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Abstract: Finite-temperature equation of state (EoS) and the composition of dense nuclear and
hypernuclear matter under conditions characteristic of neutron star binary merger remnants and
supernovas are discussed. We consider both neutrino free-streaming and trapped regimes which are
separated by a temperature of a few MeV. The formalism is based on covariant density functional
(CDF) theory for the full baryon octet with density-dependent couplings, suitably adjusted in the
hypernuclear sector. The softening of the EoS with the introduction of the hyperons is quantified
under various conditions of lepton fractions and temperatures. We find that Λ, Ξ−, and Ξ0 hyperons
appear in the given order with a sharp density increase at zero temperature at the threshold being
replaced by an extended increment over a wide density range at high temperatures. The Λ hyperon
survives in the deep subnuclear regime. The triplet of Σs is suppressed in cold hypernuclear matter
up to around seven times the nuclear saturation density, but appears in significant fractions at higher
temperatures, T ≥ 20 MeV, in both supernova and merger remnant matter. We point out that a
special isospin degeneracy point exists where the baryon abundances within each of the three isospin
multiplets are equal to each other as a result of (approximate) isospin symmetry. At that point, the
charge chemical potential of the system vanishes. We find that under the merger remnant conditions,
the fractions of electron and µ-on neutrinos are close and are about 1%, whereas in the supernova
case, we only find a significant fraction (∼10%) of electron neutrinos, given that in this case, the µ-on
lepton number is zero.

Keywords: equation of state; neutron stars; neutrinos; hyperons

1. Introduction

Several astrophysical scenarios lead to the formation of hot, neutrino-rich compact
objects which contain nuclear and hypernuclear matter at finite temperature. One such
scenario arises in the core-collapse supernova and proto-neutron star context, where a
hot proto-neutron star is formed during the contraction of the supernova progenitor and
subsequent gravitational detachment of the remnant from the expanding ejecta [1–7]. A
related scenario arises in the case of stellar black-hole formation when the progenitor mass
is so large (typically tens of solar masses) that the formation of a stable compact object
is not possible and a black hole is inevitably formed [8–11]. Finally, the binary neutron
star mergers offer yet another scenario where finite temperature nuclear and hypernuclear
matter play an important role [12–15]. In the “hot” stage of evolution of these objects
the thermodynamics of the matter is characterized by several parameters, for example,
density, temperature and lepton fraction. This is in contrast to the case of cold (essentially
zero-temperature) compact stars whose thermodynamics is fully determined by a one-
parameter EoS relating pressure to energy density under approximate β-equilibrium. An
important feature of the hot stages of evolution of compact stars is the trapped neutrino
component above the trapping temperature Ttr ' 5 MeV—a regime where the neutrino
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mean-free-path is shorter than the size of the star [16]. As is well known, neutrinos affect
significantly the composition of matter and are important for the energy transport and
dynamics of supernova and binary neutron star mergers.

After the first observation of a massive compact star in 2010 [17] which was followed by
further observations of such objects [18,19] the interest in the covariant density functional
(CDF) theories of superdense matter resurged because its parameters became subject
to astrophysical constraints in addition to the (low-density) constraints coming from
laboratory nuclear physics (for reviews see [20–22]). CDF based models tuned to the
astrophysical constraints that account for the finite temperature, neutrino component,
and strangeness in the form of hyperons appeared in recent years [23–34].

In this work, we study the EoS and composition of nuclear and hypernuclear mat-
ter both in the neutrino free and neutrino-trapped regimes within the CDF formalism.
Our numerical implementation is based on that of Ref. [24] but also includes the hidden
strangeness σ∗ and φ mesons which account for the interactions amongst hyperons. In ad-
dition, instead of using SU(3) symmetry arguments of Ref. [24] in the scalar sector, we
adjust the parameters to the depths of hyperon potentials, as already done in Refs. [35–37]
in the case of zero-temperature EoS. In this work, we use, for the sake of conciseness,
a single nucleonic CDF with parameters chosen according DDME2 parameterization [38].
A similar nucleonic DDME2-model-based finite temperature EoS has been presented in
Ref. [32], where the couplings in the hyperonic sector were taken from Ref. [39] which
differ from the ones adopted here. In this work, we do not address microscopic models
of hypernuclear matter which predict too low masses associated for hyperonic stars, see
Refs. [22,40] for reviews.

This work is organized as follows. Section 2 is devoted to the formal aspects of EoS
and the composition of matter at finite temperatures. The CDF formalism is discussed
in Section 2.1 and the choice of the baryon–meson coupling constants is addressed in
Section 2.2. The thermodynamic conditions of baryonic matter relevant to neutron star
mergers and supernovas are discussed in Section 2.3. Our numerical results are given in
Section 3. Section 4 provides a short summary. We use the natural (Gaussian) units with
h̄ = c = kB = 1, and the metric signature gµν = diag(1,−1,−1,−1).

2. Relativistic Density Functional with Density-Dependent Couplings
2.1. Equation of State

We start with a description of the formalism of CDF as applied to hyperonic mat-
ter. In this work, we adopt the DDME2 parameterization [38] which is based on the
version of the theory that uses density-dependent coupling constants for the meson-baryon
interactions [41].

The Lagrangian of the stellar matter is given by

L = Lb + Lm + Lλ + Lem, (1)

where the baryon Lagrangian is given by

Lb = ∑
b

ψ̄b

[
γµ

(
i∂µ − gωbωµ − gφbφµ −

1
2

gρBτ · ρµ

)
− (mb − gσbσ− gσ∗bσ∗)

]
ψb, (2)

where the b-sum is over the JP
B = 1

2
+

baryon octet; ψb are the Dirac fields of baryons with
masses mb; σ, σ∗, ωµ, φµ, and ρµ are the mesonic fields and gmb are the coupling constants
that are density-dependent. The σ∗- and φ-meson fields only couple to hyperons. The
mesonic part of the Lagrangian is given by
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Lm =
1
2

∂µσ∂µσ− m2
σ

2
σ2 − 1

4
ωµνωµν +

m2
ω

2
ωµωµ −

1
4

ρµν · ρµν +
m2

ρ

2
ρµ · ρµ

+
1
2

∂µσ∗∂µσ∗ − m∗2σ

2
σ∗2 − 1

4
φµνφµν +

m2
φ

2
φµφµ, (3)

where mσ, mσ∗ , mω, mφ and mρ are the meson masses and ωµν, φµν and ρµν stand for the
field-strength tensors of vector mesons

ωµν = ∂µων − ∂µων, φµν = ∂µφν − ∂µφν, ρµν = ∂νρµ − ∂µρν. (4)

The leptonic Lagrangian is given by

Lλ = ∑
λ

ψ̄λ(iγµ∂µ −mλ)ψλ, (5)

where ψλ are leptonic fields and mλ are their masses. The lepton index λ includes electrons
and µ-ons. In hot stellar matter, one needs to include also the three flavors of neutrinos
whenever they are trapped. An approximate estimate of the temperature above which
neutrinos are trapped is Ttr = 5 MeV. We will neglect henceforth the strong magnetic fields
present in certain classes of compact stars and drop the gauge part Lem of the Lagrangian.
For the inclusion of these effects see Refs. [42–44]. We do not consider in this work the
non-strange J = 3

2 members of the baryons decuplet—the ∆-resonances [35,45–50]; for a
review, see [21].

The partition function Z of the matter can be evaluated in the mean-field and infinite
system approximations from which one finds the pressure and energy density

P = Pm + Pb + Pλ, E = Em + Eb + Eλ, (6)

with the contributions due to mesons and baryons given by

Pm = −m2
σ

2
σ2 − m∗2σ

2
σ∗2 +

m2
ω

2
ω2

0 +
m2

φ

2
φ2

0 +
m2

ρ

2
ρ2

03, (7)

Em =
m2

σ

2
σ2 +

m∗2σ

2
σ∗2 +

m2
ω

2
ω2

0 +
m2

φ

2
φ2

0 +
m2

ρ

2
ρ2

03, (8)

Pb =
1
3 ∑

b

2Jb + 1
2π2

∫ ∞

0

dk k4

Eb
k

[
f (Eb

k − µ∗b) + f (Eb
k + µ∗b)

]
, (9)

Eb = ∑
b

2Jb + 1
2π2

∫ ∞

0
dk k2Eb

k

[
f (Eb

k − µ∗b) + f (Eb
k + µ∗b)

]
, (10)

where 2Jb + 1 is the spin degeneracy factor of the baryon octet. The lepton contribution is
given by

Pλ =
1
3 ∑

λ

2Jλ + 1
2π2

∫ ∞

0

dk k4

Eλ
k

[
f (Eλ

k − µλ) + f (Eλ
k + µλ)

]
, (11)

Eλ = ∑
λ

2Jλ + 1
2π2

∫ ∞

0
dk k2Eλ

k

[
f (Eλ

k − µλ) + f (Eλ
k + µλ)

]
, (12)

where 2Jλ + 1 = 2 for electrons and µ-ons and 1 for neutrinos of all flavors. The single

particle energies of baryons and leptons are given by Eb
k =

√
k2 + m∗2b and Eλ

k =
√

k2 + m2
λ,

respectively, where the effective (Dirac) baryon masses in the mean-field approximation
are given by

m∗b = mb − gσbσ− gσ∗bσ∗. (13)
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Next, f (E) = [1 + exp(E/T)]−1 is the Fermi distribution function at temperature T. The ef-
fective baryon chemical potentials are given by

µ∗b = µb − gωbω0 − gφbφ0 − gρbρ03 I3b − Σr, (14)

where µb is the chemical potential, I3b is the third component of baryon isospin and the
rearrangement self-energy Σr, which arises from density-dependence of the coupling
constants, is given by

Σr = ∑
b

(
∂gωb
∂nb

ω0nb +
∂gρb

∂nb
I3bρ03nb +

∂gφb

∂nb
φ0nb −

∂gσb
∂nb

σns
b −

∂gσ∗b
∂nb

σ∗ns
b

)
. (15)

In the mean-field approximation the meson expectation values are given by

m2
σσ = ∑

b
gσbns

b, m2
σ∗σ
∗ = ∑

b
gσ∗bns

b, (16)

m2
ωω0 = ∑

b
gωbnb, m2

φφ0 = ∑
b

gφbnb, (17)

m2
ρρ03 = ∑

b
I3bgρbnb, (18)

where the meson fields now stand for their mean-field values; the scalar number density
is given by ns

b = 〈ψ̄bψb〉, whereas the baryon number density is given by nb = 〈ψ̄bγ0ψb〉.
Explicitly, they are given by

nb =
2Jb + 1

2π2

∫ ∞

0
k2dk

[
f (Eb

k − µ∗b)− f (Eb
k + µ∗b)

]
, (19)

ns
b =

2Jb + 1
2π2

∫ ∞

0
k2dk

m∗b
Eb

k

[
f (Eb

k − µ∗b) + f (Eb
k + µ∗b)

]
. (20)

2.2. Choice of Coupling Constants

The coupling constants are functions of baryon density, nB. This accounts for mod-
ifications of interactions by the medium at zero temperature; the extrapolation to finite
temperature neglects the influence of temperature on the self-energies of baryons at beyond-
mean-field level. The nucleon–meson couplings are given by

giN(nB) = giN(nsat)hi(x), (21)

where nsat is the saturation density, x = nB/nsat and

hi(x) =
ai + bi(x + di)

2

ai + ci(x + di)2 , i = σ, ω, hρ(x) = e−aρ(x−1). (22)

For completeness, we list the values of parameters in Table 1.

Table 1. The values of parameters of the DDME2 CDF.

Meson (i) mi (MeV) ai bi ci di giN

σ 550.1238 1.3881 1.0943 1.7057 0.4421 10.5396
ω 783 1.3892 0.9240 1.4620 0.4775 13.0189
ρ 763 0.5647 — — — 7.3672
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The density-dependent functions hi(x) are subject to constraints hi(1) = 1, h′′i (0) = 0
and h′′σ(1) = h′′ω(1).

Fixing the hyperonic coupling constants involves two sources of information: (a) the
couplings of hyperons to the vector mesons are chosen according to the SU(6) spin-flavor
symmetric model [51]; (b) their couplings to the scalar mesons are chosen such as to
reproduce their phenomenological potential depths at the saturation density, which are
determined from experiments.

We express the hyperonic couplings in terms of their ratios to the corresponding cou-
plings of nucleons: RiY = giY/giN for i = {σ, ω, ρ} and Rσ∗Y = gσ∗Y/gσN , RφY = gφY/gωN .
For Λ-hyperons, we adopt RσΛ = 0.6106 [35], which is close to the value determined in
Ref. [52] through fits to the Λ-hypernuclei. The likely range of the potentials for Σ and Ξ
hyperons are

−10 ≤ UΣ(nsat) ≤ 30 MeV, (23)

−24 ≤ UΞ(nsat) ≤ 0 MeV, (24)

where the value UΞ(nsat) = −24 MeV has been given in [53] and is much deeper than the
one expected from Lattice 2019 results [54,55]. The adopted values of the coupling constants
are taken from Ref. [35] and are listed in Table 2. Note that it is implicitly assumed that
the couplings of mesons to hyperons have the same density dependence as for nucleons.
The hidden strangeness mesons have masses mσ∗ = 980 and mφ = 1019.45 MeV, with the
density dependence of their couplings coinciding with those of the couplings of the σ- and
ω-mesons, respectively.

Table 2. The ratios of the couplings of hyperons to mesons. See text for explanations.

Y\R RωY RφY RρY RσY Rσ∗Y

Λ 2/3 −
√

2/3 0 0.6106 0.4777
Σ 2/3 −

√
2/3 2 0.4426 0.4777

Ξ 1/3 −2
√

2/3 1 0.3024 0.9554

2.3. Thermodynamic Conditions in Supernovas and Merger Remnants

Next, we adopt our hypernuclear CDF to the stellar conditions, specifically to the cases
of supernovas and binary neutron star mergers. As already mentioned, two regimes arise
depending on the ratio of the neutrino mean-free-path to the size of the system: the neutrino
free regime in the case of this ratio being much larger than unity, and the trapped neutrino
regime in the opposite case. Trapped neutrinos are in thermal equilibrium and are charac-
terized by appropriate Fermi distribution functions at the matter temperature. Numerical
simulations provide the lepton fractions that we adopt in our static (time-independent)
description. We assume that the lepton number is conserved in each family, which im-
plies that the neutrino oscillations are neglected. The τ-leptons are neglected because of
their large mass. For supernova matter, the predicted electron and muon lepton numbers
are typically YL,e ≡ Ye + Yνe = 0.4 and YL,µ ≡ Yµ + Yνµ = 0 [1,6,29], where we introduced
partial lepton densities normalized by the baryon density Ye,µ = (ne,µ − ne+ ,µ+)/nB, where
e+ refers to the positron and µ+—to the anti-muon. Note, however, that Ye may vary
significantly along with a supernova profile in a time-dependent manner. Furthermore,
muonization in the matter can lead to a small (of the order 10−3) fraction of µ-ons [56,57]
which we neglect here. In the case of neutron star mergers, the hot remnant emerges from
the material of initial cold neutron stars, and the lepton fractions YL,e = YL,µ = 0.1 are
assumed for the remnant of a merger. The adopted values reflect (approximately) those of
the pre-merger cold neutron stars.
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The stellar matter is in weak equilibrium and is charge neutral. The equilibrium with
respect to the weak processes requires

µΛ = µΣ0 = µΞ0 = µn = µB, (25)

µΣ− = µΞ− = µB − µQ, (26)

µΣ+ = µB + µQ, (27)

where µB and µQ = µp − µn are the baryon and charge chemical potentials, µb with
b ∈ {n, p, Λ, Σ0,±, Ξ0,−} are the thermodynamic chemical potentials of the baryons. The
charge neutrality condition is given in terms of the partial densities of charged baryons as

np + nΣ+ − (nΣ− + nΞ−) = nQ. (28)

Introducing the partial charge density normalized by the baryonic density YQ = nQ/nB,
the charge neutrality condition can be written

YQ = Ye + Yµ. (29)

The free streaming and trapped neutrino regimes are characterized by

µe = µµ = −µQ = µn − µp, (free streaming) (30)

µe = µL,e − µQ, µµ = µL,µ − µQ, (trapped) (31)

where µL,e/µ are the lepton chemical potentials which are associated with the lepton number
YL,e = Ye + Yνe and YL,µ = Yµ + Yνµ , which are conserved separately. Combining the weak-
equilibrium and charge neutrality conditions we are now in a position to compute the
EoS of stellar matter both in the trapped and free streaming neutrino regimes. Note that
it is implicitly assumed that the matter is under detailed balance with respect to Urca
processes; if this condition is violated, then an additional “isospin chemical potential”
arises [58,59]. Additionally, note that we do not constrain particles to their Fermi surfaces
and any corrections associated with the finite temperature features of the Fermi distribution
function are included in our β-equilibratium condition.

3. Numerical Results

Our numerical procedure involves a solution of self-consistent equations for the
meson fields and the scalar and baryon densities for fixed values of temperature, density,
and lepton numbers YL,e and YL,µ, which are chosen according to the physical conditions
characteristic for supernovas and merger remnants, as specified in Section 2.3. In this work,
we concentrate on the features of EoS and particle fractions (or abundances) in the matter
under various thermodynamic conditions.

Figure 1 shows the EoS for nucleonic and hyperonic matter at temperature T = 0.1 MeV
in the β-equilibrium and neutrino-free case, as well as at T = 5 and 50 MeV with trapped
neutrinos and several values of YL,e. The µ-on fractions are chosen as YL,µ = 0 for YL,e =
0.2, 0.4 and YL,µ = YL,e = 0.1. The non-zero YL,µ is characteristic of merger remnants
whereas zero YL,µ is characteristic for supernovas. The key well-known feature of the onset
of hyperons seen in Figure 1 is the softening of the EoS, i.e., the shift of pressure to lower
values above the energy-density for the onset of hyperons. It is further seen that for a
higher temperature, the pressure is larger at low densities and is lower at high densities
independent of the presence of hyperons.
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Figure 1. Dependence of the pressure on the energy density. The panel labeled µν = 0 corresponds to
neutrino-free β-equilibrium case without (solid) and with (dashed) hyperons at T = 0.1 MeV. (Varying
the temperature up to Ttr does not produce visible changes.) The remaning panels show results
for the neutrino trapped matter at T = 5 MeV (solid—without hyperons and long-dashed—with
hyperons) and 50 MeV (short-dashed—without hyperons and double-dash-dotted—with hyperons)
for YL,e = 0.1, 0.2, 0.4. The µ-on fractions are YL,µ = YL,e = 0.1 (upper right panel) and YL,µ = 0 for
YL,e = 0.2 and 0.4 (lower row). The case YL,e = 0.1 is characteristic of a merger remnant, whereas
YL,e = 0.2, 0.4—to supernova.

Figure 2 shows the particle number densities ni/nB in npeµ-matter normalized by
baryon density as a function of baryon density normalized by nsat = 0.152 fm−3. The case
µν = 0 corresponds to the β-equilibrium neutrino-free case at T = 1 MeV, whereas the cases
YL,e = 0.1, 0.2, 0.4 correspond to the trapped neutrino regime at T = 50 MeV. The choices
of YL,µ match those of Figure 1. In contrast to the neutrino-transparent case, where the
muons appear above a threshold density around nsat where µe ≥ mµ, in the neutrino-
trapped regime, the electron and muon contributions are almost equal under merger
conditions (YL,e = 0.1), and there is a visible fraction of µ-on neutrinos. Thus, the charge
neutrality is maintained through the balance of negative charges of both types of leptons
with protons. From the upper right panel of Figure 2, we see that the net neutrino numbers
become negative at low densities for both lepton families, indicating that there are more
antineutrinos than neutrinos in the low-density and high-temperature regime of neutron
star merger matter.

Note that the proton fraction remains below the threshold for the Urca processes to
operate in the low-temperature neutrino-free regime. In the high-temperature regime, the
phase-space for Urca processes opens due to the thermal smearing of Fermi surfaces of
baryons. This has important ramifications on the oscillations of post-merger remnants
through the damping effect of the bulk viscosity driven by Urca processes [34,58,60–62].
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Figure 2. Dependence of the particle fractions ni/nB on the baryon density nB normalized by the
saturation density. The panels show the composition of npeµ matter in β-equilibrium at T = 1 MeV
in the neutrino-free case (µν = 0) and for neutrino-trapped matter at T = 50 MeV for several values
of the electron lepton faction YLe = 0.1, 0.2, 0.4., with the µ-on component satisfying YLµ = YLe = 0.1
and YLµ = 0 for YLe = 0.2, 0.4, where YLµ is the µ-on lepton fraction.

Under the supernova conditions, µ-ons are greatly suppressed and the corresponding
neutrinos are extinct. Then, the near equality of proton and electron abundances is required
by charge neutrality. Note that the µ-on abundances need not vanish, as YL,µ also includes
the contributions from muonic neutrinos and antineutrinos. The small µ-on fraction seen in
the lower panels of Figure 2 is compensated by an equal fraction of muonic antineutrinos ν̄µ

required by the condition YL,µ = 0. The isospin asymmetry in supernova matter is reduced
with increasing YL,e and, consequently, the difference between the neutron and proton
abundances gradually vanishes. The electron-neutrino population increases as well. In the
cases YL,e = 0.1, the µ-on neutrino fraction is comparable to that of electron-neutrinos, as
their lepton numbers are set equal. In the lower panels of Figure 2, they are absent because
we enforced the condition YL,µ = 0.

Figure 3 shows the same as Figure 2, but it includes the full baryon octet. Hyperons
appear at densities above the saturation, in the following sequence: Λ, Ξ− and Ξ0. The onset
of Σ− hyperon in the low-temperature matter occurs at densities outside the range shown.
The reason for the shift of Σ− hyperons to high densities is the adopted highly repulsive
potential value in nuclear matter [63–68]. This ordering is at variance to the case of free
hyperonic gas, where Σ− was predicted to be the first hyperon to nucleate [69], and
more elaborate models which assign weakly repulsive potential, see, e.g., [24]. However,
the triplet of Σ±,0 is present for T = 50 MeV independent of the values of lepton numbers.
It is interesting that Σ− and Σ+ fractions interchange their roles from being most abundant
to least abundant Σ-hyperon with increasing density at a special intersection point where
the abundances of all the Σs coincide. Note that the location of this special point depends
on the choice of YL,e. Furthermore, it is seen that the intersection point of n and p fractions,
as well as that of Ξ− and Ξ0 fractions, are located close to the intersection point of Σs.

This feature can be understood by examining the β-equilibrium conditions (25)–(27).
If there is a point within the density range considered where the proton fraction reaches
the neutron fraction (which means µ∗n = µ∗p due to Equation (19)), then the charge chem-
ical potential µQ = µp − µn vanishes at that point (due to the density scaling (22), the
contribution of the ρ-meson mean-field to the effective baryon chemical potentials (14)
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is negligible at high densities, resulting in µ∗n − µ∗p ' µn − µp). This results in a single
chemical potential µb = µB for the full baryon octet at that special isospin degeneracy point.
This implies, in turn, almost equal values of effective chemical potentials and, therefore,
equal baryon fractions within a given isospin-multiplet.

Figure 3. Same as in Figure 2, but for the full baryon octet with the µ-on component satisfying the
conditions YL,µ = YL,e = 0.1 (upper right) and YL,µ = 0 for YL,e = 0.2, 0.4 (lower row). In the low-
temperature, β-equilibrium case, the Λ, Ξ− and Ξ0 appear in the given order with a sharp increase in
their fractions at the corresponding density thresholds. At high temperature T = 50 MeV the density
thresholds are located at lower densities (some are outside figure’s scale) and the triplet Σ0± appears.
The fractions of Λ hyperons are shown by dash-triple-dot lines, that of Ξ0,− by double-dash-double-
dot lines and that of Σ0,± by dash-single-dot lines. The electron and µ-ons neutrinos are shown by
double-dash-dot lines; the electrons and µ-ons by long-dashed lines, protons by short-dashed lines
and, finally, neutrons by solid lines.

Figure 4 shows the effective masses of baryons as a function of density at T = 0.1 MeV
and in β-equilibrium. The effective masses of isospin multiplets (n, p), Σ0,± and Ξ0,− are
degenerate. The temperature dependence of the effective masses of baryons is very weak
and, for the sake of clarity, is not shown.

Figure 5 shows the effective baryon chemical potentials minus their effective masses,
which clearly show the special intersection points within each multiplet at all values
of the lepton fractions in the neutrino-trapped matter. Note that the effective masses
within each multiplet are equal in our model, see Figure 4 above. On the left side of the
intersection point we have µQ ≤ 0, which according to the conditions (25)–(27) puts the
baryon abundances within each multiplet in the charge-decreasing order (i.e., baryons with
smaller charges are more abundant). Above the intersection point µQ ≥ 0, the ordering of
baryon fractions within each multiplet is reversed. Similar behaviour of baryon abundances
was found also in Refs. [6,32], where the composition of hot stellar matter was shown
at constant entropy-per-baryon and the composition of matter also included the quartet
of ∆-resonances. Note that in the ideal case of exact isospin symmetry, the intersection
points of the three isospin-multiplets n− p, Σ0,± and Ξ0,− would be located exactly at the
same density. The small deviations of these three points from each other (which increase
gradually with increasing YL,e) reflect the fact that the isospin symmetry is approximate.
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Figure 4. Dependence of effective masses of baryons on the density at T = 0.1 MeV and in β-
equilibrium. Each isospin multiplet is shown by a single line due to the degeneracy in their masses.

Figure 5. Dependence of baryon effective chemical potentials (computed from their effective masses)
on the normalized baryon density nB/nsat. The line styles for each baryon and the values of the
temperature and lepton fractions for each panel match those in Figure 3. The intersection (isospin
degeneracy) points of chemical potentials of the same isospin-multiples is clearly visible at all values
of lepton fractions in the neutrino-trapped matter.

The difference between almost equal abundances of leptons for YL,e = 0.1 and the
remaining cases YL,e = 0.2, 0.4 is related to our choice of YL,µ to reflect merger remnant
conditions (first case) and supernova conditions (second case). This difference also propa-
gates to the abundances of electron and µ-on neutrinos, which are present in almost equal
quantities in the first case, whereas in the second case, the µ-on neutrinos are replaced by a
much smaller amount of µ-on antineutrinos. Hyperons affect the way the charge neutrality
is maintained at high density. In low-temperature and β-equilibrated matter it is enforced
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by equal abundances of protons and Ξ− hyperons with electrons and µ-ons being extinct
at high densities. At finite temperature, the electrons are abundant and the presence of
Ξ− hyperon only induces some splitting between the electron and proton fractions, which
becomes less pronounced with increasing YL,e. The fractions of µ-ons and their neutrinos
in the merger remnant case (YL,e = YL,µ = 0.1) are as significant as those of electrons and
electron-neutrinos, respectively, but they do not play any significant role in the super-
nova case where YL,µ = 0. In contrast to the pure nucleonic matter where the neutrino
abundances remain constant or decrease slowly with baryon density, the hypernuclear
matter features increasing neutrino abundances with density because of decreasing lepton
fractions at fixed YL,e and YL,µ.

It is further seen that finite temperatures induce a significant shift of the hyperon
thresholds to lower densities (which lie outside of the density range considered). This is in
accordance with the recent observation that low-density hot nuclear matter may feature
a significant fraction of strangeness (Λ-particles) as well as ∆-resonances in addition to
light clusters and free nucleons [70]. Note also that the Λ-hyperon abundances become
larger than those of neutrons at high density, i.e., these species are the dominant baryonic
component in the matter for nB/nsat & 5.5. This results mainly from the weaker repulsive
coupling of Λs to ω-meson which enhances their abundances compared to neutrons. The
weaker renormalization of Λ’s mass due to coupling to σ and σ∗ mesons than that of
neutron is less important.

Figure 6 shows the particle fractions in the hypernuclear matter in the tempera-
ture range 10 ≤ T ≤ 40 MeV and electron and µ-on fraction fixed by the condition
YL,e = YL,µ = 0.1 characteristic of neutron star binary mergers. It is seen that the abun-
dances of neutrons, protons, electrons and µ-ons are weakly dependent on the temperature.
Due to equal lepton numbers, the electron and µ-on abundances are close to each other with
the small electron excess reflected in the dominance of µ-on neutrinos over the electron-
neutrinos. At high densities, the neutrino abundances are almost independent of the
temperature as well, but they decrease with increasing temperature and, eventually, be-
come negative at temperatures between 40 and 50 MeV in the low-density domain (see
also the upper right panel of Figure 3).

Figure 6. Same as in Figure 3, but for the fixed electron and µ-on lepton fractions YL,e = YL,µ = 0.1
and temperatures T = 10, 20, 30 and 40 MeV. The lepton number fractions are characteristic for
binary neutron star mergers.
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Hyperons have sharply increasing fractions at the thresholds at T = 10 MeV, which
replicates those at low temperatures and in neutrino-free regimes. With increasing tempera-
ture, the thresholds of the appearance of the hyperons move to the lower densities, with the
Λ threshold moving to a density below nsat/2. The high-density limit shows the following
new features: (a) the Λ becomes the most abundant baryon by exceeding the neutron
fraction; the Ξ0 hyperon overtakes Ξ− and becomes the second-most abundant hyperon.
Note that the upper right panel of Figure 3 differs from the panels shown here only by the
temperature (T = 50 MeV); therefore, our comments here parallel the statements made
earlier in the context of Figure 3. Turning to the Σs, we note that their abundances are
noticeable for T ≥ 20 MeV and the occurrence of the special interchange point of isospin
degeneracy is seen again for T = 30 MeV and T = 40 MeV.

In Figure 7, we show the same as in Figure 6 but for YL,e = 0.4 and YL,µ = 0, which
physically corresponds to the case of supernova matter. Many general trends seen for
baryon abundances remain the same under these new conditions. An interesting new fea-
ture is the near equipartition between neutrons, Λ, and protons at high density nB/nsat ≥ 5,
with Ξ0 fraction approaching this group above 6nsat. As for leptons, the main effect arises
from the drop of µ-on fraction to below 1% and less for T ≤ 40 MeV. For T = 50, this
number climbs to a few percent (see Figure 3, lower panels). Because of this, the charge
neutrality is mainly maintained by the equality of the abundances of protons and electrons,
with slight disparity introduced by Ξ− at high density. The most striking difference is the
strong enhancement of electron-neutrino abundances for all temperatures, with a very
weak dependence on the temperature of the environment.

Figure 7. Same as in Figure 6, but for the fixed YL,e = 0.4 and YL,µ = 0, i.e., the lepton number
fractions are characteristic for supernova.

4. Conclusions

In this work, we explored the finite-temperature EoS of nuclear and hypernuclear
matter within the CDF formalism. Formally, our study uses essentially the same approach
as that of Ref. [24], but it includes additional hidden-strangeness mesons and employs a
different strategy to fix the hyperonic couplings in the scalar sector by adjusting these to the
depths of hyperon potential in nuclear matter. We performed parameter studies varying the
temperature, density and lepton fraction within two scenarios: the binary merger remnant
scenario with equal numbers of electron and µ-on lepton numbers and the supernova
scenario with non-zero electron and zero µ-on lepton numbers. In all cases, the well-known
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feature of softening of the EoS with the inclusion of hyperons is reproduced. Even though
the temperature dependence of the EoS is not strong (see Figure 1), it has significant impact
on the radii and masses of compact stars (see for example, refs. [32,71]). The abundances of
particles in a baryon–lepton mixture in a merger remnant and a supernova were explored
within the CDF formalism. The main features are: (a) at finite temperatures, the sharp
increase in hyperon fractions at the thresholds is replaced by a gradual increase over
a density range allowing for a significant fraction of hyperons, especially Λs, at sub-
saturation densities, as shown in Figures 3, 6, and 7. (b) At large densities nB/nsat ≥ 5,
the most abundant baryon is Λ, as in the strongly relativistic regime, the difference between
the (bare) masses of the neutron and Λ is not important. The weaker coupling of σ meson
to Λ than to nucleon results in a a weaker renormalization of Λ mass (see Figure 4) which
disfavors Λ hyperons. However, the weaker repulsive coupling of Λs to ω-meson promotes
their abundances compared to neutrons, which eventually leads to their dominance at high
densities. Note that the ρ-meson coupling is exponentially suppressed at high densities and
it does not play any considerable role. Note also that the roles played by σ∗- and φ-mesons
are similar to that of σ- and ω-mesons, but are quantitatively less important. (c) The triplet
of Σ hyperons, which is completely suppressed in the cold regime of hypernuclear matter,
emerges at temperatures above 20 MeV, with significant fractions of Σ− compatible to that
of Ξ− at low densities nB ≤ 2nsat and high temperatures T ≥ 40 MeV. (d) In the neutrino-
trapped regime, there is always a special isospin degeneracy point where the charge
chemical potential of the system vanishes. At that point, the baryon abundances within
each of the three isospin-multiplets are equal to each other as a result of (approximate)
isospin symmetry. (e) We find a significant difference between the neutrino abundances in
the merger remnant and supernova cases. In the first case, there are comparable numbers
∼ 1% of electron and µ-on neutrinos (the electron and µ-on lepton numbers being equal).
In the second case, electron neutrino abundance is much larger ∼ 10% and µ-on neutrinos
are absent (there is only a small fraction of µ-on anti-neutrinos in this case, typically less
than a percent). This, of course, reflects the choices of YL,e and YL,µ for these cases, but the
abundances are not trivially related to lepton numbers.
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