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Abstract: We generalize the regularity concept for semigroups in two ways simultaneously: to higher
regularity and to higher arity. We show that the one-relational and multi-relational formulations of
higher regularity do not coincide, and each element has several inverses. The higher idempotents are
introduced, and their commutation leads to unique inverses in the multi-relational formulation, and
then further to the higher inverse semigroups. For polyadic semigroups we introduce several types
of higher regularity which satisfy the arity invariance principle as introduced: the expressions should
not depend of the numerical arity values, which allows us to provide natural and correct binary
limits. In the first definition no idempotents can be defined, analogously to the binary semigroups,
and therefore the uniqueness of inverses can be governed by shifts. In the second definition called
sandwich higher regularity, we are able to introduce the higher polyadic idempotents, but their
commutation does not provide uniqueness of inverses, because of the middle terms in the higher
polyadic regularity conditions. Finally, we introduce the sandwich higher polyadic regularity with
generalized idempotents.
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1. Introduction

The concept of regularity was introduced in [1] and then widely used in the construc-
tion of regular and inverse semigroups (see, e.g., [2–7], also refs therein).

In this note we propose to generalize the concept of regularity for semigroups in two
different aspects simultaneously: (1) higher regularity, which can be informally interpreted
that each element has several inverse elements; (2) higher arity, which extends the binary
multiplication to that of arbitrary arity, i.e., the consideration of polyadic semigroups.

The higher regularity concept was introduced in semisupermanifold theory [8] for
generalized transition functions, which then gave rise to the development of a new kind of
so called regular obstructed category [9] and to their application to Topological Quantum
Field Theory [10], the Yang-Baxter equation [11] and statistics with a doubly regular R-
matrix [12]. Moreover, it was shown that the higher regular semigroups naturally appear
in the framework of the polyadic-binary correspondence principle [13]. Categorical aspects
of regularity in the language of arrow flows were considered in [14,15]. Semigroups with
multiplication of higher arity were introduced in [16] as algebraic systems, in [17] as
positional operatives, in [18] as m-semigroups, and in [19] as polyadic semigroups (we will
use the latter term to be close in terminology to polyadic groups [20]). Regular and inverse
polyadic semigroups were investigated in [16,21,22].

Here we will show that even for binary semigroups the one-relational and multi-
relational formulations of higher regularity are different. The higher regular idempotents
can be introduced, and their commuting leads to the higher inverse semigroups. In the
case of polyadic semigroups, several definitions of regularity and higher regularity can
be introduced. We do not apply reduction in the number of multiplications as in [22]
which can be done in the one-relational approach only, but in this way we also do not

Universe 2021, 7, 379. https://doi.org/10.3390/universe7100379 https://www.mdpi.com/journal/universe

https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://doi.org/10.3390/universe7100379
https://doi.org/10.3390/universe7100379
https://doi.org/10.3390/universe7100379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/universe7100379
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe7100379?type=check_update&version=1


Universe 2021, 7, 379 2 of 20

receive polyadic idempotents. Therefore the exchange of the commuting of idempotents
by commuting of shifts [22] is still valid.

To get polyadic idempotents (by analogy with the ordinary regularity for semigroups)
we introduce the so called sandwich regularity for polyadic semigroups (which differs
from [16]). In trying to connect the commutation of idempotents with uniqueness of inverse
elements (as in the standard regularity) in order to obtain inverse polyadic semigroups, we
observe that this is prevented by the middle elements in the sandwich polyadic regularity
conditions. Thus, further investigations are needed to develop the higher regular and
inverse polyadic semigroups.

2. Generalized n-Regular Elements in Semigroups

Here we formulate some basic notions in terms of tuples and the “quantity/number
of multiplications”, in such a way that they can be naturally generalized from the binary to
polyadic case [23].

2.1. Binary n-Regular Single Elements

Indeed, if S is a set, its `th Cartesian product S` =

`︷ ︸︸ ︷
S× S× . . .× S consists of all

`-tuples x(`) = (x1, x2, . . . , x`), xi ∈ S (we omit powers (`) in the obvious cases x(`) ≡ x,
` ∈ N). Let S2 ≡ Sk=2 = 〈S | µ2, assoc2〉 be a binary (having the arity k = 2) semigroup
with the underlying set S, and the (binary k = 2) multiplication µ2 ≡ µk=2 : S× S → S
(sometimes we will denote µ2[x1, x2] = x1x2 ∈ SS). The (binary) associativity assoc2 :
(x1x2)x3 = x1(x2x3), ∀xi ∈ S, allows us to omit brackets, and in the language of `-

tuples x(`) the product of ` elements x1x2 . . . x` = µ
[`µ]
2

[
x(`)
]
= x(`) ∈

`︷ ︸︸ ︷
SS . . . S, where

`µ is the “number of multiplications” (for the binary multiplication `µ = `− 1, i.e., the
product of ` elements contains `− 1 (binary) multiplications, whereas for polyadic (k-ary)
multiplications this is different [20]). If the number of elements is not important or evident,

we will write for the product x(`) ≡ x ∈
`︷ ︸︸ ︷

SS . . . S, and so distinguish between the product

of ` elements x(`) ∈
`︷ ︸︸ ︷

SS . . . S and the `-tuples x(`) ∈ S` =

`︷ ︸︸ ︷
S× S× . . .× S. If all elements in

a `-tuple coincide, we write x` = µ
[`µ]
2

[
x(`)

]
(this form will be important in the polyadic

generalization below). An element x ∈ S satisfying x` = x (or µ
[`µ]
2

[
x(`)

]
= x) is called

(binary) `-idempotent.
An element x of the semigroup S2 is called (von Neumann) regular, if the equation

xyx = x, or (1)

µ
[`µ=2]
k=2 [x, y, x] = x, x, y ∈ S, (2)

has a solution y in S2, which need not be unique. An element y is called an inverse
element [2] (the superceded terms for y are: a reciprocal element [24], a generalized
inverse [25], a regular element conjugated to x [3]). The set of the inverse elements of x is
denoted by Vx [4].

In search of generalizing the regularity condition (1) in S2 for the fixed element x ∈ S,
we arrive at the following possibilities:

(i) Higher regularity generalization: instead of one element y ∈ S, use an n-tuple y(n) ∈ Sn

and the corresponding product y(n) ∈
n︷ ︸︸ ︷

SS . . . S.
(ii) Higher arity generalization: instead of the binary product µk=2, consider the polyadic

(or k-ary semigroup) product with the multiplication µk :

k︷ ︸︸ ︷
S× S× . . .× S→ S.
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It follows from the higher regularity generalization (i) applied to for (1)–(2).

Definition 1. An element x of the (binary) semigroup S2 is called higher n-regular, if there exists
(at least one, not necessarily unique) (n− 1)-element solution as (n− 1)-tuple y(n−1) of

xy(n−1)x = x, or (3)

µ
[n]
k=2

[
x, y(n−1), x

]
= x, x, y1, . . . , yn−1 ∈ S. (4)

Definition 2. The (n− 1)-tuple y(n−1) from (4) is called a higher n-inverse to x, or y(n−1) is an
n-inverse (tuple) for x.

Without any additional conditions, for instance splitting the (n− 1)-tuple y(n−1) for
some reason (as below), the definition (3) reduces to the ordinary regularity (1), because the
binary semigroup is closed with respect to the multiplication of any number of elements,
and so there exists z ∈ S, such that y(n−1) = z for any y1, . . . , yn−1 ∈ S. Therefore, we have
the following reduction

Assertion 1. Any higher n-regular element in a binary semigroup is 2-regular (or regular in the
ordinary sense (1)).

Indeed, if we consider the higher 3-regularity condition x1x2x3x1 = x1 for a single
element x1, and x2, x3 ∈ S, it obviously coincides with the ordinary regularity condition
for the single element x (1). However, if we cycle both the regularity conditions, they will
not necessarily coincide, and new structures can appear. Therefore, using several different
mutually consistent n-regularity conditions (3) we will be able to construct a corresponding
(binary) semigroup which will not be reduced to an ordinary regular semigroup (see
below).

2.2. Polyadic n-Regular Single Elements

Following the higher arity generalization (ii), we introduce higher n-regular single
elements in polyadic (k-ary) semigroups and show that the definition of regularity for
higher arities cannot be done similarly to ordinary regularity, but requires a polyadic
analog of n-regularity for a single element of a polyadic semigroup. Before proceeding we
introduce.

Definition 3 (Arity invariance principle). In an algebraic universal system with operations of
different arities the general form of expressions should not depend on numerical arity values.

For instance, take a binary product of 3 elements (xy)z ≡ µ2[µ2[x, y], z], its ternary ana-
log will not be µ3[x, y, z], but the expression of the same operation structure µ3[µ3[x, y, t], z, u]
which contains 5 elements.

This gives the following prescription for how to generalize expressions from the binary
shape to a polyadic shape:

(i) Write down an expression using the operations manifestly.
(ii) Change arities from the binary values to the needed higher values.
(iii) Take into account the corresponding changes of tuple lengths according to the concrete

argument numbers of operations.

Example 1. If on a set S one defines a binary operation (multiplication) µ2 : S× S→ S, then one
(left) neutral element e ∈ S for x ∈ S is defined by µ2[e, x] = x (usually ex = x). However, for
4-ary operation µ4 : S4 → S it becomes µ4[e1, e2, e3, x] = x, where e1, e2, e3 ∈ S, so we can have a
neutral sequence e = e(3) = (e1, e2, e3) (a tuple e of the length 3, triple), and only in the particular
case e1 = e2 = e3 = e, do we obtain one neutral element e. Obviously, the composition of two
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(`µ = 2) 4-ary (k = 4) operations, denoted by µ
[2]
4 ≡ µ

[`µ=2]
k=4 (as in (2)) should act on a word of a

length ` = 7, since µ4[µ4[x1, x2, x3, x4], x5, x6, x7], xi ∈ S.

In general, if a polyadic system 〈S | µk〉 has only one operation µk (k-ary multiplica-
tion), the length of words is “quantized”

L(
`µ)

k = `µ(k− 1) + 1, (5)

where `µ is a “number of multiplications”.
Let Sk = 〈S | µk, assock〉 be a polyadic (k-ary) semigroup with the underlying set S, and

the k-ary multiplication µk : Sk → S [20]. The k-ary (total) associativity assock can be treated
as invariance of two k-ary products composition µ

[2]
k with respect to the brackets [23]

assock : µ
[2]
k [x, y, z] = µk[x, µk[y], z] = invariant, ∀xi, yi, zi ∈ S, (6)

for all placements of the inner multiplication µk in the r.h.s. of (6) with the fixed ordering
of (2k− 1) elements (following from (5)), and x, y, z are tuples of the allowed by (5) lengths,
such that the sum of their lengths is (2k− 1). The total associativity (6) allows us to

write a product containing `µ multiplications using external brackets only µ
[`µ]
k [x] (the long

product [26]), where x is a tuple of length `µ(k− 1) + 1, because of (5). If all elements of the
`-tuple x = x(`) are the same we write it as x(`). A polyadic power (reflecting the “number of
multiplications”, but not of the number of elements, as in the binary case) becomes

x〈`µ〉 = µ
[`µ]
k

[
x`µ(k−1)+1

]
= µ

[`µ]
k

[
x(`)

]
, (7)

because of (5). So the ordinary (binary) power p (as a number of elements in a product xp)
is p = `µ + 1.

Definition 4. An element x from a polyadic semigroup Sk is called generalized polyadic
〈
`µ

〉
-

idempotent, if
x〈`µ〉 = x, (8)

and it is polyadic idempotent, if [20]

x〈1〉 ≡ x〈`µ=1〉 = µk

[
x(k)

]
= x. (9)

In the binary case, (9) and (8) correspond to the ordinary idempotent x2 = x and to
the generalized p-idempotent xp = x, where p = `µ + 1.

Recall also that a left polyadic identity e ∈ S is defined by

µk

[
e(k−1), x

]
= x, ∀x ∈ S, (10)

and e is a polyadic identity, if x can be on any place. If e = e(x) depends on x, then we call it
a local polyadic identity (see [27] for the binary case), and if e depends on several elements of
S, we call it a generalized local polyadic identity. It follows from (10) that all polyadic identities
(or neutral elements) are polyadic idempotents (9).

An element x of a k-ary semigroup Sk is called regular [22], if the equation (cf. (2))

µ
[2]
k

[
x, y(2k−3), x

]
= x, x ∈ S, (11)
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has 2k− 3 solutions y1, . . . , y2k−3 ∈ S, which need not be unique (since L(2)
k − 2 = 2k− 3,

see (5)). If we have only the relation (11), then polyadic associativity allows us to apply one
(internal) polyadic multiplication and remove k− 1 elements to obtain [22]

µk

[
x, z(k−2), x

]
= x, x ∈ S, (12)

and we call (12) the reduced polyadic regularity of a single element, while (11) will be called
the full regularity of a single element. Thus, for a single element x ∈ S, by analogy with
Assertion 1, we have

Assertion 2. In a polyadic semigroup Sk, if any single element x ∈ S satisfies the full regularity
(11), it also satisfies the reduced regularity (12).

From (12) it follows:

Corollary 1. Reduced regularity exists, if and only if the arity of multiplication is strongly more
than binary, i.e., k ≥ 3.

Example 2. In the minimal ternary case k = 3 we have the regularity µ
[2]
3 [x1, x2, x3, x4, x1] =

x1, xi ∈ S, and putting z = µ3[x2, x3, x4] gives the reduced regularity

µ3[x1, z, x1] = x1. (13)

However, these regularities will give different cycles: one is of length 5, and the other is of
length 3.

We now construct a polyadic analog of the higher n-regularity condition (4) for a
single element.

Definition 5. An element x of a polyadic semigroup Sk is called full higher n-regular, if there
exists (at least one, not necessarily unique) (n(k− 1)− 1)-element solution (tuple) y(n(k−1)−1) of

µ
[n]
k

[
x, y(n(k−1)−1), x

]
= x, x, y1, . . . , yn(k−1)−1 ∈ S, n ≥ 2. (14)

Definition 6. The tuple y(n(k−1)−1) from (14) is called higher n-regular k-ary inverse to x, or
y(n(k−1)−1) is n-inverse k-ary tuple for x of the length (n(k− 1)− 1).

Example 3. In the full higher 3-regular ternary semigroup S3 = 〈S | µ3〉 we have for each element
x ∈ S the condition

µ
[2]
3 [x, y1, y2, y3, y4, y5, x] = x, (15)

and so each element x ∈ S has a 3-inverse ternary 5-tuple y(5) = (y1, y2, y3, y4, y5), or the 5-tuple
y(5) is the higher 3-regular ternary inverse of x.

Comparing (14) with the full regularity condition (11) and its reduction (12), we
observe that the full n-regularity condition can be reduced several times to get different
versions of reduced regularity for a single element.

Definition 7. An element x of a polyadic semigroup Sk is called m-reduced higher n-regular, if there
exists a (not necessarily unique) ((n−m)(k− 1)− 1)-element solution (tuple) y((n−m)(k−1)−1) of

µ
[n]
k

[
x, y((n−m)(k−1)−1), x

]
= x, x, y1, . . . , y(n−m)(k−1)−1 ∈ S, 1 ≤ m ≤ n− 1, n ≥ 2. (16)
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Example 4. In the ternary case k = 3, we have (for a single element x1 ∈ S) the higher 3-regularity
condition

µ
[3]
3 [x1, x2, x3, x4, x5, x6, x1] = x1, xi ∈ S. (17)

We can reduce this relation twice, for instance, as follows: put t = µ3[x2, x3, x4] to get

µ
[2]
3 [x1, t, x5, x6, x1] = x1, (18)

and then z = µ3[t, x5, x6] and obtain

µ3[x1, z, x1] = x1, t, z ∈ S, (19)

which coincides with (13). Again we observe that (17)–(19) give different cycles of the length 7, 5
and 3, respectively.

3. Higher n-Inverse Semigroups

Here we introduce and study the higher n-regular and n-inverse (binary) semigroups.
We recall the standard definitions to establish notations (see, e.g., [2,3,5]).

There are two different definitions of a regular semigroup:

(i) One-relation definition. (20)

(ii) Multi-relation definition . (21)

According to the one-relation definition (i) (20): A semigroup S ≡ S2 = 〈S | µ2, assoc2〉
is called regular if each element x ∈ S has its inverse element y ∈ S defined by xyx = x (1),
and y need not be unique [28].

Elements x1, x2 of S are called inverse to each other [2] (or regular conjugated [3],
mutually regular), if

x1x2x1 = x1, x2x1x2 = x2, (22)

µ
[2]
2 [x1, x2, x1] = x1, µ

[2]
2 [x2, x1, x2] = x2, x1, x2 ∈ S. (23)

According to the multi-relation definition (ii) [29] (21): A semigroup is called regular,
if each element x1 has its inverse x2 (22), and x2 need not be unique.

For a binary semigroup S2 and ordinary 2-regularity these definitions are equiva-
lent [2,24]. Indeed, if x1 has some inverse element y ∈ S, and x1yx1 = x1, then choosing
x2 = yx1y, we immediately obtain (22).

Definition 8. A 2-tuple X(2) = (x1, x2) ∈ S× S is called 2-regular sequence of inverses, if it
satisfies (22).

Thus we can define regular semigroups in terms of regular sequences of inverses.

Definition 9. A binary semigroup is called a regular (or 2-regular) semigroup, if each element
belongs to a (not necessary unique) 2-regular sequence of inverses X(2) ∈ S× S.

3.1. Higher n-Regular Semigroups

Following [16], in a regular semigroup S2, for each x1 ∈ S there exists x2 ∈ S such
that x1x2x1 = x1, and for x2 ∈ S there exists y ∈ S satisfying and x2yx2 = x2. Denoting
x3 = yx2, then x2 = x2(yx2) = x2x3, and we observe that x1x2x3x1 = x1, i.e., in a regular
semigroup, from 2-regularity there follows 3-regularity of S2 in the one-relation definition
(i) (cf. for a single element Assertion 1). By analogy, in a regular semigroup, 2-regularity
of an element implies its n-regularity in the one-relation definition (i) (20). Indeed, in this
point there is a difference between the definitions (i) (20) and (ii) (21).

Let us introduce higher analogs of the regular sequences (22) (see Definition 8).
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Definition 10. A n-tuple X(n) = (x1, . . . , xn) ∈ Sn is called an (ordered) n-regular sequence of
inverses, if it satisfies the n relations

x1x2x3 . . . xnx1 = x1, (24)

x2x3 . . . xnx1x2 = x2, (25)
...

xnx1x2 . . . xn−1xn = xn, (26)

or in the manifest form of the binary multiplication µ2 (which is needed for the higher arity
generalization)

µ
[n]
2 [x1, x2, x3, . . . , xn, x1] = x1, (27)

µ
[n]
2 [x2, x3, . . . , xn, x1, x2] = x2, (28)

...

µ
[n]
2 [xn, x1, x2, . . . , xn−1, xn] = xn. (29)

Denote for each element xi ∈ S, i = 1, . . . , n, its n-inverse (n− 1)-tuple (see Definition 2)
by xi ∈ S(n−1), where

x1 = (x2, x3, . . . , xn−1, xn), (30)

x2 = (x3, x4 . . . , xn−1, xn, x1), (31)
...

xn = (x1, x2, . . . , xn−2, xn−1). (32)

Then the definition of an n-regular sequence of inverses (24)–(29) will take the concise
form (cf. (1) and (3))

xixixi = xi, (33)

µ
[n]
2 [xi, xi, xi] = xi, xi ∈ S, i = 1, . . . , n, (34)

where the products xi ∈
n−1︷ ︸︸ ︷

SS . . . S and the (n− 1)-tuples xi ∈
n−1︷ ︸︸ ︷

S× S× . . .× S (30)–(32).
Now by analogy with Definition 9 we have the following (multi-relation):

Definition 11. A binary semigroup S2 is called a (cyclic) n-regular semigroup Sn-reg
2 , if each of its

elements belongs to a (not necessary unique) n-regular sequence of inverses X(n) ∈ Sn satisfying
(24)–(26).

This definition incorporates the ordinary regular semigroups (22) by putting n = 2.

Remark 1. The proposed concept of n-regularity is strongly multi-relational, in that all the relations
in (24)–(26) or (33) should hold, which leads us to consider all the elements in the sequence of
inverses on a par and cyclic, analogously to the ordinary case (22). This can be also expressed more
traditionally as “one element of a n-regular semigroup has n− 1 inverses”.

Example 5. In the 3-regularity case we have three relations defining the regularity

x1x2x3x1 = x1, (35)

x2x3x1x2 = x2, (36)

x3x1x2x3 = x3. (37)
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Now the sequence of inverses is X(3) = (x1, x2, x3), and we can say in a symmetrical way: all
of them are “mutually inverses one to another”, if all three relations (35)–(37) hold simultaneously.
Also, using (30)–(32) we see that each element x1, x2, x3 has its 3-inverse 2-tuple (or, informally,
the pair of inverses)

x1 = (x2, x3), (38)

x2 = (x3, x1), (39)

x3 = (x1, x2). (40)

Remark 2. In what follows, we will use this 3-regularity example, when providing derivations and
proofs, for clarity and conciseness. This is worthwhile, because the general n-regularity case does
not differ from n = 3 in principle, and only forces us to consider cumbersome computations with
many indices and variables without enhancing our understanding of the structures.

Let us formulate the Thierrin theorem [24] in the n-regular setting, which connects
one-element regularity and multi-element regularity.

Lemma 1. Every n-regular element in a semigroup has its n-inverse tuple with n− 1 elements.

Proof. Let x1 be a 3-regular element x1 of a semigroup S2, then we can write

x1 = x1y2y3x1, x1, y2, y3 ∈ S. (41)

We are to find elements x2, x3 which satisfy (35)–(37). Put

x2 = y2y3x1y2, (42)

x3 = y3x1y2y3. (43)

Then, for the l.h.s. of (35)–(37) we derive

x1x2x3x1 = x1y2y3(x1y2y3x1)y2y3x1 = x1y2y3(x1y2y3x1)

= x1y2y3x1 = x1, (44)

x2x3x1x2 = y2(y3x1y2y3)(x1y2y3x1)y2y3(x1y2y3x1)y2

= y2x3(x1x2y3x1)y2 = y2x3x1y2 = x2, (45)

x3x1x2x3 = y3x1y2y3(x1y2y3x1)y2y3(x1y2y3x1)y2y3

= y3(x1y2y3x1)y2y3 = y3x1y2y3 = x3. (46)

Therefore, if we have any 3-regular element (41), the relations (35)–(40) hold.

We now show that in semigroups the higher n-regularity (in the multi-relation formu-
lation) is wider than for 2-regularity.

Lemma 2. If a semigroup S2 is n-regular, such that the n relations (33) are valid, then S2 is
2-regular as well.

Proof. In the case n = 3 we use (35)–(37) and denote x2x3 = y ∈ S. Then x1yx1 = x1, and
multiplying (36) and (37) by x3 from the right and x2 from the left, respectively, we obtain

(x2x3x1x2)x3 = (x2)x3 =⇒ (x2x3)x1(x2x3) = (x2x3) =⇒ yx1y = y, (47)

x2(x3x1x2x3) = x2(x3) =⇒ (x2x3)x1(x2x3) = (x2x3) =⇒ yx1y = y. (48)

This means that x1 and y are mutually 2-inverse (ordinary inverse [2]), and so S2 is
2-regular.
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Definition 12. A semigroup S2 is called a pure n-regular semigroup, if there no additional relations
beyond the n-regularity (24)–(26) imposed on n-regular sequence of inverses X(n) = (x1, . . . , xn).
Oppositely, a n-regular semigroup S2 with extra relations on X(n) is called impure, and these
relations are called impuring relations.

For instance, an ordinary regular (2-regular) semigroup defined by (22) only, is a pure
regular semigroup. If we add the commutativity condition x1x2 = x2x1, then we obtain an
impure regular semigroup, which is an inverse semigroup being actually a semilattice of
abelian groups (see, e.g., [6]).

The converse is connected with imposing extra relations in the semigroup S2.

Theorem 1. The following statements are equivalent for a pure regular (2-regular) semigroup S2:

(i) The pure 2-regular semigroup S2 is pure n-regular.
(ii) The pure 2-regular semigroup S2 is cancellative.

Proof. (i)⇒(ii) Suppose S2 is 2-regular, which means that there are tuples satisfying (22),
or in our notation here for each x1 ∈ S there exists y ∈ S such that x1yx1 = x1 and yx1y = y.
Let y be presented as a product of two arbitrary elements y = x2x3, x2, x3 ∈ S, which is
possible since the underlying set S of the semigroup is closed with respect to multiplication.
We now try to get the (35)–(37) without additional relations. After substitution y into the
2-regularity conditions, we obtain

x1yx1 = x1 =⇒ x1(x2x3)x1 = x1 =⇒ x1x2x3x1 = x1, (49)

yx1y = y =⇒ (x2x3)x1(x2x3) = (x2x3) =⇒ (x2x3x1x2)x3 = (x2)x3 (50)

=⇒ x2(x3x1x2x3) = x2(x3). (51)

We observe that the first line coincides with (35), but obtaining (36) and (37) from the
second and third lines here requires right and left cancellativity (by the elements outside
the brackets in the last equalities), respectively.

(ii)⇒(i) After applying cancellativity to (50) and (51), then equating expressions in
brackets one obtains (36) and (37), correspondingly. The first line (49) coincides with (35) in
any case.

It is known that a cancellative regular semigroup is a group [2,7].

Corollary 2. If a pure 2-regular semigroup S2 is pure n-regular, it is a group.

If we consider impure n-regular semigroups, these can be constructed from pure
2-regular semigroups without the cancellativity requirement, but with special additional
relations and extra idempotents. For instance, in case of an impure 3-regular semigroup
we have

Proposition 1. If a semigroup is pure 2-regular we can construct an impure 3-regular semigroup
with three impuring relations.

Proof. Let S2 be a pure 2-regular semigroup (in multi-relation definition (22)), such that

x1x3x1 = x1, x3x1x3 = x3, x1, x3 ∈ S, (52)

have at least one solution. Introduce an additional element x2 = x3x1 ∈ S, which is
idempotent (from (52)) . It is seen that the triple X(3) = {x1, x2, x3} is a 3-inverse sequence,
because (35)–(37) take place, indeed,



Universe 2021, 7, 379 10 of 20

x1 = x1x3x1 = x1(x3x1)x3x1 = x1x2x3x1, (53)

x2 = x3x1 = (x3x1)x3x1(x3x1) = x2x3x1x2, (54)

x3 = x3x1x3 = x3x1(x3x1)x3 = x3x1x2x3. (55)

The impuring relations

x1x2 = x1, x2x3 = x3, x3x1 = x2 (56)

follow from (52) and the definition of x2.

In the same way one can construct recursively an impure (n + 1)-regular semigroup
from a pure n-regular semigroup. Taking into account Lemma 2, we arrive at

Corollary 3. Impure n-regular semigroups are equivalent to pure 2-regular semigroups.

3.2. Idempotents and Higher n-Inverse Semigroups

Lemma 3. In an n-regular semigroup there are at least n (binary higher) idempotents (no summa-
tion)

ei = xixi, i = 1, . . . , n. (57)

Proof. Multiply (33) by xi from the right to get xixixixi = xixi.

In the case n = 3 the (higher) idempotents (57) become

e1 = x1x2x3, e2 = x2x3x1, e3 = x3x1x2, (58)

having the following “chain” commutation relations with elements

e1x1 = x1e2 = x1, (59)

e2x2 = x2e3 = x2, (60)

e3x3 = x3e1 = x3. (61)

Corollary 4. Each higher idempotent ei is a left unit (neutral element) for xi and a right unit
(neutral element) for xi−1.

Lemma 4. If in an n-regular semigroup (higher) idempotents commute, then each element has a
unique n-regular sequence of inverses.

Proof. Suppose in a 3-regular semigroup defined by (35)–(37) the element x1 has two pairs
of inverses (30) x1 = (x2, x3) and x′1 = (x′2, x3). Then, in addition to (35)–(37) and the triple
of idempotents (58) we have

x1x′2x3x1 = x1, (62)

x′2x3x1x′2 = x′2, (63)

x3x1x′2x3 = x3. (64)

and
e′1 = x1x′2x3, e′2 = x′2x3x1, e′3 = x3x1x′2, (65)

and also the idempotents (58) and (65) commute. We derive

x2 = x2x3x1x2 = x2x3
(

x1x′2x3x1
)
x1x2 = x2x3

(
x1x′2x3

(
x1x′2x3x1

))
x2

= x2x3x1x′2
(
x3x1x′2

)
(x3x1x2) = x2x3x1x′2(x3x1x2)

(
x3x1x′2

)
(66)

= (x2x3x1)
(

x′2x3x1
)
x2x3x1x′2 =

(
x′2x3x1

)
(x2x3x1)x2x3x1x′2

= x′2x3(x1x2x3x1)x2x3x1x′2 = x′2x3(x1x2x3x1)x′2 = x′2x3x1x′2 = x′2.
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A similar derivation can be done for x′′1 = (x2, x′′3 ) and other indices.

Definition 13. A higher n-regular semigroup is called a higher n-inverse semigroup, if each
element xi ∈ S has its unique n-inverse (n− 1)-tuple xi ∈ S(n−1) (30)–(32).

Thus, as in the regular (multi-relation 2-regular) semigroups [30–32], we arrive at a
higher regular generalization of the characterization of the inverse semigroups by

Theorem 2. A higher n-regular semigroup is an inverse semigroup, if their idempotents commute.

It is known that an inverse (2-inverse) semigroup is a group, if it contains exactly
one idempotent, and so groups are inverse semigroups (see, e.g., [2,6]). Nevertheless, for
n-inverse semigroups this is not true. For instance, if the elements x, 1 are in a group, then
3-regularity conditions (35)–(37) are satisfied by x1 = 1, x2 = x, x3 = x−1 for all x, and
therefore 2-inverses are not unique for groups. Thus, we have

Assertion 3. The n-inverse semigroups do not contain groups.

Further properties of n-inverse semigroups will be studied elsewhere using the semi-
group theory methods (see, e.g., [2,6,7,33]).

4. Higher n-Inverse Polyadic Semigroups

We now introduce a polyadic version of the higher n-regular and n-inverse semigroups
defined in the previous section. For this we will use the relations with the manifest
form of the binary multiplication to follow (ii)–(iii) of the arity invariance principle (see
Definition 3).

4.1. Higher n-Regular Polyadic Semigroups

First, define the polyadic version of the higher n-regular sequences (27)–(29) in the
framework of the arity invariance principle by substituting µ

[n]
2 7→ µ

[n]
k and then changing

sizes of tuples, and generalizing to higher n (11).

Definition 14. In a polyadic (k-ary) semigroup Sk = 〈S | µk〉 (see Section 2.2) a n(k− 1)-tuple
X(n(k−1)) =

(
x1, . . . , xn(k−1)

)
∈ Sn(k−1) is called a polyadic n-regular sequence of inverses, if it

satisfies the n(k− 1) relations

µ
[n]
k

[
x1, x2, x3, . . . , xn(k−1), x1

]
= x1, (67)

µ
[n]
k

[
x2, x3, . . . , xn(k−1), x1, x2

]
= x2, (68)

...

µ
[n]
k

[
xn(k−1), x1, x2, . . . , xn(k−1)−1, xn(k−1)

]
= xn(k−1). (69)

Definition 15. A polyadic semigroup Sk is called an n-regular semigroup, if each element belongs
to a (not necessary unique) n-regular sequence of inverses X(n(k−1)) ∈ Sn(k−1).

In a polyadic n-regular semigroup, each element, instead of having one inverse
element will have a tuple, and we now, instead of (1) and (2), have
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Definition 16. In a polyadic (k-ary) n-regular semigroup each element xi ∈ S, where i =

1, . . . , n(k− 1), has a polyadic n-inverse, as the (n(k− 1)− 1)-tuple x[k]i ∈ S(n(k−1)−1) (cf. the
binary case Definition 2 and (30)–(32))

x
[k]
1 =

(
x2, x3, . . . , xn(k−1)−1, xn(k−1)

)
, (70)

x
[k]
2 =

(
x3, x4 . . . , xn(k−1)−1, xn(k−1), x1

)
, (71)

...

x
[k]
n(k−1) =

(
x1, x2, . . . , xn(k−1)−2, xn(k−1)−1

)
. (72)

In this notation the polyadic (k-ary) n-regular sequence of inverses (67)–(69) can be
written in the customary concise form (see (34) for a binary semigroup)

µ
[n]
k

[
xi, x

[k]
i , xi

]
= xi, xi ∈ S, i = 1, . . . , n(k− 1). (73)

Note that at first sight one could consider here also the procedure of reducing the
number of multiplications from any number to one [22], as in the single element regularity
case (see Assertion 2 and Examples 2 and 4). However, if we consider the whole polyadic
n-regular sequence of inverses (67)–(69) consisting of n(k− 1) relations (67)–(69), it will be
not possible in general to reduce arity in all of them simultaneously.

Example 6. If we consider the ordinary regularity (2-regularity) for a ternary semigroup S3, we
obtain the ternary regular sequence of n(k− 1) = 4 elements and four regularity relations

µ
[2]
3 [x1, x2, x3, x4, x1] = x1, (74)

µ
[2]
3 [x2, x3, x4, x1, x2] = x2, (75)

µ
[2]
3 [x3, x4, x1, x2, x3] = x3, (76)

µ
[2]
3 [x4, x1, x2, x3, x4] = x4, xi ∈ S. (77)

Elements x1, x2, x3, x4 have these ternary inverses (cf. the binary 3-regularity (38)–(40))

x
[3]
1 = (x2, x3, x4), (78)

x
[3]
2 = (x3, x4, x1), (79)

x
[3]
3 = (x4, x1, x2), (80)

x
[3]
4 = (x1, x2, x3). (81)

Remark 3. This definition of regularity in ternary semigroups is in full agreement with the arity
invariance principle (Definition 3): it has (the minimum) two (k-ary) multiplications as in the
binary case (2). Although we can reduce the number of multiplications to one, as in (13) for a single
relation, e.g., by the substitution z = µ3[x2, x3, x4], this cannot be done in all the cyclic relations
(74)–(77): the third relations (76) cannot be presented in terms of z as well as the right hand sides.

Remark 4. If we take the definition of regularity for a single relation, reduce it to one (k-ary)
multiplication and then “artificially” cycle it (see [22] and references citing it), we find a conflict with
the arity invariance principle. Indeed, in the ternary case we obtain µ3[x, y, x] = x, µ3[y, x, y] =
y. Despite the similarity to the standard binary regularity (22) and (23), it contains only one
multiplication, and therefore it could be better treated as a symmetry property of the ternary product
µ3, rather than as a relation between variables, e.g., as a regularity which needs at least two products.
Also, the length of the sequence is two, as in the binary case, but it should be n(k− 1) = 4, as in
the ternary 2-regular sequence (74)–(77) according to the arity invariance principle.
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Example 7. For a 3-regular ternary semigroup S3 = 〈S | µ3〉 with n = 3 and k = 3 we have a
3-regular sequence of 6 (mutual) inverses X(6) = (x1, x2, x3, x4, x5, x6) ∈ S6, which satisfy the
following six 3-regularity conditions

µ
[3]
3 [x1, x2, x3, x4, x5, x6, x1] = x1, (82)

µ
[3]
3 [x2, x3, x4, x5, x6, x1, x2] = x2, (83)

µ
[3]
3 [x3, x4, x5, x6, x1, x2, x3] = x3, (84)

µ
[3]
3 [x4, x5, x6, x1, x2, x3, x4] = x4, (85)

µ
[3]
3 [x5, x6, x1, x2, x3, x4, x5] = x5, (86)

µ
[3]
3 [x6, x1, x2, x3, x4, x5, x6] = x6, xi ∈ S. (87)

This is the first nontrivial case in both arity k 6= 2 and regularity n 6= 2 (see Remark 2).

Remark 5. In this example we can reduce the number of multiplications, as in Example 4, to
one single relation, but not to all of them. For instance, we can put in the first relations (82)
t = µ3[x2, x3, x4] and further z = µ3[t, x5, x6], but, for instance, the third relation (84) cannot be
presented in terms of t, z, as in the first one in (82)–(87), because of the splitting of variables in t, z,
as well as in the right hand sides.

The polyadic analog of the Thierrin theorem [24] in n-regular setting is given by:

Lemma 5. Every n-regular element in a polyadic (k-ary) semigroup has a polyadic n-inverse tuple
with (n(k− 1)− 1) elements.

Its proof literally repeats that of Lemma 1, but with different lengths of sequences.
The same is true for the Lemma 2 and Theorem 1 by exchanging S2 → Sk.

Definition 17. A higher n-regular polyadic semigroup Sk is called a higher n-inverse polyadic
semigroup, if each element xi ∈ S has a unique n-inverse (n(k− 1)− 1)-tuple xi ∈ S(n(k−1)−1)

(70)–(72).

In searching for polyadic idempotents we observe that the binary regularity (34) and
polyadic regularity (73) differ considerably in lengths of tuples. In the binary case any
length is allowed, and one can define idempotents ei by (57), as a left neutral element for
xi, such that (no summation) eixi = xi , xi ∈ S2 (see (59)–(61)). At first sight, for polyadic
n-regularity (73), we could proceed in a similar way. However we have

Proposition 2. In the n-regular polyadic (k-ary) semigroup the length of the tuple (xi, xi) is
allowed to give an idempotent, only if k = 2, i.e., the semigroup is binary.

Proof. The allowed length of the tuple (xi, xi) (to give one element, an idempotent, see
(5)), where xi are in (70)–(72), is `µ(k− 1) + 1 to apply `µ multiplications. While the tuple
(xi, xi, xi) in (73) has the given length n(k− 1) + 1, and we obtain the equation for ` as

`µ(k− 1) + 1 = n(k− 1) =⇒ `µ = n− 1
k− 1

(88)

The equation (88) has only one solution over N namely `µ = n− 1, iff k = 2.

This means that to go beyond the binary semigroups k > 2 and have idempotents, one
needs to introduce a different regularity condition to (11) and (73), which we will do below.
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4.2. Sandwich Polyadic n-Regularity

Here we go in the opposite direction to that above: we will define the idempotents
and then construct the needed regularity conditions using them, which in the limit k = 2
and n = 2 will give the ordinary binary regularity (22) and (23).

Let us formulate the binary higher n-regularity (34) in terms of the local polyadic
identities (10). We write the idempotents (57) in the form

ei = µ2[xi, xi], (89)

where xi are n-inverses being (n− 1)-tuples (30)–(32).
In terms of the idempotents ei (89) the higher n-regularity conditions (34) become

µ2[ei, xi] = xi. (90)

Assertion 4. The binary n-regularity conditions coincide with the definition of the local left
identities.

Proof. Compare (90) and the definition (10) with k = 2 (see [27]).

Thus, the main idea is to generalize (using the arity invariance principle) to the
polyadic case the binary n-regularity in the form (90) and also idempotents (89), but not
(33) and (34), as it was done in (73).

By analogy with (89) let us introduce

e′i = µ
[n−1]
k

xi,

n−1︷ ︸︸ ︷
x′i, . . . , x′i

, xi ∈ S, i = 1, . . . , k, (91)

where x′i is the polyadic (k− 1)-tuple for xi (which differs from (70)–(72))

x′1 = (x2, x3, . . . , xk), (92)

x′2 = (x3, x4, . . . , xk, x1), (93)
...

x′k = (x1, x2, . . . , xk−2, xk−1). (94)

Definition 18. Sandwich polyadic n-regularity conditions are defined as

µk

 k−1︷ ︸︸ ︷
e′i , . . . , e′i , xi

 = xi, i = 1, . . . , k. (95)

Observe that the conditions (95) coincide with the definition of the generalized local
left polyadic identities (10) (see Assertion 4), and therefore we can define the sandwich
polyadic n-regularity (95) in an alternative (multi-relation (21)) way

Definition 19. A polyadic semigroup Sk is sandwich n-regular, if there exists k-tuple X(k) =
(x1, x2, x3, . . . , xk) in which each element xi has its left generalized local polyadic identity e′i of the
form (91).

It follows from (95), that e′i are k polyadic idempotents (9)

(
e′i
)〈1〉

= µk

 k︷ ︸︸ ︷
e′i , . . . , e′i

 = e′i , i = 1, . . . , k. (96)
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In the binary limit k = 2 and n = 2 (91)–(95) give the ordinary regularity (22) in the
multi-relation definition (21).

By analogy with Definition 15 we have

Definition 20. A k-ary semigroup Sk is called a sandwich polyadic n-regular semigroup S sandw
k ,

if each element has a (not necessary unique) k-tuple of inverses satisfying (91)–(95).

Now instead of (70)–(72) we have for the inverses

Definition 21. Each element of a sandwich polyadic (k-ary) n-regular semigroup xi ∈ S, i =
1, . . . , k− 1 has its (sandwich) polyadic k-inverse, as the (k− 1)-tuple x′[k]i ∈ S(k−1) (see (92)–(94)).

Example 8. In the ternary case k = 3 and n = 2 we have the following 3 ternary idempotents

e′1 = µ3[x1, x2, x3], (97)

e′2 = µ3[x2, x3, x1], (98)

e′3 = µ3[x3, x1, x2], xi ∈ S, (99)

such that
µ3
[
e′i , e′i , e′i

]
= e′i , i = 1, 2, 3. (100)

The sandwich ternary regularity conditions become (cf. (74)–(77))

µ
[3]
3 [x1, x2, x3, x1, x2, x3, x1] = x1, (101)

µ
[3]
3 [x2, x3, x1, x2, x3, x1, x2] = x2, (102)

µ
[3]
3 [x3, x1, x2, x3, x1, x2, x3] = x3. (103)

Each of the elements x1, x2, x3 ∈ S has a 2-tuple of the ternary inverses (cf. the inverses for
the binary 3-regularity (38)–(40) and the ternary regularity (78)–(81)) as

x′1 = (x2, x3), (104)

x′2 = (x3, x1), (105)

x′3 = (x1, x2). (106)

A ternary semigroup in which the sandwich ternary regularity (101)–(103) has a solution
(starting from any of element xi) is a sandwich regular ternary semigroup S sandw

3 .

It can be seen from (101)–(103) why we call such regularity “sandwich”: each xi
appears in the l.h.s. not only two times, on the first and the last places, as in the previous
definitions, but also in the middle, which gives the possibility for us to define idempo-
tents. In general, the ith condition of sandwich regularity (95) will contain k− 2 middle
elements xi.

Remark 6. In (101) we can also reduce the number of multiplications to one (see [22]), but only in
a single relation (see Example 4 and Remark 5). However, in this case the whole system (101)–(103)
will loose its self-consistency, since we are using the multi-relation definition of the sandwich regular
semigroup (see (22) for the ordinary regularity).

We can obtain a matrix representation of a sandwich polyadic semigroup by using the
method of antitriangle supermatrices [34] for regular semigroups and bands together with
the general form of a polyadic matrix [13].
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Example 9. Consider the sandwich regular ternary semigroup S sandw
3 from Example 8 and its

continuous 4-parameter representation in the set Madg
4 of 4× 4 noninvertible matrices of the special

antitriangle form (cf. [34] for the binary case)

Mε(t, u, v, w) =


0 0 0 εt
0 0 εu 1
0 εv 0 0

εw 1 0 0

 ∈ Madg
4 , (107)

where t, u, v, w ∈ C and ε is a nilpotent dual number ε2 = 0 (see, e.g., [35]). The set Madg
4 is closed

with respect to the ordinary triple matrix product only, while the multiplication of two matrices
(107) is obviously out of the set Madg

4 . This allows us to define the ternary product µM
3 on the set

Madg
4 as

µM
3 [Mε(t1, u1, v1, w1), Mε(t2, u2, v2, w2), Mε(t3, u3, v3, w3)]

= Mε(t1, u1, v1, w1)Mε(t2, u2, v2, w2)Mε(t3, u3, v3, w3) = Mε(t1, u3, v1, w3). (108)

Thus,Madg
3 =

〈
Madg

4 | µM
3

〉
is a ternary semigroup, because the total ternary associativity

of µM
3 (6) is governed by the associativity of the ordinary matrix multiplication in the r.h.s. of (108).

Then the matrix representation Φsandw
3 : S sandw

3 →Madg
3 is given by

x 7→ Mε(t, u, v, w), x ∈ S sandw
3 , Mε(t, u, v, w) ∈ Madg

3 , (109)

such that putting xi 7→ Mε(ti, ui, vi, wi), i = 1, 2, 3, we obtain the sandwich ternary regularity
(101)–(103). The semigroupMadg

3 is an example of the ternary band, because, as it follows from
(107), each element of Madg

4 is a ternary idempotent (see (9))

(Mε(t, u, v, w))3 = Mε(t, u, v, w). (110)

Therefore, in the terminology of Definition 12,Madg
3 is an impure regular semigroup, since it

contains an additional (to regularity) condition (110) following from the concrete matrix structure
(107), while S sandw

3 is a pure regular semigroup, if no other conditions except the regularity (101)–
(103) are imposed. For the representation Φsandw

3 (109) to be faithful, the semigroup S sandw
3 should

be also impure regular and idempotent (as (110)), i.e., the additional impuring conditions are
µ3[x, x, x] = x, ∀x ∈ S, which means that S sandw

3 becomes a ternary band as well.

Remark 7. The introduced sandwich regularity (95) differs from [16] considerably. For simplicity
we consider the ternary case (101)–(103) and compare it with [16] (in our notation)

µ
[4]
3 [x1, x2, x3, x4, x1, x5, x6, x7, x1] = x1. (111)

First, we note that only the one-relation definition (20) was used in [16]. By analogy with
(12), we can provide in (111) the reduction as y1 = µ3[x2, x3, x4], y2 = µ3[x5, x6, x7] to get

µ
[2]
3 [x1, y1, x1, y2, x1] = x1. (112)

We cannot connect the sandwich ternary regularity (101) and (111)–(112), because the length

of ternary words is “quantized” (see (5)), and therefore it can be only odd L(
`µ)

3 = 2`µ + 1, `µ ∈ N,
where `µ is the number of ternary multiplications. Second, for the same reason there is no natural
way to introduce idempotents, as in (97)–(99), using (111) and (112) only.
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Example 10. The non-trivial case in both higher arity k 6= 2 and higher sandwich regularity
n 6= 2 is the sandwich 3-regular 4-ary semigroup S4 in which there exist 4 elements satisfying the
higher sandwich 3-regularity relations

µ
[4]
4 [x1, x2, x3, x4, x2, x3, x4, x1, x2, x3, x4, x2, x3, x4, x1, x2, x3, x4, x2, x3, x4, x1] = x1, (113)

µ
[4]
4 [x2, x3, x4, x1, x3, x4, x1, x2, x3, x4, x1, x3, x4, x1, x2, x3, x4, x1, x3, x4, x1, x2] = x2, (114)

µ
[4]
4 [x3, x4, x1, x2, x4, x1, x2, x3, x4, x1, x2, x4, x1, x2, x3, x4, x1, x2, x4, x1, x2, x3] = x3, (115)

µ
[4]
4 [x4, x1, x2, x3, x1, x2, x3, x4, x1, x2, x3, x1, x2, x3, x4, x1, x2, x3, x1, x2, x3, x4] = x4. (116)

The 4-ary idempotents are

e′1 = µ4[x1, x2, x3, x4, x2, x3, x4], (117)

e′2 = µ4[x2, x3, x4, x1, x3, x4, x1],

e′3 = µ4[x3, x4, x1, x2, x4, x1, x2], (118)

e′4 = µ4[x4, x1, x2, x3, x1, x2, x3], (119)

and they obey the following commutation relations with elements (cf. (59)–(61))

µ4
[
e′1, e′1, e′1, x1

]
= µ4

[
x1, e′2, e′2, e′2

]
= x1, (120)

µ4
[
e′2, e′2, e′2, x2

]
= µ4

[
x2, e′3, e′3, e′3

]
= x2, (121)

µ4
[
e′3, e′3, e′3, x3

]
= µ4

[
x3, e′4, e′4, e′4

]
= x3, (122)

µ4
[
e′4, e′4, e′4, x4

]
= µ4

[
x4, e′1, e′1, e′1

]
= x4. (123)

Each of the elements x1, x2, x3, x4 has its triple of 4-ary inverses

x′1 = (x2, x3, x4), (124)

x′2 = (x3, x4, x1), (125)

x′3 = (x4, x1, x2), (126)

x′4 = (x1, x2, x3). (127)

By analogy with Corollary 4 we now have

Corollary 5. Each polyadic idempotent e′i of the sandwich higher n-regular k-ary semigroup S sandw
k

is a local left polyadic identity (neutral element) for xi and a local right polyadic identity for xi−1.

Definition 22. A sandwich higher n-regular polyadic semigroup S sandw
k is called a sandwich n-

inverse polyadic semigroup, if each element xi ∈ S has a unique n-inverse (k− 1)-tuple x′i ∈ S(k−1)

(92)–(94).

In search of a polyadic analog of the Lemma 4, we have found that the commutation
of polyadic idempotents does not lead to uniqueness of the n-inverse elements (92)–(94).
The problem appears because of the presence of the middle elements in (91) and, e.g., in
(101) (see the discussion after (103)), while the middle elements do not exist in the previous
formulations of regularity.

4.3. Sandwich Regularity with Generalized Idempotents

Now we using the method of the previous section, we construct a sandwich regularity
containing the generalized polyadic idempotents satisfying (8) instead of (96).
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Definition 23. Sandwich k-ary n-regularity conditions for the sequence of inverses X(k) =
(x1, x2, x3, . . . , xk) with generalized polyadic 〈m〉-idempotents e′i are defined as

µ
[m]
k


m(k−1)︷ ︸︸ ︷

e′i , . . . , e′i , xi

 = xi, i = 1, . . . , k, (128)

where e′i are the same as in (91)–(94), but (instead of (96)) now satisfying

(
e′i
)〈m〉

= µ
[m]
k


m(k−1)+1︷ ︸︸ ︷
e′i , . . . , e′i

 = e′i , i = 1, . . . , k. (129)

Definition 24. A k-ary semigroup Sk in which every element belongs to a (not necessary unique)
sequence of inverses X(k) satisfying (91)–(94) and (128)–(129) is called a sandwich n-regular
semigroup with 〈m〉-idempotents.

Example 11. In the lowest case, for the sandwich regular binary semigroup S sandw
2 with generalized

〈2〉-idempotents (k = 2, n = 2, m = 2) we have (instead of (22))

x1x2x1x2x1 = x1, (130)

x2x1x2x1x2 = x2. (131)

And 〈2〉-idempotents become

e1 = x1x2, e2 = x2x1, (132)

e3
1 = e1, e3

2 = e2. (133)

In the binary case (k = 2) e1, e2 are called tripotents, and for arbitrary m generalized p-
idempotents, where p = m + 1.

It is obvious that (130) and (131) follow from (22), but not vise versa.

Example 12. For the sandwich 3-regular binary semigroup with 3-idempotents we have (k = 2,
n = 3, m = 2)

x1x2x3x1x2x3x1 = x1, (134)

x2x3x1x2x3x1x2 = x2, (135)

x3x1x2x3x1x2x3 = x3, (136)

and

e1 = x1x2x3, e2 = x2x3x1, e3 = x3x1x2, (137)

e3
1 = e1, e3

2 = e2, e3
3 = e3. (138)

Note that (134)–(136) are different from (101)–(103), because in the latter the multipli-
cation is ternary µ3. In opposition to Example 12 we have
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Example 13. For the sandwich regular ternary semigroup S sandw
3 with 〈2〉-idempotents we obtain

(k = 3, n = 2, m = 2)

µ
[3]
3 [x1, x2, x3, x1, x2, x3, x1, x2, x3, x1, x2, x3, x1] = x1, (139)

µ
[3]
3 [x2, x3, x1, x2, x3, x1, x2, x3, x1, x2, x3, x1, x2] = x2, (140)

µ
[3]
3 [x3, x1, x2, x3, x1, x2, x3, x1, x2, x3, x1, x2, x3] = x3, xi ∈ S, (141)

The three polyadic 〈2〉-idempotents are the same as those in (97)–(99)

e′1 = µ3[x1, x2, x3], (142)

e′2 = µ3[x2, x3, x1], (143)

e′3 = µ3[x3, x1, x2], (144)

but now they satisfy the 〈2〉-idempotence condition (8)

µ
[2]
3
[
e′i , e′i , e′i , e′i , e′i

]
= e′i , i = 1, 2, 3. (145)

instead of (100) being the 〈1〉-idempotence (9).

In [36] it was shown that the representatives of a congruence (residue) class [[a]]b form
a k-ary semigroup

R(a,b)
k =

〈{
xa,b(l)

}
| µk

〉
, xa,b(l) = a + lb ∈ [[a]]b, (146)

l ∈ Z, a ∈ Z+, b ∈ N, 0 ≤ a ≤ b− 1,

with respect to the multiplication

µk[xa,b(l1), xa,b(l2), . . . , xa,b(lk)] = xa,b(l1)xa,b(l2) . . . xa,b(lk)mod b, (147)

if
ak = a mod b. (148)

The limiting cases a = 0 and a = b− 1 correspond to the binary semigroup R(0,b)
2

(residue class [[0]]b) and the ternary semigroup R(b−1,b)
3 (residue class [[b− 1]]b), respec-

tively (for details, see [36]).

Example 14. To construct a concrete realization of the lowest sandwich regularity (139)–(141) we
consider the ternary semigroup of congruence class representativesR(b−1,b)

3 (the second limiting
case) with the multiplication

µ3[xb−1,b(l1), xb−1,b(l2), xb−1,b(lk)] = xb−1,b(l1)xb−1,b(l2)xb−1,b(l3)mod b, (149)

which is totally commutative. In terms of the representative numbers l the ternary product is
l = l1 + l2 + l3 + 2, l, li ∈ Z, which shows that the idempotents (142)–(144) coincide. The
3-idempotent sandwich regularity relations (130)–(131) become l1 + l2 + l3 + 3 = 0.

Further analysis of the the constructions introduced here and examples of regularity
extensions would be interesting to investigate in more detail, which can lead to new classes
of higher regular and inverse semigroups and polyadic semigroups.
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