + 1, with non-integer space
dimension 0 < D ≤ 3. A scale length l0 was needed for dimensional correctness of all
expressions when D 6= 3, so that dimensionless coordinates were adopted in all formulas,
such as the rescaled radial distance wr ≡ r/l0 or, in general, the dimensionless coordinates
w ≡ x/l0 for the field point and w′ ≡ x′/l0 for the source point. A rescaled mass “density”
was also introduced: ρ̃(w′) = ρ(w′l0)l3

0 = ρ(x′)l3
0 , where ρ(x′) is the standard mass density

in kg m−3, and with dm̃(D) = ρ̃(w′)dDw′ representing the infinitesimal source mass in a

D-dimensional space1.
The NFDG gravitational potential φ̃(w) was then obtained as:

φ̃(w) = −2π1−D/2Γ(D/2)G
(D− 2)l0

∫
VD

ρ̃(w′)
|w−w′ |D−2 dDw′; D 6= 2 (3)

φ̃(w) =
2G
l0

∫
V2

ρ̃
(
w′
)

ln
∣∣w−w′ |d2w′; D = 2

where the physical dimensions for the NFDG gravitational potential φ̃ are the same as
those of the standard Newtonian potential (i.e., measured in m2 s−2).
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Assuming that φ̃(w) and the NFDG gravitational field g(w) are connected by g(w) =
−∇Dφ̃(w)/l0, where the D-dimensional gradient ∇D is equivalent to the standard one,
but derivatives are taken with respect to the rescaled coordinates w, we also obtained:

g(w) = −2π1−D/2Γ(D/2)G
l2
0

∫
VD

ρ̃(w′)
w−w′

|w−w′ |D dDw′. (4)

It is easy to check that the expressions in Equations (3) and (4) above correctly reduce
to the standard Newtonian ones for D = 3. The gravitational potential and field in the
last two equations were derived for a fixed value of the fractional dimension D, but it
was argued that they could also be applicable to the case of a variable dimension D(w),
assuming a slow change of this dimension with the field point coordinates.

The scale length l0 was related to the MOND acceleration constant a0 (sometimes also
denoted by g† [24,25]):

a0 ≡ g† = 1.20± 0.02 (random)± 0.24 (syst)× 10−10 m s−2, (5)

which represents the acceleration scale below which MOND corrections are needed. In
papers I–III, a possible connection between the scale length l0 and the MOND acceleration
a0 was proposed as:

a0 ≈
GM

l2
0

, (6)

where M is the mass of the system being studied (or a suitable reference mass). The main
consequences of the MOND theory (the flat rotation velocity Vf ≈ 4

√
GMa0, the “baryonic”

Tully–Fisher relation-BTFR Mbar ∼ V4
f , etc.) were recovered in NFDG by considering the

MOND limit to be equivalent to a space dimension D ≈ 2 [1].
The main NFDG Equations (3) and (4) were then adapted to spherically symmetric

and axially symmetric cases of interest, then leading to detailed fits of galactic rotation
curves for three notable cases (NGC 6503, NGC 7814, NGC 3741) as outlined in Section 1
above. It should be noted that the integrations over D-dimensional spaces were performed
following the techniques based on Equations (1) and (2) and for different choices of how
the individual dimensions α1, α2, α3 arrange themselves on the three spatial orthogonal
coordinates (see papers I–III for full details).

3. Euler-Lagrange Equations for Spaces with Non-Integer Dimension

In this section, we will expand the treatment of the Euler–Lagrange equations for
fields in non-integer-dimension spaces introduced by Palmer and Stavrinou [46], and use
it as a starting point for the relativistic equations of motion. This approach has the obvious
advantage of yielding the dynamics of the field for any number of degrees of freedom and
in any coordinate basis.

We assume a Lagrangian density in four spacetime coordinates, L = L
(
φ, ∂µφ

)
,

where the field φ and ∂µφ are functions of
(
t, x1, x2, x3) and with ∂µ = (∂t, ∂x1 , ∂x2 , ∂x3).

The generalized action S in a D + 1 spacetime is [46]2:

S =
∫

dtdDxL
(
φ, ∂µφ

)
=
∫

dt
∫

dµ1

(
x1
)

dµ2

(
x2
)

dµ3

(
x3
)
L
(
φ, ∂µφ

)
(7)

dµi

(
xi
)
= W1

(
xi, αi

)
dxi =

παi/2

Γ(αi/2)

∣∣∣xi
∣∣∣αi−1

dxi, i = 1, 2, 3

where the measures dµi are those from Equation (2) and all the integrations now extend
from −∞ to +∞, so that the measure weights are W1

(
xi, αi

)
= παi/2

Γ(αi/2)

∣∣xi
∣∣αi−1 (the factor of

two in the original Stillinger’s weight is now omitted)3.
By taking variations and minimizing the action [46], it is straightforward to obtain the

following Euler–Lagrange equations:
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3

∏
i=1

W1

(
xi, αi

)∂L
(
φ, ∂µφ

)
∂φ

−
3

∏
i=1

W1

(
xi, αi

)
∂µ

∂L
(
φ, ∂µφ

)
∂
(
∂µφ

) −
∂L
(
φ, ∂µφ

)
∂
(
∂µφ

) ∂µ

3

∏
i=1

W1

(
xi, αi

)
(8)

=
3

∏
i=1

W1

(
xi, αi

)∂L
(
φ, ∂µφ

)
∂φ

− ∂µ

[
3

∏
i=1

W1

(
xi, αi

)∂L
(
φ, ∂µφ

)
∂
(
∂µφ

) ]
= 0,

with the measure weights W1
(

xi, αi
)

described above, or even for more general types

of measures. Since for D = 3, and α1 = α2 = α3 = 1, we have
3

∏
i=1

W1
(
xi, αi

)
= 1

and ∂µ

3
∏
i=1

W1
(

xi, αi
)
= 0, Equation (8) reduces to standard Euler–Lagrange equations in

3 + 1 spacetimes.

As noted in Ref. [46], the “flow” or “current” of the measure ∂µ

3
∏
i=1

W1
(

xi, αi
)
, mul-

tiplied by the momentum density of the field
∂L(φ,∂µφ)

∂(∂µφ)
in the third term of the first line

in Equation (8), will alter the dynamics of the field φ in a non-integer-dimensional space,
compared to the standard case. As a consequence, if the system is invariant under a
symmetry transformation φ(x)→ φ(x) + δφ(x), the related conserved current density and
conservation law in non-integer dimensions are [46]:

Jµ =
3

∏
i=1

W1

(
xi, αi

)∂L
(
φ, ∂µφ

)
∂
(
∂µφ

) δφ (9)

∂µ Jµ = 0.

This last equation, and the previous Equation (8), could have been also introduced

from the standard equations by substitutingL →
3

∏
i=1

W1
(
xi, αi

)
L and Jµ →

3
∏
i=1

W1
(

xi, αi
)

Jµ,

respectively. To conclude this general overview, we will outline in the following sub-
sections the specific cases of rectangular, spherical, and cylindrical coordinates and the
related D-dimensional Laplace operators.

3.1. Rectangular Coordinates

In rectangular coordinates, the generalized Euler–Lagrange equations can be obtained
directly from Equation (8) with the weights in Equation (7) [46]:

∂L
(
φ, ∂µφ

)
∂φ

− ∂µ
∂L
(
φ, ∂µφ

)
∂
(
∂µφ

) −
(
αµν − δµν

)(
x(−1)

)ν ∂L
(
φ, ∂µφ

)
∂
(
∂µφ

) = 0, (10)

where αµν = diag(1, α1, α2, α3), δµυ is the diagonal unit matrix, x(−1) = column(
t−1,

(
x1)−1,

(
x2)−1,

(
x3)−1

)
, with µ, ν = 0, 1, 2, 3. The total spacetime dimension is

Dt = 1 + D = 1 + α1 + α2 + α3 = Tr
(
αµν

)
, where the time dimension is assumed to

be integer.
As in the original treatment for the Schrödinger’s Equation [46,51], we can consider φ

and φ∗ as separate fields which can be varied independently and then use the Lagrangian
density L = ∇φ∗ · ∇φ = ∂iφ

∗∂iφ to obtain the generalized Laplace equation, using
Equation (10) for the “mirror” field φ∗. The Laplace equation becomes52

α1,α2,α3
φ(x, y, z) =

0, where the generalized Laplacian operator written in standard rectangular coordinates x,
y, z, is:
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52
α1,α2,α3

φ(x, y, z) =
[

1
xα1−1

∂

∂x

(
xα1−1 ∂

∂x

)
+

1
yα2−1

∂

∂y

(
yα2−1 ∂

∂y

)
+

1
zα3−1

∂

∂z

(
zα3−1 ∂

∂z

)]
φ (11)

=

[
∂2

∂x2 +
(α1 − 1)

x
∂

∂x
+

∂2

∂y2 +
(α2 − 1)

y
∂

∂y
+

∂2

∂z2 +
(α3 − 1)

z
∂

∂z

]
φ.

The non-integer dimension can then be assigned to just one of the three coordinates
(example: α1 = α2 = 1 and α3 = D− 2), or distributed over the three coordinates (example:
α1 = α2 = α3 = D/3).

3.2. Spherical Coordinates

To obtain similar results in spherical coordinates r, θ, ϕ, we could transform directly
Equations (10) and (11), or use the orthonormal basis ∂µ =

(
∂
∂t , ∂

∂r , 1
r

∂
∂θ , 1

r sin θ
∂

∂ϕ

)
. Following

this latter option and using again a Lagrangian density L = ∇φ∗ · ∇φ = ∂iφ
∗∂iφ in

Equation (8), we obtain:

∇2
α1,α2,α3

φ(r, θ, ϕ) =

[
∂2φ

∂r2 +
(α1 + α2 + α3 − 1)

r
∂φ

∂r

]
(12)

+
1
r2

[
∂2φ

∂θ2 +
(α1 + α2 − 1)

tan θ

∂φ

∂θ
+

(1− α3)

cot θ

∂φ

∂θ

]
+

1
r2 sin2 θ

[
∂2φ

∂ϕ2 +
(α2 − 1)

tan ϕ

∂φ

∂ϕ
+

(1− α1)

cot ϕ

∂φ

∂ϕ

]
.

The previous equation extends the results in Ref. [46], by providing the most general
spherical Laplacian for D = α1 + α2 + α3 (0 < α1, α2, α3 ≤ 1). For α1 = α2 = α3 = 1
(D = 3), the standard spherical Laplacian is recovered, while special cases are obtained if
the non-integer dimension is assigned to just one of the three parameters.

If the non-integer parameter is the first one, that is 0 < α1 < 1, α2 = α3 = 1,
D = α1 + 2, we have:

∇2
D−2,1,1φ(r, θ, ϕ) =

[
∂2φ

∂r2 +
(D− 1)

r
∂φ

∂r

]
(13)

+
1
r2

[
∂2φ

∂θ2 +
(D− 2)

tan θ

∂φ

∂θ

]
+

1
r2 sin2 θ

[
∂2φ

∂ϕ2 +
(3− D)

cot ϕ

∂φ

∂ϕ

]
.

If instead, 0 < α2 < 1, α1 = α3 = 1, D = α2 + 2, we have:

∇2
1,D−2,1φ(r, θ, ϕ) =

[
∂2φ

∂r2 +
(D− 1)

r
∂φ

∂r

]
(14)

+
1
r2

[
∂2φ

∂θ2 +
(D− 2)

tan θ

∂φ

∂θ

]
+

1
r2 sin2 θ

[
∂2φ

∂ϕ2 +
(D− 3)

tan ϕ

∂φ

∂ϕ

]
.

Finally, if 0 < α3 < 1, α1 = α2 = 1, D = α3 + 2, we obtain:

∇2
1,1,D−2φ(r, θ, ϕ) =

[
∂2φ

∂r2 +
(D− 1)

r
∂φ

∂r

]
(15)

+
1
r2

[
∂2φ

∂θ2 +
1

tan θ

∂φ

∂θ
+

(3− D)

cot θ

∂φ

∂θ

]
+

1
r2 sin2 θ

[
∂2φ

∂ϕ2

]
.

In Ref. [46], Palmer and Stavrinou introduced the non-integer spherical Laplacian as
the one in our Equation (14) above, but they stated that this form was obtained by assigning
the non-integer dimension to α3, while it is in fact assigned to α2. In our paper, I, we used
this same form of the spherical Laplacian to discuss the fractional-dimension solutions to
the Laplace equation and the related multipole expansion (see Appendix A of Ref. [1]),
but we could have used also the other forms of the Laplacian discussed in this section.
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However, our main NFDG results in Equations (3) and (4) are independent of the choice of
the fractional-dimension Laplace operator.

From the general Laplacian in Equation (12), other “mixed” forms of this operator are
possible. For example, the non-integer dimension could be equally distributed over the
three parameters by setting α1 = α2 = α3 = D/3, or in an unequal way, or over just two
parameters, etc. Therefore, there is a certain ambiguity in how the non-integer dimension
is acting over the three spatial coordinates, as we already remarked in Section 2 above.
We also note that the order of the parameters, α1, α2, α3, refers to the original weights
in Equation (2), which were related to rectangular coordinates and not to the spherical
coordinates used in this section.

3.3. Cylindrical Coordinates

In cylindrical coordinates R, ϕ, z, we can use the orthonormal basis ∂µ =
(

∂
∂t , ∂

∂R , 1
R

∂
∂ϕ , ∂

∂z

)
and the same Lagrangian density L = ∇φ∗ · ∇φ = ∂iφ

∗∂iφ in the main Equation (8). This
time, we obtain:

∇2
α1,α2,α3

φ(R, ϕ, z) =
[

∂2φ

∂R2 +
(α1 + α2 − 1)

R
∂φ

∂R

]
(16)

+
1

R2

[
∂2φ

∂ϕ2 +
(α2 − 1)

tan ϕ

∂φ

∂ϕ
+

(1− α1)

cot ϕ

∂φ

∂ϕ

]
+

[
∂2φ

∂z2 +
(α3 − 1)

z
∂φ

∂z

]
.

This is the most general cylindrical Laplacian for D = α1 + α2 + α3 (0 < α1, α2, α3 ≤ 1).
For α1 = α2 = α3 = 1 (D = 3), the standard cylindrical Laplacian is recovered, while
special cases are obtained if the non-integer dimension is assigned to just one of the three
parameters, as for the spherical case studied in the previous subsection.

If the non-integer parameter is the first one, that is 0 < α1 < 1, α2 = α3 = 1,
D = α1 + 2, we have:

∇2
D−2,1,1φ(R, ϕ, z) =

[
∂2φ

∂R2 +
(D− 2)

R
∂φ

∂R

]
(17)

+
1

R2

[
∂2φ

∂ϕ2 +
(3− D)

cot ϕ

∂φ

∂ϕ

]
+

[
∂2φ

∂z2

]
.

If instead, 0 < α2 < 1, α1 = α3 = 1, D = α2 + 2, we have:

∇2
1,D−2,1φ(R, ϕ, z) =

[
∂2φ

∂R2 +
(D− 2)

R
∂φ

∂R

]
(18)

+
1

R2

[
∂2φ

∂ϕ2 +
(D− 3)

tan ϕ

∂φ

∂ϕ

]
+

[
∂2φ

∂z2

]
.

Finally, if 0 < α3 < 1, α1 = α2 = 1, D = α3 + 2, we obtain:

∇2
1,1,D−2φ(R, ϕ, z) =

[
∂2φ

∂R2 +
1
R

∂φ

∂R

]
(19)

+
1

R2

[
∂2φ

∂ϕ2

]
+

[
∂2φ

∂z2 +
D− 3

z
∂φ

∂z

]
.

From the general cylindrical Laplacian in Equation (16), other “mixed” forms of this
operator are possible. Again, the non-integer dimension could be equally distributed over
the three parameters by setting α1 = α2 = α3 = D/3, or in an unequal way, or over just
two parameters, etc. In this cylindrical case, it is obvious that α3 refers directly to the z
coordinate, while it is not possible to assign α1 and α2 to the R, ϕ coordinates. Therefore, a
certain ambiguity remains in how to distribute the non-integer dimension over the three
spatial coordinates also in this case.
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4. Relativistic Equations for Spaces with Non-Integer Dimension

In Section 3, it was shown that the Euler–Lagrange equations for spaces with non-

integer dimensions can be obtained by substituting L →
3

∏
i=1

W1
(
xi, αi

)
L, i.e., simply by

multiplying the Lagrangian density by the product of the weights for the three spatial
coordinates. This immediately suggests a possible procedure for the relativistic extension

of NFDG: include the same weight factor
3

∏
i=1

W1
(
xi, αi

)
inside the standard Hilbert action

SH =
∫ √−g R d4x and then vary this modified action with respect to the inverse metric

gµν, as is usually done in standard GR.
This procedure is practically equivalent to the one used for scalar-tensor theories of

gravity (see Ref. [52] for a general overview) and it has been used extensively by Calcagni
in the context of multi-scale spacetimes and fractional gravity theories [7,8,10,11,15,17,18].
In the following subsections we will review these techniques and adapt them to our
particular case.

4.1. RFDG Field Equations

In this section, we will obtain the field equations by following closely the methods
used by Calcagni in their main paper on multi-scale gravity and cosmology [11] and the
general procedure for field equations in alternative theories of gravity (see Section 4.8 in

Ref. [52]). Following [8,11], the weight factor
3

∏
i=1

W1
(

xi, αi
)

introduced in Section 3, with

the NFDG weights from Equation (2), is consistent with the general form of the weight
v(x), assumed to be factorizable in the coordinates and positive semi-definite [11]:

v(x) =
3

∏
µ=0

vµ(xµ), vµ(xµ) ≥ 0 (20)

qµ(xµ) =
∫ xµ

dx′
µ
vµ

(
x′

µ
)

as shown in the first line of the previous equation4.
The action measure is assumed to be of the form d$(x) = d4x v(x) = d4q(x), where

“geometric coordinates” q(x), as defined in the second line of Equation (20), can be used
formally to re-express the measure in a standard Lebesgue form. In this way [11], a
multi-scale Minkowski spacetime is defined as the multipletM4 =

(
M4, $, ∂,K

)
based

on an ordinary 4-dimensional Minkowski spacetime M4, a Lebesgue-Stieltjes measure
$ for the action, a set of calculus rules with derivative operators ∂, and an appropriate
Laplace-Beltrami operator K.

Different multi-scale theories were then developed by Calcagni, with reference to the
possible derivative operators ∂ being used: theory T1 with ordinary derivatives, theory Tv
with weighted derivatives, and theory Tq with q-derivatives (see [11,17] for full details).
These models were then used in connection with the most general measure derived from
first principles [13] and then applied to quantum field theories, quantum gravity, and
cosmology [11,15–18].

For the purpose of deriving the RFDG field equations, we will consider the NFDG
weight v(x):

v(x) =
3

∏
µ=0

vµ(xµ) =
3

∏
i=1

παi/2

Γ(αi/2)

∣∣∣xi
∣∣∣αi−1

, (21)

consistent with Equations (2) and (7) and with the time weight assumed to be unity, i.e.,
v0
(

x0) = 1, but more general expressions can be used, including non-trivial time weights.
As already noted in Appendix A of our paper III, using rescaled coordinates wi = xi/l0,

the NFDG weight παi/2

Γ(αi/2) |
xi

l0
|
αi−1

in Equation (21) is very similar to the binomial weight
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(
1 + |xi

l∗ |
αi−1

)
used by Calcagni [13]. However, in NFDG the transition from Newtonian to

non-Newtonian behavior is achieved by varying continuously the fractional dimension
parameters αi from αi = 1 (Newtonian case, vi

(
xi) = 1) to 0 < αi < 1 (non-Newtonian),

with l0 being an appropriate scale parameter linked to the MOND acceleration scale. In
multifractional theories, the scale lengths l∗ represent the observation scales at which the
spacetime dimension may change, with different behaviors for xi � l∗ and xi � l∗, and
with a binomial weight which does not simply reduce to unity for αi = 1.

Apart from the different choice of weights, the RFDG field equations are obtained
with the same procedure for the theory T1 with ordinary derivatives [11]. The action for
gravity can be taken as:

Sg =
1

16πG

∫
d4x

√
−gv(x)

[
R−ω∂µv∂µv−U(v)

]
, (22)

where G is Newton’s gravitational constant, v(x) is the weight being considered, g =
∣∣gµν

∣∣
is the determinant of the metric, R = Rµ

µ = gµνRµν is the Ricci scalar, defined in terms of
standard Ricci and Riemann tensors [52]. In scalar-tensor and multifractional theories, it is
customary to include in the gravitational action a “kinetic” term ω∂µv∂µv and a “potential”
term U(v) (which can be set to 2Λ, to include a cosmological constant Λ, or can be a
function of the weight v). In general, these terms are not needed in RFDG, and we will set
ω = 0 and U(v) = 0 later.

Including also a matter action Sm =
∫

d4x
√−gv(x)Lm, with Lm denoting an appro-

priate Lagrangian density, the energy-momentum tensor is now defined as:

Tµν = − 2√−g v(x)
δSm

δgµν , (23)

with the weight v(x) added at the denominator. One can then obtain the field equations
by varying the action with respect to the inverse metric gµν, where additional terms are
derived using the techniques used for scalar-tensor models [52]. The final result is [11]:

Rµν −
1
2

gµν[R−U(v)] + gµν
�v
v
−
∇µ∇νv

v
+ ω

(
1
2

gµν∂σv∂σv− ∂µv∂νv
)
= 8πGTµν (24)

where ∇µ indicates standard covariant differentiation, and the Laplace-Beltrami operator
is defined as � = ∇µ∇µ = gµν∇µ∇ν. It is easy to check that standard GR field equations
are recovered for ω = 0 and v(x) = 1, including a cosmological constant term by setting
U = 2Λ, or otherwise by simply setting U = 0.

The trace of Equation (24) yields:

− R + 2U(v) + 3
�v
v

+ ω∂µv∂µv = 8πGT µ
µ (25)

while variation of the total action S = Sg + Sm with respect to the weight v(x) gives:

R−U(v) = −16πGLm + v
dU
dv
−ω

(
2v�v + ∂µv∂µv

)
. (26)

Combining the last two equations, one can also obtain [11]:

R− 2v
dU
dv

+ 3
�v
v

+ ω
(
4v�v + 3∂µv∂µv

)
= 8πG

(
T µ

µ − 4Lm

)
(27)

which links directly the Ricci scalar R with the weight v(x).
An alternative version of the field Equation (24), can be obtained by taking the trace of

this equation and then combining the result with the same Equation (24). The final result is:
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Rµν = 8πG
(

Tµν −
1
2

gµνT
)
+

1
2

gµνU(v) +
1
2

gµν
�v
v

+
∇µ∇νv

v
+ ω ∂µv∂νv , (28)

where T = Tµ
µ is the trace of the energy-momentum tensor.

The RFDG equations can be obtained from the previous general Equations (22)–(28)
by setting ω = 0, U(v) = 0, and using the NFDG weight v(x) described in Equation (21),
or any other appropriate weight. In particular, the field equation becomes:

Rµν −
1
2

gµν R + gµν
�v
v
−
∇µ∇νv

v
= 8πGTµν (29)

where only the two additional terms gµν
�v
v −

∇µ∇νv
v in the left-hand side of this equation

need to be computed, in order to extend standard GR to RFDG. The alternative version,
corresponding to Equation (28), is instead:

Rµν = 8πG
(

Tµν −
1
2

gµνT
)
+

1
2

gµν
�v
v

+
∇µ∇νv

v
, (30)

which will be used in the next section to derive the Friedmann equations of cosmology.
Following the discussion in Section 3.1 of Ref. [11], we note that the weight v(x) can

be treated as a scalar field in the derivation of the field equations [32,52], but it should be
considered a “fixed coordinate profile” and not a Lorentz scalar. The derivation of the field
equations is essentially equivalent to the one typically used in scalar-tensor theories [32,52],
but the interpretation [11] of the scalar weight v(x) differs from the one of the fields φ(x)
used in modified gravity and in quintessence models of dark energy [53].

Although v(x) does not represent a dynamical field, it affects the dynamics through
the additional terms gµν

�v
v −

∇µ∇νv
v in Equation (29) above. Since our weight v(x) in

Equation (21) is determined directly by our NFDG theory, we do not feel necessary, at least
at this stage, to introduce kinetic and potential terms, ω∂µv∂µv and U(v), as was done in
multifractional gravitational theories [11].

Therefore, at least at this stage, RFDG is introduced in a phenomenological way by
fixing from the beginning the coordinate profile or weight v(x), which does not change
while the system is evolving dynamically. The choice of the weight is suggested by those
used in our previous NFDG papers, or by similar time-dependent weights which will
be used in the next sub-section. As already mentioned above, v(x) cannot be considered
a scalar field, although the derivation of the field equations is equivalent to the one for
scalar-tensor theories (see also Section 3.1 in Ref. [32]). The RFDG field Equations (29)
and (30) obviously reduce to standard GR for v(x) = 1, i.e., for gravitational systems which
do not possess any spatial or temporal fractional-dimension (for example, at the Solar
System level). Therefore, RFDG and GR are fully consistent for structures whose Hausdorff
dimension coincides with the topological one.

In the next subsection, we will apply the main field Equations (29) and (30) to the case
of standard cosmology and to the Friedmann-Lemaître-Robertson-Walker metric.

4.2. Cosmology and RFDG

In standard cosmology [52,54], the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric is usually expressed as (c = 1):

ds2 = −dt2 + a2(t)
[

dr2

1− κr2 + r2dΩ2
]

, (31)

where a(t) = R(t)/R0 is the dimensionless scale factor (R(t) is the scale factor, R0 = R(t0),
t0 current time), κ = k/R2

0 (k = −1 open universe; k = 0 flat universe; k = 1 closed
universe), and dΩ2 = dθ2 + sin2 θdϕ2. Following this choice for the FLRW metric, the
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Christoffel symbols, the non-zero components of the Ricci tensor, and the Ricci scalar are
readily computed [52] and are reported in Appendix A.

Matter and energy in the Universe are usually modeled as a perfect fluid with energy-
momentum tensor:

Tµν = (ρ + p)UµUν + pgµν (32)

with the fluid at rest in comoving coordinates, so that the four-velocity is Uµ = (1, 0, 0, 0)
and the energy-momentum tensor simply becomes

Tµν =


ρ 0 0 0
0
0 gij p
0

 (33)

in terms of the energy density ρ(t) and the pressure p(t). This can also be written as
Tµ

ν = diag(−ρ, p, p, p) and with the trace given by T = Tµ
µ = −ρ + 3p.

In order to compute the additional terms gµν
�v
v , ∇µ∇νv

v in Equations (29) and (30), we
should express the NFDG weight of Equation (21) in terms of spherical coordinates r, θ, ϕ.
Using standard coordinate transformations between rectangular and spherical coordinates
and assuming for example α1 = α2 = α3 = D/3, we obtain:

v(x) =
3

∏
i=1

παi/2

Γ(αi/2)

∣∣∣xi
∣∣∣αi−1

=
πD/2

[Γ(D/6)]3
rD−3|sin θ|(

2
3 D−2)|cos θ|(

D
3 −1)|sin ϕ|(

D
3 −1)|cos ϕ|(

D
3 −1) = vr(r)vθ(θ)vϕ(ϕ), (34)

but this weight does not yield isotropic results for the Friedmann equations. Assuming
instead a simpler radial weight vr(r) = π(D/2−1)

2Γ(D/2) rD−3 , which follows from the general

fractional-dimension integral in Equation (1), divided by the standard factor of 4πr2

pertaining to the D = 3 case, still does not seem to yield isotropic results due to the
presence of mixed (t, r) components in the field tensors, which can be avoided only by
adding a time weight vt(t) = a(t), equal to the scale factor5.

As discussed in Appendix A, it might be more appropriate for cosmological applica-
tions to assume a purely temporal weight, similar to the spatial one in Equation (21):

v(x) ≡ vt(t) =
παt/2

Γ(αt/2)
tαt−1, (35)

where t > 0 and 0 < αt ≤ 1 is a time fractional dimension. This assumption is similar
to the one used by Calcagni in their Ref. [8], but will yield different results in the context
of RFDG.

With the particular weight in Equation (35), all quantities in the generalized field
Equations (24) and (28) can be computed and the complete results are detailed in
Appendix A. Using these results, the modified Friedmann equations are:( .

a
a

)2

+

.
a

.
v

av
− ω

.
v2

6
− U(v)

6
=

8πG
3

ρ− κ

a2 (36)

..
a
a
+

.
a

.
v

2av
+

..
v

2v
+

ω
.
v2

3
− U(v)

6
= −4πG

3
(ρ + 3p)

where we denoted the temporal weight simply as v = vt(t) and all time derivatives are
shown using the over-dot notation.

These equations can be further simplified by taking ω = 0 and by introducing a
possible cosmological constant Λ (setting U(v) = 2Λ), for comparison with standard
ΛCDM cosmology. Therefore, we obtain:
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( .
a
a

)2

+

.
a

.
v

av
=

8πG
3

ρ− κ

a2 +
Λ
3

(37)

..
a
a
+

.
a

.
v

2av
+

..
v

2v
= −4πG

3
(ρ + 3p) +

Λ
3

which can be compared directly with the standard Friedmann equations [52,54]. It is
evident that both Equations (36) and (37) reduce to the standard ones for v = 1 (

.
v =

..
v = 0).

The Hubble parameter H characterizes the rate of expansion, as usual:

H =

.
a
a

(38)

.
H =

..
a
a
−
( .

a
a

)2

=

..
a
a
− H2

with the present epoch value as the Hubble constant H0 = 100 h km s−1 Mpc−1 (h ≈ 0.7).
In a similar way, we can introduce a weight parameter V:

V =

.
v
v

(39)

.
V =

..
v
v
−
( .

v
v

)2

=

..
v
v
−V2

and rewrite the Friedmann Equations (37) in terms of the H and V parameters:

H2 + HV =
8πG

3
ρ− κ

a2 +
Λ
3

(40)

.
H + H2 +

1
2

(
HV + V2 +

.
V
)
= −4πG

3
(ρ + 3p) +

Λ
3

.

We will assume that the standard components of the Universe have energy densities
evolving as power laws, ρi(t) = ρi0a−ni (t); each component will have equation of state
pi(t) = wiρi(t), with parameters wi =

1
3 ni − 1. As in standard cosmology, we will include

matter (M, nM = 3, wM = 0), radiation (R, nR = 4, wR = 1
3 ), curvature (C, nC = 2,

wC = − 1
3 ), and vacuum (Λ, nΛ = 0, wΛ = −1) .

Generalizing the standard procedure used in ΛCDM cosmology [52,54], we will still
introduce the density parameter Ω and the critical density ρcrit as Ω = 8πG

3H2 ρ = ρ
ρcrit

and

ρcrit =
3H2

8πG , respectively. These two equations assume that for each component the density
parameter is defined as Ωi =

8πG
3H2 ρi =

ρi
ρcrit

, with the special cases for the curvature energy

density ρC ≡ − 3κ
8πGa2 and the vacuum energy density ρΛ ≡ Λ

8πG . While the curvature
density parameter ΩC = − κ

H2a2 is typically not included in the total Ω = ΩM + ΩR + ΩΛ
introduced above, it is still possible to modify the first Friedmann Equation (40) and obtain:

1 + β = Ω− κ

H2a2 = ΩM + ΩR + ΩΛ + ΩC = ∑
i

Ωi (41)

β ≡ V
H

which extends the standard relation Ω− 1 = κ
H2a2 and with the summation in the first line

applied to all four components6.
For the current time t0, Equation (41) can be written as ∑i Ωi0 = 1 + β0, with β0 = V0

H0
,

and used to rewrite the first line in Equation (40) as:
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H2 + HV =
8πG

3 ∑
i

ρi(t) =
8πG

3 ∑
i

ρi0a−ni (t) = H2
0 ∑

i
Ωi0a−ni (t) (42)

= H2
0{ΩM0a−3(t) + ΩR0a−4(t) + ΩΛ0 + [1 + β0 − (ΩM0 + ΩR0 + ΩΛ0)] a−2(t)},

where the summation symbols include all four components of the energy density, the
current-time curvature density parameter is expressed in terms of the other three,
ΩC0 = 1 + β0 − (ΩM0 + ΩR0 + ΩΛ0), and the explicit values of the integer parameters ni
have also been used in the last line.

It is customary to use a dimensionless time t = H0(t− t0) when solving the previous
differential equation, so we need to rewrite the RFDG weight in Equation (35) in terms of
t = t0 +

t
H0

and then rescale this variable for dimensional correctness, dividing by a scale
time tsc which can be simply taken as the current time, i.e., tsc ≈ t0. Then, we have:

t
tsc

=
t0

tsc
+

t
tscH0

≈ 1 +
t

t0H0
= 1 + δ0t (43)

v = vt
(
t
)
=

παt/2

Γ(αt/2)

(
t

tsc

)αt−1
≈ παt/2

Γ(αt/2)
(
1 + δ0t

)αt−1

and the final weight vt
(
t
)

in the second line can be used with free parameters αt > 0 and
δ0 = 1

t0 H0
∼ 1, since typically t0 ∼ H−1

0 . With these approximations, we also find β0 ≈
(αt − 1) and the only free parameter remaining in our equations is the time dimension αt.

Using the definitions for H and V from Equations (38) and (39), the dimensionless
time variable t = H0(t− t0) (with dt = H0dt), and with some additional algebra the main
Equation (42) can be recast as:

.
a = −1

2
a

.
v
v
± a

√{
ΩM0a−3

(
t
)
+ ΩR0a−4

(
t
)
+ ΩΛ0 + [1 + β0 − (ΩM0 + ΩR0 + ΩΛ0)] a−2

(
t
)}

+
1
4

( .
v
v

)2

, (44)

which becomes the RFDG differential equation for the scale factor a
(
t
)

with the initial
condition a(0) = 1 and time derivatives now taken with respect to t. For an expanding
universe at the current epoch, we will choose the positive sign in Equation (44), and
then solve it numerically for any assumed values of ΩM0, ΩR0, ΩΛ0 at the current time
and for any given temporal weight v = vt

(
t
)
. It should be noted that for αt = 1 and

β0 = 0 (v = 1,
.
v = 0,

..
v = 0), Equation (44) correctly reduces to the ΛCDM equivalent

differential equation:

.
a = a

√
{ΩM0a−3

(
t
)
+ ΩR0a−4

(
t
)
+ ΩΛ0 + [1− (ΩM0 + ΩR0 + ΩΛ0)] a−2

(
t
)
}, (45)

which is commonly used in standard cosmology to obtain a
(
t
)

from the initial Ωi0 val-
ues [52,54].

Using the RFDG Friedmann Equation (44), or the standard-cosmology equivalent (45)
above, we plot in Figure 1 some results for different values of the parameters, using the
temporal weight v = vt

(
t
)

as described in Equation (43) with 0 < αt ≤ 1 and δ0 = 1
t0 H0
∼ 1.

The results do not appear to depend much on the value of this second parameter, so we
simply set δ0 = 1 in the following.

In this figure, we plot three notable standard cosmology expansion histories, similar to
those presented in Figure 8.3 of Ref. [52], or Figure 2 in Ref. [54]. These were obtained using
Equation (45) above: the red-solid curve for ΩM0 = 0.3, ΩΛ0 = 0.7 (and αt = 1, i.e., v = 1)
represents the currently favored ΛCDM expansion history for a universe dominated by
about 70% of cosmological constant, Dark Energy (DE) component and only about 30% of
matter component (baryonic and dark matter). The green-solid curve corresponds instead
to a matter-dominated universe with ΩM0 = 1.0 and no cosmological constant, while



Universe 2021, 7, 387 15 of 20

the blue-solid curve corresponds to a 30% matter component, without any cosmological
constant. The radiation component at current epoch is assumed to be negligible (ΩR0 ≈ 0),
while the curvature component is fixed by ΩC0 = 1− (ΩM0 + ΩR0 + ΩΛ0).

ΩM0=0.3, ΩΛ0=0.7, αt=1.00

ΩM0=0.3, ΩΛ0=0.7, αt=0.50

ΩM0=0.3, ΩΛ0=0.7, αt=0.01

ΩM0=0.3, ΩΛ0=0.0, αt=1.00

ΩM0=0.3, ΩΛ0=0.0, αt=0.50

ΩM0=0.3, ΩΛ0=0.0, αt=0.01

ΩM0=1.0, ΩΛ0=0.0, αt=1.00

ΩM0=1.0, ΩΛ0=0.0, αt=0.50

ΩM0=1.0, ΩΛ0=0.0, αt=0.01

-1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

t = H0(t-t0)

a(
t
)

Figure 1. Expansion histories for different values of ΩM0, ΩΛ0, and of the RFDG parameter αt. Three
notable cases from standard cosmology (red, blue, and green solid curves) are compared with RFDG
results for similar ΩM0, ΩΛ0 parameters, but with variable αt > 0. RFDG curves for αt = 0.01, 0.50
(dotted and dashed curves) are only slightly different from their respective standard cosmology
solid curves.

Using Equation (44), we also plotted RFDG expansion histories for the same values of
the ΩM0, ΩΛ0 parameters (ΩR0 = 0), but for different values of the parameter αt = 0.01,
0.50 (dotted and dashed curves). This was done to show how the RFDG curves, with
αt ≈ 0− 1, can modify the standard-cosmology histories by adding the temporal weight
v = vt

(
t
)

from Equation (43). The goal of our original NFDG [1–3] was to show how
the effect of adding a possible spatial fractional-dimension D < 3 could replace the DM
component in astrophysical structures. Therefore, the goal of RFDG should be to show
that also the DE component in the Universe might be explained by a fractional-dimension
effect, possibly related to the temporal dimension parameter αt < 1.

However, as seen in the figure, the modified RFDG curves differ only slightly from the
standard-cosmology curves, for the range of the αt parameter being used. As a consequence,
it seems unlikely that a RFDG curve with no cosmological constant (ΩΛ0 = 0) and 0 < αt < 1
might be able to match the ΛCDM red-solid curve, i.e., replacing DE with a fractional-
dimension effect. Further analysis will be needed to check this possibility, by considering
an extended range for the αt parameter, using different approximations for tSC and δ0
in Equation (43), and possibly by also including the “kinetic” and “potential” terms in
Equation (36) (ω 6= 0 and U(v) 6= 0).

It is beyond the scope of this paper to expand these considerations any further, since
the goal of this current work was just to introduce the main equations of Relativistic
Fractional-Dimension Gravity, following the non-relativistic equations of our original
NFDG. At the moment, RFDG is just a tentative modified gravity model which needs to
be explored in more detail before it can be effectively applied to astrophysical objects or
cosmological investigations. In the near future, we are planning to analyze measurements
of the luminosity distance of type Ia supernovae with RFDG techniques, to see if our model
can interpret these data without resorting to the DE component as in standard ΛCDM
cosmology. This would be a necessary condition for the viability of RFDG as an alternative
model of gravity.
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5. Conclusions

In this work, we outlined a relativistic extension of our Newtonian Fractional-
Dimension Gravity, which was developed to model the dynamics of galaxies without
using any dark matter component. While the analysis of the NFDG model is still ongoing
with additional galaxies being studied with these methods, it was important to show
that NFDG admits a possible relativistic version, although at the moment it is not sure if
this Relativistic Fractional-Dimension Gravity will be useful to address astrophysical or
cosmological problems.

In this paper, we showed that a relativistic version can be derived from the mathemati-
cal theory for spaces with non-integer dimensions, the extended Euler–Lagrange equations
for scalar fields, and the existing methods for scalar-tensor models of gravity, multi-scale
spacetimes, and fractional gravity theories. The key element in all these methods is to
include an appropriate coordinate weight in the spacetime metric used in both NFDG and
RFDG. These weights will include the fractional-dimension parameters which characterize
these theories and should be considered to be different from the scalar functions used in
other models.

As a first, tentative application of RFDG, we applied it to the FLRW metric of standard
cosmology, using a simple time-dependent weight. We showed that it is straightforward
to extend the standard Friedmann equations and to solve them numerically for different
choices of the parameters. At this time, it is not possible to predict if these modified
cosmological equations will be of any physical significance, in relation to the DE problem,
or others.

Future work on the subject will be needed to test this model against the cosmological
paradigm, considering other possible weights which might be relevant in astrophysics
and cosmology, and also including the cosmic late-time acceleration, distance indicators,
type Ia supernovae data, etc., before RFDG can be considered a viable alternative theory
of gravity.
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Appendix A. RFDG Tensors for the FLRW Metric

In this section, we will detail the RFDG tensors used for the study of the FLRW
metric and related expansion histories discussed in Section 4.2. All these tensor quantities
were computed using Mathematica code7. These programs were tested by checking them
against results for known cases (standard GR and others) and then extended to include the
additional tensors described in Section 4.1.

The FLRW metric was defined in Equation (31), in terms of the dimensionless scale
factor a(t) and using standard spherical coordinates (r, θ, ϕ); the energy-momentum
tensor in Equations (32) and (33), where pressure p(t) and energy density ρ(t) depend
on the synchronous time t. The only additional input is the factorizable weight v(x) ≡
vt(t)vr(r)vθ(θ)vϕ(ϕ), which in general can be a function of the four spacetime coordinates.

As already mentioned in Section 4.2, this general form of the weight does not seem
to yield isotropic Friedmann equations, and even considering simplified weights, such as
v(x) ≡ vt(t)vr(r) or v(x) ≡ vr(r) does not seem to yield the required symmetry, although
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future studies might be needed to explore these weights in more detail. Therefore, we
opted to use a purely time dependent weight, v(x) ≡ vt(t) and we computed all the tensors
in terms of this general form for the weight, obtaining the following results.

Christoffel symbols, non-zero components of the Ricci tensor, and Ricci scalar (same
as standard GR results [52]):

Γ0
11 = a

.
a

1−κr2 Γ1
11 = κr

1−κr2

Γ0
22 = a

.
ar2 Γ0

33 = a
.
ar2 sin2 θ

Γ1
01 = Γ2

02 =
.
a
a Γ3

03 =
.
a
a

Γ1
22 = −r

(
1− κr2) Γ1

33 = −r
(
1− κr2) sin2 θ

Γ2
12 = 1

r Γ3
13 = 1

r
Γ2

33 = − sin θ cos θ Γ3
23 = cot θ

(A1)

R00 = −3
..
a
a

(A2)

R11 =
a

..
a + 2

.
a2

+ 2κ

1− κr2

R22 = r2
(

a
..
a + 2

.
a2

+ 2κ
)

R33 = r2
(

a
..
a + 2

.
a2

+ 2κ
)

sin2 θ

R = 6

[ ..
a
a
+

( .
a
a

)2

+
κ

a2

]

where time derivatives are indicated by the over-dot notation.
The additional tensors in Equations (24) and (28) are computed as follows. The

potential term Aµν ≡ 1
2 gµνU(v) is easily computed from the metric components:

A00 = −1
2

U(v) (A3)

A11 =
1
2

a2U(v)
(1− κr2)

A22 =
1
2

r2a2U(v)

A33 =
1
2

r2a2U(v) sin2 θ.

The components of the tensor Bµν ≡ gµν
�v
v , calculated using the Laplace-Beltrami

operator � = ∇µ∇µ = gµν∇µ∇ν, are as follows:

B00 =
3

.
a

.
v + a

..
v

av
(A4)

B11 = −
a
(
3

.
a

.
v + a

..
v
)

v(1− κr2)

B22 = −
r2a
(
3

.
a

.
v + a

..
v
)

v

B33 = −
r2a
(
3

.
a

.
v + a

..
v
)

sin2 θ

v

where the weight vt(t) is simply denoted by v. The tensor Cµν ≡
∇µ∇νv

v has components:
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C00 =

..
v
v

(A5)

C11 = − a
.
a

.
v

v(1− κr2)

C22 = − r2a
.
a

.
v

v

C33 = − r2a
.
a

.
v sin2 θ

v

The tensor Dµν ≡ ω
(

1
2 gµν∂σv∂σv− ∂µv∂νv

)
is computed as:

D00 = −1
2

ω
.
v2 (A6)

D11 = −1
2

ωa2 .
v2

(1− κr2)

D22 = −1
2

r2ωa2 .
v2

D33 = −1
2

r2ωa2 .
v2 sin2 θ

while the simpler tensor Eµν ≡ ω ∂µv∂νv has only one non-zero component:

E00 = ω
.
v2 (A7)

From Equations (32) and (33), the components of the energy-momentum tensor are:

T00 = ρ(t) (A8)

T11 =
a2 p(t)
1− κr2

T22 = r2a2 p(t)

T33 = r2a2 p(t) sin2 θ

with the trace given as T = Tµ
µ = −ρ(t) + 3p(t).

Using all the above tensor components, the field Equation (24) can be written as:

Rµν −
1
2

gµν R + Aµν + Bµν − Cµν + Dµν = 8πGTµν (A9)

while the alternative field Equation (28) can be computed as:

Rµν = 8πG
(

Tµν −
1
2

gµνT
)
+ Aµν +

1
2

Bµν + Cµν + Eµν (A10)

It is usually easier to use this alternative field equation to derive the Friedmann
equations. The µν = 00 equation from (A10), after some algebraic simplification, gives:

− 3
..
a
a
− 3

2

.
a

.
v

av
− 3

2

..
v
v
−ω

.
v2

+
1
2

U(v) = 4πG(ρ + 3p) (A11)

while the µν = ii equations (i = 1, 2, 3) from (A10) are all equivalent to each other and
yield:

..
a
a
+ 2
( .

a
a

)2

+ 2
κ

a2 +
5
2

.
a

.
v

av
+

1
2

..
v
v
− 1

2
U(v) = 4πG(ρ− p). (A12)
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Combining these last two equations together, after some simplifications, we obtain
the modified Friedmann Equation (36) introduced in Section 4.2.

Notes
1 SI units will be used throughout this paper, unless otherwise noted.
2 In Section 4, we will also include a possible time weight vt(t) = παt/2

Γ(αt/2) |t|
αt−1 into the action. Following the original analysis in

Ref. [46], we will not use this weight in this section.
3 Dimensionless coordinates, such as wi = xi/l0, wr = r/l0, etc., should be used in most equations in this section and in the

following ones. For simplicity’s sake, in this paper we left standard coordinates (xi, r, R, etc.) in most equations, without
transforming them into dimensionless, rescaled ones.

4 We prefer to indicate explicitly the spacetime dimension (i.e., Dspacetime = 4, µ = 0, 1, 2, 3), as opposed to using the symbol D as
in Ref. [11]. We will continue instead to denote with D the variable NFDG space dimension, as was done in Sections 1–3.

5 Even using a combined weight, vt(t)vr(r) = a(t)vr(r), does not seem to yield fully isotropic Friedmann equations for the
cosmological problem. A more detailed study of cosmological weights, including possible radial factors or even direct
modifications to the FLRW metric in terms of variable space-time dimensions, will be done in a future publication.

6 In RFDG, the connection with open (κ < 0), flat (κ = 0), and closed (κ > 0) universes is not simply related to the density
parameter Ω S 1 as in standard cosmology, due to the presence of the additional β term in Equation (41).

7 Mathematica, Version 12.2.0.0, Wolfram Research Inc.
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