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Abstract: In this article, we calculate the deflection angle of a tidal charged black hole (TCBH) in
weak field limits. First, we obtain the Gaussian optical curvature and then apply the Gauss–Bonnet
theorem on it. With the help of Gibbons–Werner method, we are able to calculate the light’s deflection
angle by TCBH in weak field limits. After calculating the deflection angle of light, we check the
graphical behavior of TCBH. Moreover, we further find the light’s deflection angle in the presence of
the plasma medium and also check the graphical behavior in the presence of the plasma medium.
Moreover, we investigate the shadow of TCBH. For calculating the shadow, we first find the null
geodesics around the TCBH and then find its shadow radius. We also obtain TCBH’s shadow in the
plasma medium. Hence, we discuss the shadow of the TCBH, using the M87∗ parameters announced
by the event horizon telescope.

Keywords: relativity; gravitation; black hole; tidal charge; Gauss–Bonnet theorem; plasma medium;
shadow

PACS: 95.30.Sf; 98.62.Sb; 97.60.Lf

1. Introduction

Einstein’s theory of general relativity (GR) is a gravity theory which was developed in
1916. Einstein anticipated the presence of gravitational waves and gravitational lensing
in his theory of GR [1]. Black holes (BHs) are captivating objects in the universe. It is
assumed that various types of BHs live in the universe; this was experimentally confirmed
by the laser interferometer gravitational-wave observatory (LIGO) experiment in 2015 [2].
After that, EHT collaboration showed the existence of the black hole by its shadow in
2019 [3]. BH physics is very important because it plays a vital role in the discovery of
the gravitational wave [2]; furthermore, BH physics is used for understanding entropy
and the information paradox [4]. It is also used in an interesting aspect of gravitational
lensing. As indicated by Einstein, light bends around a massive object, such as a black
hole, causing it to act as a lens for the things that lie behind it. Strong lensing generates
curves and rings, for example, Einstein’s ring, while weak lensing gravity does not create
the image of a distant galaxy, but it still produces a measurable useful effect. Moreover,
weak lensing provides an independent measurement of dark energy, the substance causing
the accelerated expansion of the universe.

Gravitational lensing is a useful system to comprehend the galaxies, dark matter of the
universe, dark energy and the universe [5]. As the main gravitational lensing perception
by the Eddington, a huge work on gravitational lensing was accomplished for black holes,
wormholes, cosmic strings and various types of spacetimes [6–26]. Since Einstein, the
geodesic technique [27–32] has been considered for investigating the gravitational lensing.
In 2008, Gibbons and Werner showed a new way to calculate the weak deflection angle
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by introducing the Gauss–Bonnet theorem (GBT) [33]. Using GBT, they found light’s
weak gravitational deflection in the static and spherically symmetric (SSS) spacetime, e.g.,
Schwarzschild spacetime [33]. Then, Werner showed that it is also possible to find the weak
deflection angle of stationary black holes, such as the Kerr black hole, using GBT [34]. In
GBT, the light’s deflection angle can be determined by integrating the Gaussian curvature
of related optical metrics. In GBT, we can utilize a space DR, which is limited by the photon
beam, just as a circular boundary curve that is situated at the focal point and photon beams
that meet the source and observer. It is expected that both the origin and observer are at
the coordinate distance R from the focal point. The GBT is written as follows [33]:∫ ∫

DR

KdS +
∮

∂DR

κ dt + Σiθi = 2πX (DR).

Here, the optical Gaussian curvature is denoted by K and an areal component is
denoted by dS. Subsequently, thinking about the Euler characteristic, X (DR) = 1, the
jump angles are Σiθi = π, by using straight light approximation and GBT. Then, the weak
deflection angle is calculated as follows [33]:

α = −
∫ π

0

∫ ∞

b
r sin φ

KdS.

Note that the deflection angle is denoted by α. The weak deflection angle, using the GBT
for various spacetimes, was studied by many physicists. For example, the deflection
angle of light was studied for BHs and wormholes by the following authors [35–53]:
Ovgun et al. studied for different spacetimes, such as Schwarzschild-like spacetime, the
bumblebee gravity model [54–60], and Javed et al. studied the impact of various matter
fields [61–65]. Next, Ishihara et al. [66] showed that it is conceivable to calculate the weak
deflection angle using the finite-distances method. Moreover, Ono et al. [67] extended
the method to stationary axisymmetric spacetimes. The strong deflection angle for finite
distance was discussed by Ishihara et al. [68]. After that, Crisnejo and Gallo [69] and many
other authors [70–90] contemplated the light’s deflection angle in the presence of a plasma
medium.

Most of the scientists have said that supermassive BHs exist at the center of the Milky
Way galaxy and they hope to detect its shadow. Additionally, the new results can provide
physicists with an unprecedented look at black hole dynamics that will enable scientists
to test general relativity [3–102]. Some say that what we call a shadow is a dark interior
with a bright ring of radiation emitted by fast-moving, superheated gas swirling around,
and falling into, the black hole. The shadow of a black hole is caused by gravitational light
deflection. The trajectory of a photon in vacuum is determined by its impact parameter.
The photon sphere plays a crucial role in the formation of the shadow. The size of the
shadow radius for the black hole at the center of the Milky Way galaxy is about 53 µas.
The shadow of the stationary black hole is deformed and oblate, while the shadow of
the non-rotating black hole is just a circle. There are various types of scientific studies on
black hole shadow in the literature. For example, the shadow for negative tidal charges
and charges corresponding to naked singularities are also discussed in [11]. Moreover,
Zakharov has studied constraints on a charge in the Reissner–Nordström metric for the
black hole at the Galactic Center [11], and then has showed constraints on the tidal charge
of the supermassive black hole at the Galactic Center with trajectories of bright stars [12].
Neves also has studied constraining the tidal charge of brane black holes, using their
shadows [14]. Recently, Kocherlakota et al. presented constraints on black hole charge
from observations of M87∗ in 2017 [91], where the authors used the dependence of the
shadow size on the black hole charge for the Reissner–Nordstrom metric. It was shown
that the shadow size decreases with increasing the charge [13,91]. Based on the results
of the shadow evaluation for M87∗ performed by the EHT team, Zakharov constrained a
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tidal charge q > −1.22 and evaluated a tidal charge of q > −0.25 from the shadow size
estimates for SgrA∗ in [13].

The paper is organized as follows: in Section 2, we derive the optical metric for the
TCBH and find the weak deflection angle, using the GBT in Section 3. In Section 4, we
discuss the graphical behavior and find the weak deflection angle in the presence of the
plasma medium, using the GBT in Section 5. Next, we find the graphical behavior in the
presence of plasma in Section 6 and calculate the null geodesics of the TCBH in Section 7.
Further, we calculate the shadow of the TCBH in Section 8 and also calculate the shadow
of the TCBH in the presence of plasma in Section 9. Finally, we conclude our results in
Section 10.

2. Optical Metric of TCBH

The line element of a SSS TCBH is given by the following [103,104]:

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2dΩ2

2, (1)

where
B(r) = 1− 2M

M2
pr

+
q

M2
5r2

, (2)

and
dΩ2

2 = dθ2 + sin2 θdφ2, (3)

Here, BH’s mass is denoted by M; the dimensionless tidal charge is denoted by q;
Mp(=1.2 × 1016Tev) denotes the effective Planck mass on the brane; and M5 denotes the
fundamental Planck scale in the 5D bulk. It is noted that, generally, M5 << Mp.

By assuming the equatorial coordinate plane (θ = π
2 ), we obtain the optical metric

of TCBH as follows:

dt2 =
dr2

B2(r)
+

r2dφ2

B(r)
. (4)

Then, we calculate the Gaussian optical curvature as follows:

K =
RicciScalar

2
≈ −−2M

r3M2
p
− 6qM

r5M2
p M2

5
+

3q
r4M2

5
+O

(
M2, q2

)
. (5)

3. Deflection Angle of TCBH

In this section, we find the deflection angle by TCBH with the help of GBT, which is
written as follows [33]: ∫ ∫

FT

KdS +
∮

∂FT

kdt + ∑
l

εl = 2πZ(FT), (6)

Here, K denotes the Gaussian curvature, and k denotes the geodesic curvature as
k = ḡ(∇β̇ β̇, β̈), where ḡ(β̇, β̇) = 1, β̈ shows the unit acceleration vector, and the εl shows
the exterior angle at the lth vertex. Since T → ∞, both of the jump angles become π/2 and
then we have θO + θT → π. The Euler characteristic is Z(FT) = 1, as FT is non singular.
So, we have the following:∫ ∫

FT

KdS +
∮

∂FT

kdt + εl = 2πZ(FT), (7)

Here, εl = π demonstrates that both αḡ and the total jump angles are geodesic, and Z
is the Euler characteristic number and it is equal to 1. As T → ∞, then we have k(ET) =|
∇ĖT

ĖST|. The radial component of the geodesic curvature is written as follows [33]:

(∇ĖT
ĖT)

r = Ėφ
T∂φĖr

T + Γ0
11(Ėφ

T)
2. (8)
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for large T, ET := r(φ) = T = const. Hence, Equation (8) becomes (Ėφ
T)

2 = A2(r)B(r)
r2 . As

Γ0
11 = −rB + r2B′(r)

2 , it becomes the following:

(∇Ėr
T

Ėr
T)

r → 1
T

, (9)

so that k(ET)→ T−1. By using the optical metric Equation (4) and writing it as dt = Tdφ,
we have k(ET)dt = dφ.

By combining all the results, we have the following:∫ ∫
FT

Kds +
∮

∂FT

kdt =T→∞
∫ ∫

U∞
KdS +

∫ π+Θ

0
dφ. (10)

The light ray in weak field limits at the zeroth order (straight light approximation) is
written as r(t) = b/ sin φ. Using the above steps, the weak deflection angle can be calculated
by the following [33]:

Θ = −
∫ π

0

∫ ∞

b/ sin φ
K
√

detḡ drdφ, (11)

Here,
√

detḡ ≈ rdr.
After replacing the Gaussian optical curvature Equation (5) into Equation (11), the

weak deflection angle is obtained as follows:

Θ ≈ 4M
bM2

p
− 3qπ

4b2M2
5
+O(M2, q2). (12)

On the other hand, the deflection angle of the Reissner–Nordstrom (RN) BH in [105]
is given as follows:

ΘRNBH ≈ 4M
b

+
15πM2

4b2 − 3q2πM2

4b2 +O(M3, b3). (13)

Note that increasing the value of tidal charge decreases the deflection angle. We
compare these results in the graphical section.

4. Graphical Analysis for Non-Plasma Medium

In this section, we obtain the graphical behavior of TCBH’s deflection angle. We check
the graphical behavior in correspondence of deflection angle Θ with impact parameter b
by varying the value of dimensionless tidal charge q.

Figures 1 and 2 demonstrate the relation of Θ w.r.t b for different values of q of TCBH.
We observe that the deflection angle continuously decreases with increasing q and shows a
constant behavior.

By comparing the graphs of RNBH and TCBH, we observe that deflection angle of RN
is larger than the deflection angle of TCBH. We conclude that the tidal charge decreases the
deflection angle as compared with the RN charge in Figures 1 and 2.
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Figure 1. Relation between Θ and b of TCBH for positive values of q for Mp = 1, M5 = 0.5, M = 1.

q=-0.05

q=-0.1

q=-0.2

q=-0.27

RN BH q=-0.27

5 10 15 20

0.5

1.0

1.5

2.0

2.5

3.0

3.5

b

Θ

Figure 2. Relation between Θ and b of TCBH for negative values of q for Mp = 1, M5 = 0.5, M = 1.

5. Effect of Plasma on Gravitational Lensing

In this section, we check how a plasma medium affects the gravitational lensing of
TCBH. Now, we assume that the TCBH in the presence of plasma is illustrated by the
refractive index n [76,77]:

n2(r, ω(r)) = 1− ω2
e (r)

ω2(r)
. (14)

Here, the refractive index is defined as follows:

n(r) =

√√√√1− ω2
e

ω2
∞

(
1− 2M

M2
pr

+
q

M2
5r2

)
, (15)
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where ω(r) is the photon frequency and ωe(r) is the electron plasma frequency and ωe is
considered the homogeneous plasma.

The optical metric of Equation (1) in plasma medium is written as follows [69]:

dt2 = gopt
lm dxldxm = n2

[
dr2

B2(r)
+

r2dφ2

B(r)

]
, (16)

with determinant gopt
lm as follows:√

gopt = r(1− ω2
e

ω2
∞
) +

M
M2

p(r)
(3 +

ω2
e

ω2
∞
)− q

2M2
5r
(3 +

ω2
e

ω2
∞
). (17)

Then, the optical Gaussian curvature can be calculated by the following:

K = −3
Mωe

2

r3ω∞2Mp
2 − 2

M
Mp

2r3
+ 5

qωe
2

ω∞2M2
5r4

+ 3
q

M2
5r4
− 26

qMωe
2

ω∞2M2
5 Mp

2r5
− 6

qM
M2

5 Mp
2r5

. (18)

With the help of GBT, we obtain the deflection angle of TCBH in the presence of
the plasma medium. So, for obtaining deflection angle in weak field limit, we apply the
condition of r = b

sinφ at the 0th order:

Θ = − lim
R→0

∫ π

0

∫ R

b
sin φ

KdS, (19)

Using the above equation with the optical Gaussian curvature, the deflection angle of
light in the presence of the plasma medium is found as follows:

Θ = 4
M

bMp
2 + 3/4

qωe
2π

b2ω∞2M5
2 − 3/4

qπ

b2M5
2 − 6

Mωe
2

bω∞2Mp
2 +O(M2, q2,

ω3
e

ω3
∞
). (20)

Note that one can neglect the plasma medium effect by ( ωe
ω∞
→ 0); then, this deflection

angle in Equation (20) reduces into the angle in Equation (13).

6. Graphical Analysis for Plasma Medium

Here, for simplicity, we take ωe
ω∞

= 10−1 and observe the deflection angle by changing
the value of the dimensionless tidal charge q.

Figure 3 demonstrates the relation of Θ with b for different values of q in the plasma
medium. In this plot, we observe that increasing the value of q decreases the deflection
angle in the plasma medium. Moreover, the deflection angle in the plasma medium is
smaller than the deflection angle in the vacuum.
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Figure 3. Relation between Θ and b of tidal-charged BH for positive values of q for Mp = 1, M5 = 0.5,
M = 1 and ωe

ω∞
= 10−1 for exaggeration of the plot.

7. Null Geodesic in a TCBH

The Lagrangian representing the motion of light in the TCBH’s spacetime using
Equation (1) is written as follows:

2L = −
(

1− 2M
M2

pr
+

q
M2

5r2

)
ṫ2 +

(
1− 2M

M2
pr

+
q

M2
5r2

)
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2, (21)

Here, the derivative w.r.t the affine parameter λ is represented by an overdot. As the
Lagrangian is not dependent on it and φ, we introduce two new constants named energy E
and the angular momentum L, where the values of these constants are defined as follows:

pt =
∂L
∂ṫ

= −(1− 2M
M2

pr
+

q
M2

5r2
)ṫ = −E, (22)

and
pφ =

∂L
∂φ̇

= r2 sin2 θφ̇ = L. (23)

For finding the restrictions of the geodesic, we use these constants as follows:

dt
dλ

= ṫ =
E

1− 2M
M2

pr
+ q

M2
5r2

,
dφ

dλ
= φ̇ =

L
r2 sin2 θ

. (24)

Now, we define the new parts of the momentum named the r-part and θ-part:

pr =
∂L
∂ṙ

=
ṙ

1− 2M
M2

pr
+ q

M2
5r2

and pθ =
∂L
∂θ̇

= r2θ̇. (25)

With the help of the Hamilton–Jacobi equation, we find the values of the r-part and
θ-part of the geodesic equation as follows:

∂S
∂λ

= −1
2

gµν ∂S
∂xµ

∂S
∂xν

, (26)
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and for photons (m0 = 0), Equation (26) can give us the result of the following type:

S = −Et + Lφ + Sr(r) + Sθ(θ), (27)

where Sr depends on r, and Sθ depends on θ. Now, we obtain the Carter constant
(±K) [100] by separating the values of r and θ. We obtain these values of r and θ by
replacing Equation (27) into Equation (26). By substituting the values of the contravariant
metric, i.e., gµν, we have the following:

1√
1− 2M

M2
pr
+ q

M2
5r2

dr
dλ

=+
−
√

R(r),

r2 dθ

dλ
=+
−
√

T(θ), (28)

where the values of R and θ can be defined as follows:

R(r) =
E2

1− 2M
M2

pr
+ q

M2
5r2

− K
r2 ,

T(θ) = K− L2

sin2 θ
. (29)

Now, Equation Sr can be written as follows:

dr
dλ

2
+ Ve f f = 0, (30)

with

Ve f f = −
(

1− 2M
M2

pr
+

q
M2

5r2

)
R(r). (31)

We see that the effective potential depends on BH’s mass denoted by M, and the
dimensionless tidal charge denoted by q and effective Planck mass on the brane denoted
by Mp and fundamental Planck scale in the 5D bulk denoted by M5 and radius r and R(r).
Now, we change these parameters to new impact parameters, such as ξ = L

E and η = K
E2 .

Now, we change the value of R with respect to these new impact parameters.

R = E2[
1

1− 2M
M2

pr
+ q

M2
5r2

− η

r2 ]. (32)

8. Shadow of TCBH

Here, in this section, we find the shadow of TCBH and we discuss in detail about
shadow in the introduction. Now, for finding the shadow, we find the unstable circular
photons orbits [106]. For this, we must satisfy the following:

R = 0 and R′ = 0, (33)

where prime (′) means differentiation w.r.t r. Putting (32) into (33), we obtain the relation
for the photon sphere as follows:

B′(r)
B(r)

=
2
r

. (34)

and the photon sphere rp is derived as follows:

rp =
3M2

5 M +
√

9M4
5 M2 − 8M2

5 M4
pq

2M2
5 M2

p
. (35)
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The radius of the shadow rs at photon sphere radius rp is calculated as follows:

rs =
√

η + ξ2 =
rp√

1− 2M
M2

prp
+ q

M2
5r2

p

, (36)

rs =
1
2

√√√√√√
(

3M2
5 M +

√
9M5M4

5 M2 − 8M2
5 M4

pq
)3

M4
5 M2

p

(
3M2

5 M2 + M
√

9M4
5 M2 − 8M2

5 M4
pq− 2M4

pq
) , (37)

where the impact parameters depend on the BHs mass denoted by M, the dimensionless
tidal charge denoted by q, effective Planck mass on the brane denoted by Mp, and fun-
damental Planck scale in the 5D bulk denoted by M5. So Equation (36) provides detail
about the boundary of the shadow. An observer that is far away from the BH can find
this shadow in this sky and we make new coordinates in the observer’s sky, named the
celestial coordinates (α,β); we relate these coordinates with impact parameters (ξ,η). These
coordinates are defined in these papers [101,102] as follows:

α =lim
r0→∞ (r2

0 sin θ0)
dφ

dr
,

β =lim
r0→∞ r2

0
dθ

dr
. (38)

Note that r0 represents the distance between the viewer and the BH, and θ0 denotes
the angular coordinates of the observer called the “inclination angle”. After putting the
equations of four velocities into Equation (38), and doing some calculations, we obtain
these celestial coordinates as follows:

α = − ξ

sin θ0
and β =

√
η − ξ2

sin θ2
0

. (39)

With the help of these equations and using the impact parameters, we now make the
shape of the TCBH shadow. For plotting the shadows’s shape, we plot α versus β, which
gives details about the boundary of the TCBH in the observer’s sky. These plots are seen in
Table 1 and Figure 4.

We plot the shadow of the black hole by changing the values of the dimensionless tidal
charge q, using the constraints from the astronomical observations on the upper limiting
values on the tidal charge parameters [12,14]. In this plot, we also discuss the shadow for
positive and negative values of q. We see that the shadow’s shape is a perfect circle, and its
shape is shown in Figure 4. In this graph, we see that for small values of q, the radius of
the shadow shows a different behavior. Increasing the value of the tidal charge decreases
the radius of the shadow as well as the radius of the photon sphere.

Table 1. Effects of the tidal charge on the BH shadow for fixed Mp = 1, M5 = 0.5, M = 1.

q rp Rs

0.05 2.86015 2.96572
0.1 2.70416 2.92949
0.2 2.30623 2.8537
0.27 1.8 2.84605
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RN Black Hole
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q=0.2

q=0.27

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

α

β

Figure 4. Shadow of the black hole for different values of q for Mp = 1, M5 = 0.5, M = 1.

Here, we consider the reported angular size of the shadow of the M87∗ black hole by
EHT as θs = (42± 3) µas, where the distance to M87∗ is D = 16.8 Mpc, and the mass of
M87∗ is M = 6.5× 109 M� [3]. Then, the diameter of the shadow in units of mass dM87∗ is
given by the following [95]:

dM87∗ =
D θs

M87∗
= 11.0± 1.5. (40)

A comparison of the radius of the shadow dM87 of black hole rM87∗ =
dM87∗

2 with the
radius of the shadow of the tidal charged black hole Rs is shown in Table 1. It is clear that
the shadow of the tidal charged black hole has a smaller radius than the shadow.

9. Effect of Plasma on Shadow of TCBH

In Ref. [76], the authors discuss in detail calculating the shadow of a spherically
symmetric spacetime in a plasma medium. The line element of spherically symmetric
TCBH is defined in Equation (1) as follows:

ds2 = −A(r)dt2 +
dr2

B(r)
+ r2dΩ2

2, (41)

where
A(r) = [B(r)]−1 = 1− 2M

M2
pr

+
q

M2
5r2

,
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and here, we check TCBH’s shadow in the presence of a plasma medium. The refractive
index n can be written as follows:

n2(r, ω(r)) = 1− ω2
e (r)

ω2(r)
. (42)

Here, from reference [76], we can define h(r) as follows:

h(r)2 = r2

 1
1− 2M

M2
pr
+ q

M2
5r2

− ω2
e (r)

ω2
∞

. (43)

We can calculate the radius of a photon sphere by computing the above equation as
follows:

0 =
d
dr

(
h(r)2

)
. (44)

In this case, the value of h(r) is defined by (43). We use circumstances of (44) for a
photon sphere, which becomes the following:

0 =
4r3(r2 − 2Mr

M2
p
+ q

M2
5
)− r4(

r2 − 2Mr
M2

p
+ q

M2
5

)2 − 2r
ω2

e (r)
ω2

∞
− 2r2 ωe(r)ωe(r′)

ω2
∞

. (45)

The angular radius of the shadow is defined as follows:

sin2 αsh =
h(rph)

2

h(rO)2 . (46)

Now, after putting the value of Equation (43) into the Equation (46), we have the
following:

sin2 αsh =

r2
ph

 1
1− 2M

M2
prph

+
q

M2
5r2

ph

− ω2
e (rph)

ω2
∞


r2

O

(
1

1− 2M
M2

prO
+

q
M2

5r2
O

− ω2
e (rO)

ω2
∞

) , (47)

where rph has to be determined by putting Equation (43) into Equation (44). For vacuum
ωe(r) = 0, our consideration gives the following:

h(r)2 = r2

 1
1− 2M

M2
pr
+ q

M2
5r2

 (48)

and

sin2 αsh =

r2
ph

 1
1− 2M

M2
prph

+
q

M2
5r2

ph


r2

O

(
1

1− 2M
M2

prO
+

q
M2

5r2
O

) , (49)

where the positive value of rph can be calculated as follows:

rph =

1 + 2M
M2

p
+

√
(1 + 2M

M2
p
)2 − 4q

M2
5

2
. (50)
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10. Conclusions

In this paper, we first calculate the weak deflection angle of TCBH with the help of the
Gaussian curvature. To do so, we use the GBT for calculating the weak deflection angle,
which was first proposed by Gibbons and Werner. The deflection angle is found as follows:

Θ ≈ 4M
bM2

p
− 3qπ

4b2M2
5
+O(M2, q2). (51)

This shows that the weak deflection angle depends on BH’s mass denoted by M, the
dimensionless tidal charge denoted by q, effective Planck mass on the brane denoted by
Mp, fundamental Planck scale in the 5D bulk denoted by M5 and impact parameter b. After
calculating the deflection angle of TCBH, we check its graphical behavior by varying the
values of q and by fixing all the other constants. Moreover, we study the weak deflection
angle of TCBH in the presence of the plasma medium, using the GBT. This angle in the
presence of plasma is obtained as follows:

Θ = −6
Mωe

2

bω∞2Mp
2 − 4

M
bMp

2 + 5/4
qωe

2π

b2ω∞2M5
2 + 3/4

qπ

b2M5
2 +O(M2, q2,

ω3
e

ω3
∞
). (52)

After neglecting the plasma medium effect, we find the same angle as we find in the
non-plasma case. Now if we neglect the plasma effect ( ωe

ω∞
→ 0), then this deflection angle

Equation (52) reduces into angle Equation (51). This shows the correctness of our angle in
the presence of a plasma medium. After calculating the effect of the plasma, we find the
graphical behavior of TCBH in the presence of the plasma medium. It does not show the
same behavior as the behavior without the plasma. Hence, we show that the deflection
angle continuously decreases with increasing q in Figures 1 and 2. Moreover, in Figure 3,
we demonstrate that for increasing the value of q, decreases in the deflection angle in the
plasma medium as well as the deflection angle in the plasma medium is smaller that the
deflection angle in vacuum.

Last, we also find the shadow of TCBH by studying the null geodesic of TCBH.
After that, we calculate the radius of the shadow and show its image in the far away
observer’s sky, using the celestial coordinates (α,β). Hence, we show the shadow of the
black hole by changing the values of the dimensionless tidal charge q, using the constraints
from the astronomical observations on the upper limiting values on the tidal charge
parameters [12,14]. In Figure 4, we also discuss the radius of the shadow for positive and
negative values of q. We see that the shadow’s shape is a perfect circle. We conclude that
for small values of q, the radius of the shadow shows a different behavior, and increasing
the value of the tidal charge decreases the radius of the shadow as well as the radius of
the photon sphere. Hence, we show that the shadow of the tidal-charge black hole has a
smaller radius of the shadow as compared with the M87∗ black hole recently observed
by EHT.
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