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Abstract: Using a data set of approximately 2 million phenomenological equations of state consistent
with observational constraints, we construct new equation-of-state-insensitive universal relations
that exist between the multipolar tidal deformability parameters of neutron stars, Λl , for several
high-order multipoles (l = 5, 6, 7, 8), and we consider finite-size effects of these high-order multipoles
in waveform modeling. We also confirm the existence of a universal relation between the radius
of the 1.4M� NS, R1.4 and the reduced tidal parameter of the binary, Λ̃, and the chirp mass. We
extend this relation to a large number of chirp masses and to the radii of isolated NSs of different
mass M, RM. We find that there is an optimal value of M for everyM such that the uncertainty in
the estimate of RM is minimized when using the relation. We discuss the utility and implications of
these relations for the upcoming LIGO O4 run and third-generation detectors.

Keywords: neutron star; equation of state; universal relation

1. Introduction

Due to the constraints imposed by general relativity and causality, there exist quasi-
universal relations between various bulk physical properties of neutron stars (NSs) that are
mostly insensitive to the actual equation of state (EOS) of nuclear matter [1–14]. Since the
nuclear EOS in the high-density regime of NSs is still unknown, these universal relations
are a great utility for gravitational wave (GW) astronomy. Universal relations reduce a
group of several seemingly independent physical properties to a family characterized
by only a few parameters. Ideally, this allows one to break the degeneracies between
parameters in the analysis of GW data as well as in waveform modelling.

A robust set of universal relations (called multipole Love relations) holds between
the l-th order dimensionless gravitoelectric tidal deformability coefficients of NSs [12], Λl ,
which are defined by

Λl ≡
2

(2l − 1)!!
kl

C2l+1 , (1)

where C = M/R is the compactness of the NS (here we take G = c = 1) and kl is its l-th or-
der gravitoelectric tidal Love number [15]. The GW waveform of a binary NS (BNS) merger
is, quite understandably, highly sensitive to these tidal parameters. How deformable a NS
is in a tidal potential affects how its mass ultimately gets distributed during the inspiral
of a merger, which, in turn, shapes the GW waveform, especially during the late stages
of the inspiral [15–19]. The tidal parameters enter into the waveform at different post-
Newtonian orders; however, they are degenerate in the signal [12]. The multipole relations
allow this degeneracy to be broken by reducing all of the tidal deformabilities to a family
determined by a single parameter. This parameter is always chosen to be the quadrupolar
tidal deformability Λ2, which is the source of the leading-order finite-size effect in the GW
signal and, consequently, is the easiest to measure [12]. Thus, higher-order (l > 2) tidal
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deformabilities can be expressed through the multipole Love relations as functions of Λ2.
The authors and others have demonstrated that the improvements to the accuracy of tidal
deformability measurements, to parameter estimation, and to GW modelling offered by
the multipole Love relations are significant [12,14,15,20,21] and will become particularly
important with the increased sensitivity of upcoming third-generation GW detectors like
LIGO III, the Einstein Telescope, and Cosmic Explorer [12,15,22–25].

Motivated by these potential improvements, we present entirely new fits to several
previously un-fitted high-order multipole Love relations, specifically for l = 5, 6, 7, and 8.
Though the finite-size effects of these orders of tidal parameters are currently smaller than
measurement error, they will become more measurable with increased sensitivity; hence,
faithful GW waveform modelling will need to incorporate them. Previosu studies, such as
Flanagan and Hinderer [26] and Damour et al. [27], have discussed the finite-size effects of
the l ≤ 4 multipoles.

Zhao and Lattimer [19], De et al. [28] have demonstrated the existence of an intriguing
EOS-insensitive relation for BNSs between the radius of the 1.4M� NS, R1.4 and the
reduced tidal deformability (also called the binary tidal deformability), Λ̃. The quadrupolar
deformabilities of the individual NSs enter into the GW signal of the merger via Λ̃, which
is defined as

Λ̃ ≡ 16
13

(12q + 1)Λ2,1 + (12 + q)Λ2,2

(1 + q)5 , (2)

where Λ2,1 and Λ2,2 are the deformabilities of the primary and the secondary stars, re-
spectively. The quadrupolar tidal Love number k2 is known to scale roughly as C−1

independently of the EOS [15,29]. According to Equation (1), this means Λ2 scales approxi-
mately as C−6. In an apparently analogous fashion, Λ̃ seems to go as (M/R1.4)

−6, where
M is the chirp mass of the BNS given by

M≡ (m1m2)
3/5

(m1 + m2)1/5 . (3)

Combining this observation with the definition of Λ̃ in the manner done by Zhao and
Lattimer [19] yields a mostly EOS-insensitive estimate of R1.4 in terms of Λ̃ andM that is
also mostly insensitive to the binary mass ratio q:

R1.4 ' (11.5± 0.3 km)
M
M�

(
Λ̃

800

)1/6

. (4)

The immediate utility of this relation is the ability to produce an EOS-agnostic estimate
of R1.4 from just tidal parameter measurements. This is an alternative to the more involved
method of using the universal relation for binaries between the symmetric and antisym-
metric combinations of Λ2,1 and Λ2,2 [14,30] combined with the relation for individual NSs
between Λ2 and the compactness C [14,31] (a relation which intuitively follows from the
definition of Λl in Equation (1)). One would first use the symmetric-antisymmetric relation
to break the degeneracy between Λ2,1 and Λ2,2 and estimate them individually from Λ̃, and
then use the Λ2-C relation and the masses of the binary to extract the radii of both stars. The
LIGO/VIRGO analysis of GW170817 is an example of this latter approach [28,32,33]. One
need not appeal to universal relations to estimate stellar radii, however. Instead, one could
perform an inference of the EOS directly using a parametric representation of the EOS,
as was also done in the LIGO/VIRGO analysis [32], or using a much more sophisticated
nonparametric representation, as described in Essick et al. [34].

It is an appealing question, then, whether this relation can be extended using the
radius of a NS with a generic mass M, R(M) = RM. A RM–Λ̃ relation would allow one to
use measurements of tidal parameters andM to place robust constrains on RM directly
without the need for a more complicated procedure. Hence, our motivation in this work
is to provide a phenomenological study of the RM–Λ̃ relation. We look at the relation for
several values of M. For a given M, we compute fits to the relation for twelve fixed values
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ofM between 0.9M� and 1.4M�. We then generalize the fit for allM ∈ [0.9M�, 1.4M�]
by interpolating the fitting parameters as functions ofM. Fitting to the relation from across
a vast set of phenomenological EOSs incorporates the effects of higher-order terms that are
dropped when one analytically derives the expression in Equation (4) as was done in [19].
Equation (4) assumes that the R1.4-Λ̃ relation (and, by extension, the RM–Λ̃ relation) is
only linearly dependent onM, i.e., thatM simply scales the relation but does not change
its dependence on Λ̃. A phenomenological study permits us to observe directly the effect
changingM has on the relation.

The outline of this paper is as follows. In Section 2, we describe the parameterization
scheme and algorithm by which we generate our phenomenological EOS data and the
statistics for our analyses. In Section 3, we present the fitting parameters of the high-order
multipole Love relations, followed in Section 4 by an phenomenological analysis of and
fits to the R1.4-Λ̃ relation as well as to the general RM–Λ̃ relation. We also discuss the
implications of these new fits to GW waveform analysis for the LIGO O4 run. A concluding
summary is given in Section 5.

2. Methods

We parameterize the space of all possible EOSs consistent with theoretical calculations
and astronomical observations using the piecewise polytropic interpolation developed in
Read et al. [35], with the only modification being that we allow the transition densities ρ1
and ρ2 to vary. We then generate random piecewise EOSs using a Markov chain Monte
Carlo (MCMC) algorithm, with the basic summary as follows. For a given candidate EOS,
the algorithm first computes a series of solutions to the Tolman-Oppenheimer-Volkoff
(TOV) equation using the publically available TOVL code described in Bernuzzi and Nagar
[36] and Damour and Nagar [17], and then accepts the EOS if and only if it satisfies three
weak physical constraints:

1. Causality of the maximum mass NS is preserved (i.e., the maximum sound speed cs
is less than the speed of light c below the maximum stable central density);

2. The maximum stable mass of a non-rotating NS, Mmax, is greater than 1.97M�, and
3. Λ2 < 800 for the 1.4M� NS.

The full details of parameterization and the MCMC algorithm can be found in
Godzieba et al. [14]. With this scheme, we generate a set of 1,966,225 phenomenologi-
cal EOSs.

To study the multipole Love relations, for each EOS in our data set, we solve the TOV
equation for sixteen evenly spaced central densities between ρc = 3.09× 1014 g/cm3 and
the maximum stable central density of that EOS, and then extract Λl for l = 2 through
l = 8 from each solution.

To study the RM–Λ̃ relation, we follow a similar procedure. First, we choose a fixed
value ofM. Next, for each EOS in a random sample of a quarter of all EOS in the data set,
we generate twenty random binary NSs (BNSs). We uniformly sample the binary mass
ratio q = m2/m1 (where m2 ≤ m1) on the interval 1/2 ≤ q ≤ 1. This range is not intended
to represent the complete range of values that q could take in Nature, but rather simply to
capture the general behavior of q based on observational and theoretical considerations.
Observations of the most massive known pulsars indicate that Mmax & 2M� [37–42], and
the analysis of GW170817 suggests that Mmax . 2.3M� [43–47]; though, as we await
upcoming precision measurements of millisecond pulsar radii by NICER, we cannot as
of yet categorically rule out the possibility of extreme EOSs with Mmax < 2.5M� [48].
Meanwhile, the least massive known pulsar has a mass of 1.17M� [49], and, depending
on the true nuclear EOS, the minimum stable gravitational mass, Mmin, could be as low
as 1.15M� [50]. Hence, q ≥ Mmin/Mmax ≈ 1/2, and the vast majority of BNSs, being far
from either mass extreme, will fall well within this range.
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Each q is then converted into the actual binary masses m1 and m2 using the value of
M and Equation (3):

m1 =Mq−3/5(1 + q)1/5, m2 =Mq2/5(1 + q)1/5. (5)

The TOV equation is then solved with the corresponding EOS for NSs with these two
masses, and Λ2 is extracted from both solutions to compute Λ̃. We apply this procedure for
twelve different values ofM between 0.9M� and 1.4M�. The Λ̃ values are then plotted
versus RM for eight different values of M. These RM values are pulled from our EOS
data set.

3. High-Order Multipole Relations

From our phenomenological EOS data set, we compute 21,994,104 valid individual NS
solutions to the TOV equation as our statistics for analyzing the multipole Love relations.
Λ3, Λ4, Λ5, Λ6, Λ7, and Λ8 are plotted against Λ2 in Figure 1, and one can appreciate
the universality of each relation across a vast range of scales. (We observe that all the
intersections between the six curves lie around Λ2 ∼ 100, but we are not sure why this is
the case.) As in the authors’ previous work [14], we employ a fitting function of the form

ln Λl =
6

∑
k=0

ak(ln Λ2)
k, (6)

which is an extended version of the fitting function originally used by Yagi and Yunes [11].
The fitting parameters~a = {ak} for each relation are given in Table 1.

Figure 1. Universal multipole Love relations for l = 3 through l = 8 from the collection of phe-
nomenological EOSs. We use the fitting function function in Equation (6), and the fit to each relation
is plotted in red.

Table 1. Fitting parameters~a = {ak} of the multipole Love relations given in Equation (6).

Relation a0 a1 a2 a3 a4 a5 a6

Λ3–Λ2 −0.82195 1.2110 1.0494× 10−2 1.6581× 10−3 −3.1933× 10−4 1.8607× 10−5 −3.5027× 10−7

Λ4–Λ2 −1.6887 1.4719 7.1803× 10−3 5.4042× 10−3 −8.3262× 10−4 4.6940× 10−5 −8.9092× 10−7

Λ5–Λ2 −2.6473 1.7485 −5.1199× 10−4 9.7085× 10−3 −1.3990× 10−3 7.8465× 10−5 −1.5055× 10−6

Λ6–Λ2 −3.7032 2.0313 −1.0038× 10−2 1.4083× 10−2 −1.9640× 10−3 1.1029× 10−4 −2.1380× 10−6

Λ7–Λ2 −4.8568 2.3209 −2.2063× 10−2 1.8533× 10−2 −2.5050× 10−3 1.4020× 10−4 −2.7305× 10−6

Λ8–Λ2 −8.2442 2.6203 −1.8152× 10−2 2.5720× 10−2 −3.6087× 10−3 2.0231× 10−4 −3.9399× 10−6
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In Figure 2, we show the 68%, 95%, and 99.7% relative error of each fit. For each line
in the error plot, the corresponding percentage of data points lie below it. We restrict our
attention to the domain 1 < Λ2 < 104, as this is the range of Λ2 most relevant to current
LIGO measurements. The estimate error of each Λl over this range stays mostly flat with
a slight downward trend. (The small ripples that can be seen in the error plots over this
range are simply artifacts of how the distribution of NS solutions was computed.) The
universality of the multipole relations weaken gradually as l increases, as can be seen in
the increasing thickness of the distributions in Figure 1. This then increases the maximum
estimate error of Λl for larger l despite the faithfulness of each fit to the shape of the
corresponding relation (see Figure 1). While 95% of estimate errors are smaller than ∼7%
for the Λ3–Λ2 relation, 95% are only smaller than ∼50% for Λ8–Λ2.

(a) (b) (c)

(d) (e) (f)

Figure 2. 68%, 95%, and 99.7% relative errors of the fits to (a) Λ3–Λ2, (b) Λ4–Λ2, (c) Λ5–Λ2, (d) Λ6–Λ2,
(e) Λ7–Λ2, and (f) Λ8–Λ2 relations. The small ripple in the error seen at small values of each Λl is
simply an artifact of how the distribution of NS solutions were generated. The fits are faithful to the
shape of the curves of the relations; however, universality weakens and the distributions of points
spread out as l increases, resulting in the maximum error of the estimate increasing with l.

The phase of a GW in waveform modelling is affected by the highest order out to
which one carries finite-size corrections (The leading-terms of the finite-size correction
from Λl is given in [12]). We demonstrate this with a baseline model of a binary with
m1 = m2 = 2.7M� and Λ1 = Λ2 = 1000 using the spin-aligned effective-one-body
waveform model TEOBResumS [18]. Often when universal relations are not employed, all
finite-size effects are dropped except for the leading-order (l = 2) effect. In the baseline
model, just the l = 2 correction alone contributes a phase difference of 36.7 radians
compared to a waveform model with no tidal corrections. Further corrections from the
l = 3 and l = 4 effects using the Λ3–Λ2 and Λ4–Λ2 relations, respectively, incur an
additional 2.89 radians. Finally, including the l = 5, 6, 7, and 8 corrections using the
relations given in this work adds 0.02 radians of dephasing on top of that. (The dephasing
between the l ≤ 8 waveform model and models with fewer corrections is plotted in
Figure 3 as a function of time. For all models, most of the dephasing is accumulated in
the last 5 milliseconds before the merger.) Combined, the l > 2 corrections contribute 2.91
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radians of dephasing. This demonstrates the importance of the multipole Love relations
for faithful waveform modelling.

The dephasing of the l > 4 corrections are currently smaller than GW detector
uncertainties, but this could only have been known after fitting to the l > 4 multipole
relations. Additionally, with the greater sensitivity of future detectors, the l > 4 finite-size
effects will start to come into view. The order out to which one should carry finite-size
corrections in the waveform analysis of actual GW data is dependent on several factors
(the EOS model, the signal-to-noise ratio of the merger, etc.); however, in general it is
recommended that corrections up to l = 4 be included in the analysis of data from current
detectors [12,14,27].

10 3 10 2 10 1 100 101 102

tmrg t [s]

10 2

10 1

100

101

|
|

i, i 4
2
= 0

Figure 3. An example of dephasing between different waveform models (one with no tides, one with
only the l = 2 correction, and one with all corrections up to l = 4) and the full model (all corrections
up to l = 8). The overall dephasing is very small between the l ≤ 4 model and the full model. Most
of the dephasing is accumulated in the last 5 milliseconds, just a few orbits prior to the merger.

4. RM-Λ̃ Relation

We analyze the R1.4-Λ̃ relation at twelve different fixed values of the chirp massM,
which are given in Table 2. We compute between 750,000 and 1,000,000 valid individual
binaries for each value ofM. Several example plots of the relation are shown in Figure 4.
The relation’s dependence on the binary mass ratio q is illustrated by the coloring of the
points in these plots. Each point in the plot represents a BNS. Points with smaller values of
q are plotted on top. An important conclusion to draw from these plots is that the relation
does not depend upon both stars having the same radius [19]. For M . 1.25M�, the
relation remains fairly tight for all values of q. Further, for M & 1.1M� (The smallest
physical valueM can take is when m1 = m2 = Mmin ≈ 1.15M� (see Section 2). Using
Equation (3), this gives us M & 1.001M�. Since we permit m1 and m2 to be less than
1.15M�, we are able to reach as low asM = 0.9M�.), the relation actually becomes tighter
as q decreases (i.e., as the radii of the two stars differ more and more), which can be
understood by considering the definition of Λ̃ in Equation (2). For fixed R1.4, the range
of possible values Λ̃ can take is constrained by q. When q = 1, the masses of the binary
can span the range from the minimum to the maximum mass, Mmin ≤ m1 = m2 ≤ Mmax.
Hence, min (Λ2) ≤ Λ2,1 = Λ2,2 ≤ max (Λ2), and min (Λ2) ≤ Λ̃ ≤ max (Λ2). As q
decreases, the bounds for both m1 and m2 shrink and no longer overlap, causing the same
to happen for Λ2,1 and Λ2,2. This, as we see, also shrinks the bounds on Λ̃. Thus, we expect
the relation to tighten as q decreases.
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Table 2. Fitting parameters of the general R1.4-Λ̃ relation given in Equation (7) for different values
ofM.

M/M� α (km) β

0.900 11.832 6.7621
0.950 11.668 6.5775
1.000 11.548 6.4189
1.045 11.473 6.3020
1.100 11.412 6.1972
1.150 11.377 6.1515
1.180 11.359 6.1513
1.219 11.330 6.1906
1.250 11.302 6.2441
1.300 11.228 6.4147
1.350 11.102 6.7139
1.400 10.921 7.1305

(a) (b)

(c) (d)

Figure 4. Example fits to the R1.4-Λ̃ relation for (a) M = 1.045M�, (b) M = 1.18M�,
(c)M = 1.219M�, and (d) M = 1.4M�. Each point represents a BNS and is colored according
to the value of the binary mass ratio q = m2/m1. Points with smaller values of q are drawn on top.
The upper limit on the value of Λ̃ for eachM derives from the Λ2 < 800 cutoff for the 1.4M� NS
imposed on the EOSs generated by our algorithm (see Section 2). The relation does not depend on
both NSs having the same radius, and indeed forM/M� & 1.1 it becomes tighter as q decreases.
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We construct a fitting function for the R1.4-Λ̃ relation by considering a slightly gener-
alized form of Equation (4):

RM ' α
M
M�

(
Λ̃

800

)1/β

, (7)

where, in this case, M = 1.4M�. Here the proportionality constant α and the inverse
exponent β are the fitting parameters and, consequently, will be dependent onM. These
fits are also shown in Figure 4. The fitting parameters for all values ofM are given in
Table 2. A sense of the accuracy of the estimated value of R1.4 from the fit can be gathered
from Figure 5, where we plot the 68%, 95%, and 99.7% relative error of the example fits.
Overall, the estimates are accurate to within O(10%) error for all values ofM, and are, in
fact, accurate to within ∼5% for most values of R1.4.

(a) (b)

(c) (d)

Figure 5. 68%, 95%, and 99.7% relative errors of the fits to the R1.4-Λ̃ relation for (a)M = 1.045M�,
(b)M = 1.18M�, (c)M = 1.219M�, and (d)M = 1.4M�. The error overall stays below O(10%),
with 95% of the estimates generally below 4–5% error, for all values ofM.

We can extend our fitting results to allM ∈ [0.9M�, 1.4M�] by fitting the dependence
of α and β onM. We construct the rational fitting functions

α(x) =
∑3

k=0 pkxk

∑2
k=0 qkxk

km and β(x) =
∑2

k=0 pkxk

∑2
k=0 qkxk

, (8)
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where x = (M/M� − µM)/σM, µM = 1.1537, and σM = 0.15927. These fits, which are
in excellent agreement the values in Table 2, are shown in Figure 6. The fitting parameters
~p = {pk} and ~q = {qk} for α(x) and β(x) are given in Table 3. What is interesting is that
the inverse exponent β is not monotonic. Rather, it has a minimum atM = 1.1661M�.
A possible contributor to this effect is the decrease in the variety of possible binaries as
M increases. The maximum value M could take for a given EOS is found by letting
m1 = m2 = Mmax in Equation (3), which yieldsMmax = 2−1/5Mmax. For 1/2 ≤ q ≤ 1, m1
and m2 are bounded by

21/5M≤ m1 ≤ min (121/5M, Mmax), (9)

(3/8)1/5M≤ m2 ≤ 21/5M. (10)

Table 3. Fitting parameters ~p = {pk} and ~q = {qk} for α and β as functions of x = (M/M� −
µM)/σM, where µM = 1.1537 and σM = 0.15927 for several values of M. The fitting functions are
given in Equation (3).

M/M� p0 p1 p2 p3 q0 q1 q2

1.4 β(x) 404.40 −96.991 26.475 - 65.755 −15.259 1
α(x) 224.75 −24.553 11.832 −1.8434 19.758 −1.9914 1

1.5 β(x) 502.01 −119.44 32.193 - 79.153 −16.598 1
α(x) 282.86 −29.568 12.893 −2.2628 24.833 −2.3357 1

1.6 β(x) 642.10 −152.88 40.447 - 98.054 −18.391 1
α(x) 386.63 −42.102 14.780 −3.0054 33.942 −3.2743 1

1.7 β(x) 877.56 −210.98 54.468 - 129.67 −21.419 1
α(x) 598.97 −73.554 18.854 −4.5818 52.655 −5.7193 1

1.8 β(x) 1442.2 −356.28 88.775 - 206.20 −29.608 1
α(x) 1291.3 −192.50 32.831 −10.064 113.87 −15.207 1

1.9 β(x) 2734.1 −709.62 174.36 - 380.72 −46.815 1
α(x) 3282.2 −592.78 80.705 −27.980 291.00 −48.054 1

2 β(x) 63,061 −19,071 3663.7 - 8959.4 −1478.5 1
α(x) 9986.9 −2011.9 232.61 −82.091 887.58 −167.09 1

2.14 β(x) 93,209 −34,415 6102.8 - 12,686 −2286.4 1
α(x) 58,353 −18,272 1904.6 −609.58 5234.8 −1543.2 1

Hence, asM increases, the relation becomes gradually dominated by (1) EOSs with
Mmax ≥ 21/5M and (2) only those BNSs from each EOS that lie in the increasingly narrow
range in Equation (9). This decrease of BNS variety could play a role in the non-monotonic
behavior of β(x).

One could, of course, consider more generally the relation between Λ̃ and the radius of
a NS with some mass M, RM. We pursue this thought by looking at RM–Λ̃ for M/M� = 1.4,
1.5, 1.6, 1.7, 1.8, 1.9, 2, and 2.14. Just as for the R1.4-Λ̃ relation, we utilize the fitting function
in Equation (4), and then find α and β as functions of x using Equation (8). In Table 3,
we show the fitting parameters ~p = {pk} and ~q = {qk} of α(x) and β(x) for each M.
The tightness of the RM–Λ̃ relation (and thus the general quality of the estimate from
the fit) is dependent on both M and M. We illustrate this in Figure 7 by plotting the
approximate uncertainty of the estimated value of RM as a function ofM for several values
of M. Since our EOSs and BNSs do not come from prior probability distributions, we non-
stringently define the uncertainty here as the half-width of the symmetric interval centered
at ∆RM = RM − R(fit)

M = 0 that encloses 95% of the data points in the histogram of ∆RM for
fixedM. Interestingly, the uncertainty for each M reaches a minimum at some particular
value ofM, with the minimum uncertainty for each M being around 0.2 km in the range
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ofM we considered. The minima for M = 1.4M� through 1.8M� are visible in Figure 7.
This reveals that there is an optimal M for eachM such that RM is maximally constrained
by the RM–Λ̃ relation at thatM. Thus, for example, a chirp mass ofM≈ 1.05M� would
yield the best estimate of R1.4, while a chirp mass ofM ≈ 1.4M� would yield the best
estimate of R1.8. Further, there appears to be a linear dependence of the optimal M onM;
however, a wider range ofM would need to be considered to confirm this. The change
in the variety of BNSs asM increases, as previously described, may contribute to this.
At largerM, the relation becomes dominated by larger mass NSs; thus, the relation may
become more sensitive to the radii of larger mass NSs asM increases.

Figure 6. Fitting parameters α and β of the R1.4-Λ̃ relation as functions ofM/M�. β(x) does not
vary monotonically with x, but has a minimum.

Figure 7. The approximate uncertainty of the estimated value of RM computed using the RM–Λ̃
relation as a function ofM. Each curve is colored according to the value of M (given in units of
M�). The uncertainty is defined as the half-width of the symmetric interval centered at ∆RM =

RM − R(fit)
M = 0 that encloses 95% of the data points in the histogram of ∆RM. For every M, there is

an optimal value ofM such that this uncertainty is minimized.
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The RM–Λ̃ relation, then, allows one to use any binary to place a robust, EOS-agnostic
constraint on RM using just Λ̃ andM. This offers great prospects for the upcoming LIGO
O4 run and for third-generation detectors. The O4 run expects to see 10+52

−10 detections
within a search volume of 1.6× 107 Mpc3 year [51]. Every BNS detection can be transformed
into a maximum constrain on some RM. However, even the weaker constraints afforded by
RM–Λ̃ are of still great utility. Just 10 weak constraints on R1.4 using the R1.4-Λ̃ relation
will yield a reliable value for R1.4. Further, a reduction in statistical uncertainty thanks
to increased sensitivity improves the effectiveness of universal relations, as, for example,
the systematic errors of fits to multipole relations are generally smaller than statistical
uncertainty [12].

5. Conclusions

We supplement the tool set of GW analysis and waveform modelling by presenting
entirely new fits to several universal relations between high-multipole-order dimensionless
gravitoelectric tidal deformabilities Λl and to the universal relation for BNS between the
radius of the 1.4M� NS, R1.4, and the reduced tidal deformability Λ̃. We compute these
utilizing a data set of nearly two-million phenomenological EOS sampled from across a
broad parameter space using an MCMC algorithm.

First, we present fits to the multipole relations. Previous fits [12,14] had been made
to just the Λ3–Λ2 and Λ4–Λ2 relations. We extend the library of fits by looking at the
Λ5–Λ2, Λ6–Λ2, Λ7–Λ2, and Λ8–Λ2 relations. The tightness of the relations weakens as
l increases. Consequently, though the fits are faithful to the shapes of the relations, the
maximum estimate error of the fits increases to the order of 50% for Λ8. The inclusion
of the finite-size effects of the l < 4 multipoles in waveform analysis can incur as much
as 0.02 radians of dephasing compared to including only the l ≤ 4 effects. Collectively,
the l > 2 effects contribute as much as 2.91 radians of dephasing, and it is recommended
that finite-size corrections for l > 2 multipoles be included in the analysis of GW data
wherever they are at least comparable to detector uncertainties. The full usefulness of these
l > 4 relations in GW data analysis will be realized with the increased sensitivity of the
upcoming third-generation GW detectors like LIGO III [22], the Einstein Telescope [23,24],
and Cosmic Explorer [25], as the finite-size effects of these multipole orders are currently
smaller than measurement error.

Next, we analyze the R1.4-Λ̃ relation. The original derivation of the relation [19] yields
an expression, given in Equation (4), that is linearly dependent on the chirp massM of the
BNS. Fitting the relation for different fixed values ofM reveals any nonlinear dependence
the relation may have onM and allows us to compute an expression that more accurately
estimates R1.4. We do this for twelve different values ofM between 0.9M� and 1.4M�,
using the fitting function in Equation (7). We then interpolate the fitting parameters to all
M ∈ [0.9M�, 1.4M�] by fitting them as functions ofM. The accuracy of the estimate of
R1.4 for any value ofM is found to be quite good. 95% of the estimates are within ∼5%
of R1.4.

We then consider a generalized form of the relation RM–Λ̃ for a generic NS mass M.
We perform the same analysis as for the R1.4-Λ̃ relation for seven other values of M. We
find that the level of uncertainty in the estimate of RM depends on both M andM. There
is, in fact, an optimal value of M for eachM such that RM is maximally constrained by the
relation at that value ofM. Therefore, this relation will be an excellent tool for combining
the results from multiple GW detections of BNSs into constraints on NS radii.

The parameter space of possible EOS explored by our MCMC algorithm to com-
pute our EOS data set can be further restricted with the inclusion of possible future
LIGO/Virgo/KAGRA O4 constraints, laboratory constraints, such as those from heavy-
ion collisions [52] and PREX [53], X-ray burst observations from NICER [54–56], and by
combining the phenomenological EOSs with results from pQCD calculations [57].
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