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Abstract: For a scenario of a close flyby of a compact star near a spinning black hole, we provide
analytical and numerical estimates for the shift of trajectory periastron due to relativistic (beyond
post-Newtonian) effects. More specifically, we derived a generalized expression (not limited to
quasi-circular or elliptical orbits) directly linking the periastron shift and the spin of the black hole.
The expression permits the estimation of black hole spin based on astronomical tracking of locations
of stars traveling along highly eccentric (parabolic and hyperbolic) trajectories in close vicinity of a
black hole. We also demonstrate how stars traveling on hyperbolic or parabolic trajectories may be
(temporarily) captured onto quasi-circular orbits around black holes, and we quantitatively examine
conditions for such scenarios.

Keywords: spinning black hole; Kerr metric; Lagrangian; trajectory; periastron shift

1. Introduction

The spin of a black hole (BH) is a critically important parameter in many problems of as-
trophysics. A number of spin measurement techniques have been developed over the decades,
but challenges remain (see, for example, Review [1]). For a while, spin measurements were
only possible based on observations of accretion disks. For accreting supermassive black
holes in active galactic nuclei, or for accreting stellar mass black holes in X-ray binaries,
observations of the accreting gas—its emissions or temperature—can be used to deduce the
disk structure affected by the frame-dragging due to BH spin. Indeed, the position of the
innermost stable circular orbit (ISCO)—the transition between the Newtonian zone and the
zone where relativistic effects become important, destabilizing circular orbits and causing
the accreting gas to undergo a plunging spiral into the BH event horizon—is a basic property
of the BH gravitational field and depends on the spin. The key challenge is to understand
the influence of frame-dragging on accretion disk structure and compare these expectations
to data from real black holes. The more recently developed BH spin measurement methods
have their challenges as well. Thus, although gravitational waves can provide information
about the binary equivalent of the ISCO during the merger of a binary BH system, for single
black holes, no systematic gravitational waves are expected. Another method—imaging
with the Even Horizon Telescope—can detect the asymmetry in brightness between the
approaching and receding sides of the disk, which are strongly spin-dependent. However,
interpretation of the data depends on the modeled time and space variability of the accretion
disk and the foreground distribution of galactic gas that acts as a varying scattering screen.
Finally, observations of stellar orbits in the close vicinity of black holes may also reveal the
BH spin. We focus our work on this method.

It is well-known that studies of the differences between the observed stellar trajecto-
ries near a black hole and the hypothetical trajectories of the stars estimated within the
Newtonian framework help not only to verify the current theory of relativity, but also de-
termine characteristics of the black hole and the orbiting stars (see, for example, refs. [2–5],
and references therein). Obviously, relativistic effects are the strongest in the vicinity of
the periastron—the point where the traveling object is the closest to the gravitationally
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powerful attractor. The closest approaches to the attractor may occur when stellar objects
travel along strongly-elongated elliptical orbits or parabolic/hyperbolic trajectories. In
close vicinity of a spinning black hole, the commonly used post-Newtonian approximation
may become inaccurate. In this paper, we develop analytical and numerical estimates for
the shift of the periastron due to relativistic (beyond post-Newtonian) effects.

Specifically, we focus on the following questions: In close vicinity of a spinning black
hole, how strong is the periastron shift (relative to its Newtonian proxy)? How many
revolutions around the black hole does it take for the test-body to reach the periastron?
What parameters determine the revolution-number, and what is the dependence-function?
Under what conditions does the body inevitably fall into the ergozone? The questions
seem simple, but upon closer examination, the results are not at all obvious. Furthermore,
our goal is not only to obtain these estimates, but also to outline the method by which
these estimates are obtained. Indeed, in view of the prevalent use of powerful numerical
simulations being the main approach to problem solving, a recourse to the concept—a
theoretical method is more important than a result, because an error-free method generates
additional correct results—seems to be methodically justified. Analyses of the questions
listed above must include the premises that the effects of both relativistic theories are
strong, the black hole spinning is rapid, and that the effect is studied from the perspective
of a distant observer (i.e., located not in a co-moving frame).

The sequence of steps in the analytical approach is the following: (a) we start with
articulation of the principle of least action within a specific structure of spacetime in the
vicinity of a spinning black hole; (b) we construct the Lagrangian for the test body of
finite mass; (c) we find equations of motion for the body; (d) from the symmetry of the
Lagrangian, we find the integrals of motion; (e) finally, we obtain the key equation for the
trajectory, which captures the nonlinear general-relativistic effects (including the “rotation”
of the black hole); (f) we calculate the periastron’s shift and find (for a parabolic trajectory)
the conditions under which the body falls onto the static limit—the boundary of ergosphere
where the frame-dragging becomes irresistible and all matter and light is forced to rotate
around the black hole. To give a consistent presentation of the method for calculating the
characteristics of the process, we include a brief overview of the properties of spacetime in
the vicinity of a rotating black hole.

The structure of the paper is as follows: In Section 2, the problem is defined. To avoid
unnecessary complications in the calculations, we suppose that the traveling object is not
destroyed by tidal forces. In Section 3, the motion regime of the compact star moving in
the vicinity of the spinning black hole, and the estimate of the periastron shift, are given.
The calculated effect opens up (in principle) a new opportunity for the estimation of the
rates of rotation of black holes based on observed distortions of trajectories of compact
stars traversing their vicinity. Indeed, position-tracking for stars moving along, not quasi-
circular but, highly eccentric orbits, or open trajectories, near supermassive stars (black
holes), and subsequent quantification of ∆Ψ = Ψ(τ → +∞)−Ψ(τ → −∞) ≡ 2Ψp for the
descending and outgoing parts of the trajectories, can offer validating arguments for the
employed relativistic model. Section 4 concludes with a discussion and final remarks.

2. Model
2.1. Metric near Spinning Black Hole

A non-charged black hole is described by the Kerr metric: an exact, singular, stationary
and axially symmetric solution of the Einstein–Hilbert equations of the gravitational “field”
in vacuum. It is generally accepted that the spacetime near any massive object M, which
possesses angular momentum JM, may also be described by the Kerr metric [6–12]. In the
Boyer–Lindquist coordinates, the components of the metric tensor can be found from expression

ds̃2 = g̃αβdqαdqβ →

ds̃2 = (1−
rgr
Σ

)c2dt2 −
2rgrω̄

Σ
sin2 θcdtdφ− Σ

∆
dr2 + Σdθ2 − (r2 + ω̄2 −

rrgω̄2

Σ
sin2 θ) sin2 θdφ2

(1)
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which is given here in dimensional units. Here and further on, we employ the metric
signature diag(+ − −−) for the Minkowski tensor, which is also commonly used (see,
for example, ref. [13]). The four coordinates qα = (t, r, θ, φ) represent a world event. They
are defined from the viewpoint of a remote observer. The meaning of space coordinates
r, θ, φ is clear once transitioned to the limit r � rg and r � ω̄. When the square of
the interval becomes ds̃2 → c2dt2 − dr2 − r2(dθ2 + sin2 θdφ2), i.e., at infinity, parameters
(r, θ, φ) may be interpreted as the standard spherical coordinates in flat spacetime. Note
again that the first term has the plus sign in front of it. Within the used parametrization—
Equation (1)—the z-axis and the BH angular momentum JM are co-aligned. Here also:
rg = 2GM/c2 is the Schwarzschild radius, c is the speed of light, G is the gravitational
constant. Equation (1) uses length-scales ω̄, Σ, and ∆, for succinctness:

ω̄ =
JM
Mc

, Σ = r2 + ω̄2 cos2 θ, ∆ = r2 − rgr + ω̄2. (2)

Parameter ω̄ is a measure of the BH “rate of rotation”. Some publications use notation
Ω(= 2ω̄/rg) or notation a. Parameter Ω may be not be negligible in some physically-
interesting cases. For the Sun, for example, the angular moment J ∼ 2× 1048 g cm2/s,
giving Ω ∼ 0.185 (not negligibly small).

To satisfy the principle of causality for material objects, it must be that ds̃2 > 0. As for
the parameter r, note that it is not the “distance” from the black hole. This is because, for
any material object, in the spacetime defined by Equation (1), no central point r = 0 exists
in the sense of a world-event on a valid world-line.

Besides the Boyer–Lindquist coordinates, other representations of spacetime locations
exist (see, for example, refs. [14,15]).

The cross-product term,∼ JM dt dφ, plays a key role in the spacetime metric near spinning
black holes. It describes the coupling of time and space. When the angular momentum JM
can be disregarded, the coupling disappears.

In units of length rg = 2GM/c2 and time rg/c, when r = rgx, ω̄ = rgω, and ds̃2 is
replaced with r2

gds2, then

ds2 = gαβdqαdqβ =

[
(1− x

ζ2 )dt2 − 2ω
x
ζ2 sin2 θdφdt− ζ2

χ
dx2 − ζ2dθ2 − Λ

ζ2 sin2 θdφ2
]

, (3)

where

ζ2 = x2 + ω2 cos2 θ, χ = x2 − x + ω2, Λ = (x2 + ω2)2 − (x2 − x + ω2)ω2 sin2 θ. (4)

When ω = 0, expressions (3) and (4) coincide with the Schwarzschild metric.
From expressions (3) and (4), it is apparent that, in the Kerr metric, there exist hyper-

surfaces where components of metric tensor permit certain features. Four such hyper-surfaces
exist, but two are “hidden beneath” the event horizon.

One of the surfaces corresponds to the event horizon. At this surface, the value for
the purely radial component g11 of the metric goes to infinity. Equation 1/g11 = 0 yields
two solutions. The physically meaningful one is: xH = (1 +

√
1− 4ω2)/2 ≤ 1. It reveals

that parameter ω is always ≤ 1/2. A quickly-spinning black hole with Ω = 2ω = 1
is a maximally-rotating object. In some works, for example [8], calculations of some
effects are carried out even with Ω→ 1. Besides the singularity at the event horizon, one
more singularity arises when the component g00 of the metric tensor goes to zero. Again,
equation g00 = 0 (which has two solutions) gives the physically meaningful solution:
xE = (1 +

√
1− 4ω2 cos2 θ)/2. Because of cos2θ underneath the radical sign, this outer

hyper-surface (known as the “static limit”) looks like a flattened sphere, which at the poles,
where latitude θ equals 0 or π, touches the event horizon.

Between these two hyper-surfaces lies the ergosphere. There—in the chosen Boyer–
Lindquist coordinate presentation—the g00 component of the metric tensor is negative, i.e.,
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the time coordinate manifests itself as a spatial coordinate. See Ref. [16] for a discussion on
the meaning of singularities within and at the ergozone.

2.2. Equations of Motion
2.2.1. Extremum of Action

The motion of a free test-body in a gravitational field is determined by the same
principle of least action as in the special theory of relativity. The gravitational field becomes
manifested only via the changed expression for the interval ds in terms of quantities dqα

when γαβdxαdxα → gαβdqαdqβ.
The action S is determined by the proper time integral between two world-points

∼
∫

ds [17], which can be rewritten as

S = −m
∫

ds =
∫

dη (−m
ds
dη

) . (5)

Here, η is a selected affine parameter (such as s, t, or proper time τ, for example)

ds
dη

=
√

gαβqα
,ηqβ

,η . (6)

Thus, the quantity L = −ms,η can be identified as the Lagrangian of the test-body. The
extremum of action S is found from setting the variational derivatives to zero

δS
δqγ(ξ)

=
∫

dη
δL

δqγ(ξ)
=
∫

dη

(
− d

dη

∂L
∂qα

,τ(η)
+

∂L
∂qα(η)

)
δqα(η)

δqγ(ξ)
. (7)

Here, the functional derivative of variables qν(τ) with respect to τ, is shifted to the left
and it is taken into account that the Lagrangian is always determined up to an inessential
term dF/dτ which can be omitted. Keeping in mind that δqα(η)/δqγ(ξ) = δαγδ(η− ξ), we
obtain the four-dimensional Lagrange equations

δS
δqβ

= − d
dτ

∂L

∂qβ
,τ(η)

+
∂L

∂qβ(η)
= 0. (8)

As the Lagrangian, instead of L, quantity L′ may be taken [18,19]:

L′ =
m
2

gαβqα
,ηqβ

,η . (9)

This follows from direct calculations (see, for example, ref. [13]). In fact, the variation
δds2 = 2dsδds. On the other hand, since gαβ = gβα and operators δ and d are commuta-
tive, the same quantity δds2 = δ(gαβ(η)dηαdηβ) = dηαdηβ(∂gαβ/∂γ)δηγ + 2gαβdηαdδηβ.
Therefore, the variation of action S is

δS = −m
∫

ds
(

1
2

ηα
,sη

β
,s(

∂gαβ

∂γ
)δηγ − d

ds
(gαβηα

,s)δηβ

)
. (10)

Here it is taken into account that at the limits of integration over s, δηβ = 0 and
mgαβην

,s = ∂L′/∂ην
,s. It obviously follows from here

δS = −
∫

ds
(

∂L′

∂ηγ
− d

ds
∂L′

∂η
γ
,s

)
δηγ . (11)

At the limit of large x, the Lagrangian—whose explicit form is

L = −m
(
(1− x

ζ2 )t
2
,τ + 2a

x
ζ2 sin2 θφ,τt,τ −

ζ2

χ
x2

,τ − ζ2θ2
,τ −

Λ
ζ2 sin2 θφ2

,τ

)1/2

, (12)



Universe 2021, 7, 364 5 of 15

and where, for succinctness, quantities ζ2, χ, Λ are from Equation (4)—takes the form

L = −m
√

t2
,τ − (x2

,τ + x2θ2
,τ + x2 sin2 θφ2

,τ) + . . . . (13)

It is clear from here that, for a remote stationary observer, the Lagrangian for a relativistic
free object (see [17]) turns to L = −m

√
1− v2, where expression x2

,t + x2θ2
,t + x2 sin2 θφ2

,t = v2

is taken account of.

2.2.2. Geodesic

The equations of motions (8) can be written as

δS[L]
δqα

= 0 → δS[L′]
δqα

= 0 → d
dτ

∂L′

∂qα
,τ
− ∂L′

∂qα
= 0. (14)

For the Lagrangian L′, the derivatives are ∂L′/∂qγ = m(∂gαβ/∂qγ
η )qα

,ηqβ
,η and ∂L′/∂,τqγ =

mgαβqγ
,η, and Equation (14) take form of equations for four-velocity

gαβqβ
,ττ + Γαβγqβ

,τqγ
,τ = 0. (15)

This expression coincides with geodesic equations for a test particle. Multiplication of
Equation (15) by the inverse metric tensor yields

qα
,ττ + Γα

βγqβ
,τqγ

,τ = 0. (16)

Here, the Christoffel symbols are given by Γαβγ = 1
2 (gαβ,γ + gαγ,β − gγβ,α) and Γα

βγ =

gαµΓµβγ.

2.2.3. 3D-Trajectory

As known, if a Lagrangian is independent of some coordinate qν, then quantity
pν = ∂L/∂qν

,τ is an integral of motion. Lagrangian (12) depends neither on coordinates t
and φ, nor on proper time τ. Therefore, the angular momentum pφ = ∂L/∂φ,τ , the full
energy E = −∂L/∂t,τ , and a certain invariant Q = qν

,τ∂qν
,τ

L− L where ν = 0, 1, 2, 3, are
conserved. For Lagrangian (12), quantity Q = 0. Therefore, from the four Lagrange
equations, two correspond to the ignorable coordinates t and φ, giving conservation of full
energy E ≡ me and momentum pφ ≡ mj. These conservation laws produce the following
equations (see [16] for details):

φ,τ = − 4L
m∆

(
(x2 + ω2 cos2 θ)(ω2 j cot2 θ + x(−ωe + j(−1 + x) csc2 θ))

)
,

t,τ = − 4L
m∆

(
(x2 + ω2 cos2 θ)(ωjx + ω4e + 2ω2x2e + x4e−ω2(ω2 + (−1 + x)x)e sin2 θ)

)
,

(17)

where ∆ = (ω2 + (−1 + x)x)(ω2 + 2x2 + ω2 cos2 2θ), and L = −m (on the world-line).
Derivatives (17) turn into φ,τ ' j csc2 θ/x2 and t,τ ' e + e/x, for large x � 1.

The other two Lagrange equations—for x(τ) and θ(τ)—are

d
dτ

∂L
∂x,τ
− ∂L

∂x
= 0,

d
dτ

∂L
∂θ,τ
− ∂L

∂θ
= 0. (18)

These equations must incorporate Equation (17).

2.2.4. Trajectory in Equatorial Plane

For Equation (18), condition ∂L/∂θ,τ = Const is satisfied with θ(τ) = π/2. The meaning
is that a body with initial conditions θ,τ(0) = 0 and θ(0) = π/2, will stay on the “surface”
θ(τ) = π/2, always. Thus, derivative θ,τ(τ) = 0 for all τ.
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For the body moving on the surface θ = π/2, the condition of normalization of
four-velocity along the world-line is:

(1− x
x2 + ω2 cos2 θ

)(t,τ)
2 − 2ω

x
x2 + ω2 cos2 θ

sin2 θ (φ,τ)(t,τ)−
x2 + ω2 cos2 θ

x2 − x + ω2 (x,τ)
2−

−(x2 + ω2 cos2 θ)(θ,τ)
2 − (x2 + ω2)2 − (x2 − x + ω2)ω2 sin2 θ

x2 + ω2 cos2 θ
sin2 θ(φ,τ)

2 = 1,
(19)

i.e.,

(1− 1
x
)(t,τ)

2 +
−2ω

x
(φ,τ)(t,τ)−

x2

x2 − x + ω2 (x,τ)
2 − (x2 + ω2)2 − (x2 − x + ω2)ω2

x2 (φ,τ)
2 = 1 (20)

using θ,τ = 0 and θ = π/2, together with Equation (17) which in this case take form

φ,τ =
j(x− 1)−ωe

x(ω2 + (−1 + x)x)
, t,τ =

ωj + x3e + ω2(−1 + x)e
x(ω2 + (−1 + x)x)

. (21)

For a trajectory with zero velocity at the infinity, the dimensionless parameter e = 1. For
the first branch (“approaching the black hole”), the Lagrange equations for four-coordinates
x(τ), φ(τ), t(τ), can be rewritten using u(τ) = x−1(τ) as a parameter, in the following form:

x,τ = −
√

u− j2u2 + (ω + j)2u3, φ,τ =
u2(j−ωu− ju)

1− u + ω2u2 , t,τ =
1 + ωju3 + ω2u2(1 + u)

1− u + ω2u2 . (22)

The standard rule vα = gαβvβ permits the calculation of the covariant components.

3. Results

After some transformations, the basic equation for the trajectory of the test-body
u(φ) ≡ x−1(φ) can be written in the form

(u,φ)
2 = F(u) ≡ (1− u + ω2u2)2(−1 + u− (ω2 + j2))u2 + 2ωeju3 + j2u3 + e2(1 + ω2u2(1 + u))

(j(−1 + u) + ωeu)2 , (23)

where u,φ is the derivative du(φ)/dφ; e = E/m is the dimensionless energy (including the
rest-mass); and j = J/m is the dimensionless angular momentum.

3.1. Weak Shift

We suppose now that u� 1. By keeping only four first-leading terms when expanding
Equation (23), we obtain

(u,φ)
2 ' e2 − 1

j2
+ 2
(

1
2j2

+
ωe(e2 − 1)

j3

)
u− κ2u2 − 2α

3
u3 − β

2
u4. (24)

Here,

κ2 = 1− 2ωe3

j3
− 3ω2

j4
(j2 + e2)(e2 − 1), α = −3

2
− 3ωe3

j3
+ . . . , β = −4ωe3

j3
+ 4ω2 + . . . , (25)

where the terms of order > ω2 in α and β are omitted. The nonlinear equation for the
trajectory follows from Equation (24)

u,φφ + κ2u + αu2 + βu3 =

(
1

2j2
+

ωe(e2 − 1)
j3

)
. (26)
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In the linear approximation, when we neglect the terms ∼ u2 and ∼ u3, we obtain that

u(0)(φ) =
1

2j2κ2

(
(1 + 2

ω

j
e(e2 − 1))−

√
(1 + 2

ω

j
e(e2 − 1))2 + 4j2κ2(e2 − 1) cos κφ

)
. (27)

This expression shows that trajectories of particles moving in the vicinity of the
rotating, ω 6= 0, black hole, are no longer closed, and the position of periastron is changed:
∆φ = π/κ 6= π. It follows from Equation (27) that the smallness of u means that j > 1.
Obviously, for ω = 0, when κ = 1, we obtain the limit case: the classical expression for the
trajectory of a body moving in the vicinity of a Newtonian attractor as u(φ) ∼ (1− ε cos φ).

The solution of the non-linear Equation (26) for parabolic motion with e = 1 when the
last term ∼ u3 is neglected, is given by the expression

u(φ) =
1

2κ2 j2
(1− cos λφ) +

α

24κ6 j4
(−9 + 8 cos λφ + cos 2λφ) + . . . . (28)

Here,

κ ' 1− 2ω

j3
, λ ' κ +

α

2j2κ3 , α ' −3
2
− 3ω

j3
. (29)

3.2. Trajectory Distortions

To illustrate the impact of the black hole’s spin on a test-body’s trajectory, we solve
Equation (23) for several cases with varying parameters ω and j. From the start, it may be
noted that at great distances from the black hole, the relativistic impact on the trajectory
can be captured via small corrections to the classical Lagrangian. These are scenarios with
numerical values for the initial momentum j > 3. At smaller j, such as j < 3 (or x < 3 or
u < 1/3), the relativistic impact on the motion becomes significant. Furthermore, when
j < jcr ≡ 1 + (1 + 2ω)1/2, the traveling body eventually becomes captured by the black
hole. Conversely, when the body’s initial momentum j > jcr, the body manages to escape
the zone of the black hole’s influence.

The shapes of the test-body’s trajectory within the zone of significant black hole
influence (strong relativistic effects) may vary dramatically. Figure 1A illustrates the variety
and plots trajectories of a test-body with j = 2.5 (sufficient to escape in each case) for the
scenarios when the black hole’s spin and the test-body’s momentum are co-aligned (ω > 0,
magenta line), counter-aligned (ω < 0, brown line), and when the black hole does not spin
at all (ω = 0, blue line). As revealed, depending on the black hole’s spin, the trajectory may
twist significantly (as shown by the magenta line, ω > 0), or quasi-reverse (as shown by
the blue line, ω = 0), or simply curve (as shown by the brown line, ω < 0). When the black
hole’s spinning is co-aligned ω > 0 with the body’s angular momentum, the movement of
the body and the swirling of the time-space coincide. The essence of the effect may perhaps
be grasped by visualizing a boat sailing with an ocean current or against the current—the
boat’s trajectories relative to a distant observer would look quite different.

Particularly intriguing cases may occur when the initial angular momentum of the
traveling body falls within a “narrow” range (not-too-fast but not-too-slow, defined by the
system’s parameters; here j ∼ 2). For a non-spinning black hole (ω = 0), the body may
circle around the non-rotating black hole several times before departing towards infinity.

Figure 1B shows such trajectory’s details (recall that for a non-rotating black hole,
the event-horizon coincides with the static limit). The Dark-Blue-Dot (in the lower-right
quadrant of Figure 1B) corresponds to the minimal distance (periastron) from the “center”
of the black hole that is reached by the body. As the body passes through the periastron
(Dark-Blue-Dot), its radial velocity turns to zero. Prior to passing through the periastron,
the sign of the body’s radial velocity component is negative (the body is approaching); after
the passing, the sign is positive (the body is moving away). If the energy diagram were
drawn, the process would look as if the representative point was moving along the straight
line (of constant energy), reaching the energy barrier (corresponding to Dark-Blue-Dot in
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Figure 1B), reflecting from the barrier (passing trough the periastron), and moving in the
opposite direction along the level of constant energy. (A similar discussion and underlying
details can be found in [17].) This explains the gradual spiraling of the trajectory closer
towards the periastron (Dark-Blue-Dot) and the subsequent unwinding. Eventually, the
body departs the black hole’s vicinity and generally the zone of influence.

-10 10 20 30
X

-10

10

20

30

Y

(A) (B)

Figure 1. Trajectory distortions for an object traveling with initial angular momentum j in the vicinity of a black hole (BH)
with “rotation rapidity” ω: ω > 0 when BH spin and momentum j are co-aligned, BH spin is counter-clockwise; ω < 0
when BH spin and momentum j are counter-aligned, BH spin is clockwise. When ω = ±0.5, BH “radius” is 0.5 (in the
equatorial plane θ = π/2) and ergosphere “radius” (pink) is 1. (Left Panel (A)) Impact of BH spin direction ω is shown
for: j = 2.5, ω = −0.5 (brown); j = 2.5, ω = 0 (blue); j = 2.5, ω = 0.5 (magenta). (Right Panel (B)) Dark-blue-trajectory
(for ω = 0) illustrates temporary “capture onto quasi-circular orbit”: spiraling inward, passing through the periastron
(Dark-Blue-Dot), and spiraling outward.

3.3. Strong Shift

By comparing observational data (periastron shifts) for star trajectories near black
holes with theoretical curves for a range of spin-values ω, it may be possible to estimate
the actual black hole spin. Since relativistic effects are the strongest at periastron when the
orbit of a star (test-body) is not quasi-circular but elongated (quasi-parabolic), observations
of elongated orbits can be more revealing than data on quasi-circular orbits. Consequently,
in this section, we demonstrate how to calculate the shift of the periastron for a parabolic
trajectory (energy e = 1) and provide the results from our numerical simulations for a
sample of spin-values ω.

When a star begins its travel from infinity (where its radial inverse-coordinate u = 0)
and approaches a black hole along the incoming (upper) branch of the trajectory, the star’s
angular coordinate ψ(u), for each u, is derived (as a function of the radial coordinate
u ≡ x−1) from Equation (23) and has the form

φ(u) =
∫ u

0
dξ

√
(β− ξ)2

(1− ξ + ω2ξ2)
√

ξ
√
(uc(1− ∆)− ξ)(uc(1 + ∆)− ξ)

. (30)
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Here, uc is the value of u when solutions u1 and u2 merge (at the point j = jc where
jc = 1 +

√
1 + 2ω). Parameter β = j/(j + ω). Quantities uc(1− ∆) = u1 and uc(1 + ∆) =

u2 with ∆ =
√

1− 4j−2 − 8ωj−3 − 4ω2 j−4 are the solutions of equation

(1− u + ω2u2)2(−1 + u− (ω2 + j2))u2 + 2ωju3 + j2u3 + (1 + ω2u2(1 + u))
(j(−1 + u) + ωu)2 = 0. (31)

Solution u1 determines the periastron in which derivative (u,φ)p = 0.
Realization Domain: Not every combination of (j, u) is realizable. For example,

as mentioned earlier, when the test-body’s initial angular momentum is below jc = 1 +√
1 + 2ω, the body becomes captured by the black hole (its trajectory ends at the static

limit). So those test-bodies, which can eventually complete their trajectories, without being
captured, are described by the combinations (j, u) within a limited “realization” domain.
Such domain has two bounds: umin = 0 and umax = u1.

The (initial) bound, umin = 0, is obvious and reflects the fact that the test-body starts at
the infinity with some initial angular momentum j0 > 0. (Because Lagrangian is invariant
with respect to rotation, the test-body’s angular momentum is conserved, so momentum j0
remains constant as the test-body approaches the black hole along the incoming branch of
the parabolic trajectory with energy e = 1.)

The second (periastron) bound, umax(j0, ω), is more complex. Figure 2 plots several u-
curves composed of a solid part u1(j, ω) and a dashed part u2(j, ω)—merging at uc(jc(ω))—
but it is the curves’ lower branches (u1, solid lines) that serve as the second (periastron)
bounds umax(j0, ω). (The curves are plotted for the black hole spin-values ω, from the
left-most to the right-most: red ω = −0.5, ω = −0.45, ω = −0.25; black ω = 0; blue
ω = +0.45, ω = +0.5).

0 1 2 3 4 5
j

0.5

1.0

1.5

2.0

umax( j)

Figure 2. Not every combination of (j, u) is realizable. Trajectories are completed only when, for a
given initial angular momentum j0, values u are within the “domain of physical motion”: between
umin = 0 and umax = u1(ω, j0). Colored u-curves, composed of branches u1 (lower, solid) and u2

(upper, dashed), correspond to scenarios with BH spin-values (from the left-most to the right-most):
ω = −0.5 (red), ω = −0.45 (red), ω = −0.25 (red), ω = 0 (black), ω = +0.45 (blue), ω = +0.5
(blue). Horizontal line u = 1 marks the static limit (where metric tensor component g00 = 0). In this
(j, u)-space, the (corresponding to the test-body) state-point starts at the point (j = j0, u = 0) and
“moves” upward (along the vertical line j = j0) until reaching (j0, u1(j0, ωBH))—on the lower branch
of the u-curve corresponding to the encountered black hole’s spin ωBH—which corresponds to the
trajectory’s periastron in the physical space, then the body “reflects”, and returns downward (along
the vertical line j = j0) to point (j = j0, u = 0) which is now the exiting value at the infinity.



Universe 2021, 7, 364 10 of 15

For j0 > jc(ω)—which is the case when the test-body with initial momentum j0
eventually escapes the black hole with spin ω—in the (j, u)-space, the (corresponding
to the test-body) state-point starts at the point (j0, 0) and “moves” upward (along the
vertical line j = j0) until reaching the lower branch of one of the plotted u-curves (the
one corresponding to the encountered black hole’s spin ωBH). This point u1(j0, ωBH)
corresponds to the test-body’s trajectory’s periastron in the physical space. After the
periastron, the test-body’s physical movement proceeds along the outbound branch of its
physical trajectory, but in the (j, u)-space, after “reflecting” at the periastron-representing
state-point u1(j0, ωBH), the test-body-representing state-point follows the vertical line
j = j0 downward towards u = 0 (now it is the exiting value at the infinity).

For the cases when the black hole captures the test-body and the body ends up
falling onto the static limit (which happens when test-body’s initial angular momentum
j0 < jc(ω)), in the (j, u)-space the test-body-representing state-point starts at the point
(j0, 0) and “moves” upward (along the vertical line j = j0) until the horizontal line u = 1
(the static limit, above which—within the ergozone—the metric-tensor component g00
becomes negative).

Periastron Coordinates: The angular coordinate for periastron when j > jc (or for the
body when it falls onto the static limit when j < jc) is defined by the integral

Ψ(j) =
∫ 1

0
dξ
( √

(β− ξ)2H(j− jc)H(u1 − ξ)

(1− ξ + ω2ξ2)
√

ξ
√
(uc(1− ∆)− ξ)(uc(1 + ∆)− ξ)

+√
(β− ξ)2H(jc − j)H(1− ξ)

(1− ξ + ω2ξ2)
√

ξ
√
(uc(1− ∆)− ξ)(uc(1 + ∆)− ξ)

)
(32)

where, for simplicity, the Heaviside function H(z) is used: H(z) = 1 when z > 0 and
H(z) = 0 when z < 0, with the half-maximum convention H(0) = 1/2. We remind readers
that in the region j < jc, quantity ∆ is purely imaginary, and in the region j > jc, ∆ is purely
real and positive. The integral Equation (32) cannot be expressed in simple analytical
functions. It can be either calculated numerically, or its asymptotics may be considered.

For large j, Equation (32) gives the following estimate

Ψ(j) ' π +
3π

4j2
+

πω

j3
+ . . . , (33)

where only the leading terms are retained. The first term corresponds to classical Newtonian
mechanics—the angular coordinate for the periastron is π. The second term gives the shift
of the periastron due to the relativistic effect in the Schwarzschild metric. This term is
always positive. The third term takes into account the black hole’s spin and can have any
sign. At j� 1, even for j ∼ 3, this correction term is small when compared to the previous
one, since for the Kerr metrics |ω| < 1/2, always.

Figure 3 shows the angular coordinate for periastron Ψp(j) as a function of test-
body’s momentum j for three black hole spin-values: ω = +1/3 (blue), ω = 0 (black),
and ω = −1/3 (red).

As Figure 3 reveals, for large values of initial angular momentum, j > 3, the relativistic
effects are indeed relatively small, placing the periastron slightly above π. However, the
effect of the black hole’s spin ω becomes rather significant for j < 3. Notably, as shown
in Figure 4, the effect is strongest for j near jc(ω). The logarithmic scale in the right panel
of Figure 4 reveals that Ψ-function is not some power-function but is more complex. The
left panel shows the case when the black hole’s spin is counter-aligned (ω = −1/3) with
the test-body’s angular momentum j. The right panel shows the case when the spin is
co-aligned (ω = +1/3) with the momentum.
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Figure 3. Periastron coordinate Ψp(j) as a function of the moment j for black hole spin-values ω:
blue for ω = 1/3, black for ω = 0, and red for ω = −1/3.
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Figure 4. (Left Panel) Numerical estimates of periastron coordinate Ψ(j) for ω = − 1
3 . (Right Panel) Numerical estimates

of log Ψ(j) for ω = + 1
3 .

In the vicinity of jc(ω), integral Ψ(j, ω)diverges. By expressing momentum j as j = jc(1+ ν),
where jc = 1 +

√
1 + 2ω, and retaining only the leading terms, we find expression for

Ψ(j, ω) in the vicinity of jc:

Ψp(j, ω) ' λ1 + λ2 ln(
1√
|ν|

) + . . . . (34)

Here, λ1 and λ2 (which depend on ω) are of order unity. For example, in the particular case
of ω = +1/3, the values of the parameters are: λ1 = 1.2701 and λ2 = 1.2548. For ν ∼ 10−6,
the value of the angular coordinate of the periastron turns out to be Ψp ' 9.94� π.

The total number, N, of rotations of the compact star around the black hole—seen
as if “captured onto a quasi-circular orbit” by a remote observer—is then estimated as
N = Ψp/π. (Here N/2 of rotations occur before the body reaches the periastron, and N/2
of rotations occur after passing through the periastron.)

Finally, Figure 5 compares the locations and shapes of Ψ(j, ω)-curves when black hole
spin is counter-aligned (ω = −1/3, red), absent (ω = 0, black), or co-aligned (ω = +1/3,
blue) with the test-body momentum j. Figure 6 reveals the nuances of the differences in the
shapes of Ψ-curves when the test-body’s momentum-value happens to be in the vicinity of
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jc(ω) (i.e., near ν = 0). For comparison, the Newtonian periastron ΨN = π is plotted as
the horizontal dashed line.

1.4 1.6 1.8 2.0 2.2 2.4
j

5

10

15

Ψ( j)

Figure 5. Comparison of Ψ(j, ω) for black hole spin-values ω = − 1
3 (red), ω = 0 (black), and ω = + 1

3
(blue). Horizontal dashed line shows the Newtonian periastron ΨN = π.
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Figure 6. Comparison of Ψ(ν, ω), where ν ≡ (j− jc)/jc and jc = 1 +
√

1 + 2ω, for black hole spin-
values ω = − 1

3 (red), ω = − 1
4 (red dashed), ω = 0 (black), and ω = + 1

3 (blue). Horizontal dashed
line show the Newtonian periastron ΨN = π.

4. Conclusions

Context and Challenges: Measurement of the spin of certain black holes—such as,
for example, the supermassive black hole closest to us, Sgr A*, at the center of our own
Galaxy—may be challenging for a number of reasons. The geometry and temperature of
their accretion disks may not produce X-ray reflection features or the thermal blackbody
radiation suitable for analyses. When the black hole is single, no systematic gravitational
waves are expected. Interpretations of the results from imaging with the Even Horizon
Telescope—capable of detecting the asymmetry in brightness between the approaching and
receding sides of the disk, which are strongly spin-dependent—may face model-dependent
challenges due to time and space variability of the accretion disk and the foreground
distribution of galactic matter that acts as a varying scattering screen. However, when
it is possible to observe precession of highly-eccentric orbits of individual stars closely
approaching the black hole, then the BH spin may be estimated. Over the past several
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decades, the existing—and continuously improving techniques—have been permitting
such observations of individual bright stars traveling near Sgr A*. The relativistic shift
of trajectory periastra—from which the BH spin value is deduced—would be even more
pronounced for parabolic or hyperbolic stellar flybys.

Results: In this paper, we provide (1) analytical expressions for the periastron coor-
dinate (Ψ) for an elongated (parabolic/hyperbolic at the limit) trajectory; (2) numerical
simulations and qualitative examinations of several illustrative scenarios; (3) discussion of
the theoretical method permitting such comprehensive consideration; (4) illumination of
the importance of symmetries of the Lagrangian and their contribution to construction of
solutions; (5) illustration of the possibility of arising resonance regimes when test-bodies
move in the vicinity of black holes. In particular, we find the relativistic shift of the peri-
astron (relative to the Newtonian position, Ψp = π), for varying rates of the black hole’s
rotation ω: no-spin (ω = 0, for comparison) and when the black hole’s spin is co-aligned
(ω > 0) or counter-aligned (ω < 0) with the angular momentum (j) of the traveling star.
It is shown that stars (modeled here as non-destructible compact test-bodies with zero
initial kinetic energy at infinity) with the initial values of angular momentum (j0) that
are less than certain critical value (jc) (which depends on ω, the spin of the black hole,
as jc = 1 +

√
1 + 2ω) become captured by the black hole, while the stars with j0 > jc

have their trajectories distorted by the black hole in various ways, but eventually return
to infinity.

“Capture” onto Quasi-Circular Orbit: If the initial angular momentum j0 happened
to be less than the critical value jc(ω) for the spinning black hole, the black hole will
capture the star—the star will spiral and inevitably fall onto the static limit. If j0 > jc(ω),
the star’s trajectory will curve around the black hole and the star will depart towards
infinity. However, if the initial angular momentum j0 happened to be close, but slightly
more than the critical value jc(ω) for the spinning black hole, an interesting effect arises.
After approaching the black hole, the star starts rotating around the black hole, gradually
spiraling towards the periastron. It may take a great (finite) number of revolutions for
the star to eventually reach and pass through the periastron point, at which moment that
trajectory starts “unwinding” just as gradually. For the duration of this process, for an
observer, the star would appear as if on a “circular” orbit close to the black hole, with
radius u−1

c = 2(jc + ω)/jc. This radius can be observationally determined. Due to energy
conservation, however, the star will eventually continue its journey along the outgoing
branch of its trajectory, leaving the vicinity of the black hole, and exiting towards the infinity.
Mathematically, the value for periastron coordinate Ψp becomes very large (Figure 4). At
the limit j → jc, the angular coordinate of periastron Ψp tends to infinity according to
logarithmic law (Equation (34)).

Practical Use: The obtained results may be of use in the following practical ways:
(1) Since these expressions are derived from the first principles for all orbits/trajectory

types and for all black hole spins, the observations of periastron coordinates Ψ and mea-
surements of angular momenta j can provide sufficiently accurate estimates for black hole
spins ω:

Ψ(j, ω) ' π +
3π

4j2
+

πω

j3
+ . . .

Naturally, this formula is valid for j > jc. For j closer to jc, the analytical expres-
sion for Ψ involves cumbersome hyper-geometrical functions, and numerically estimated
graphic representations (as illustrated in Figures 3, 5 and 6) offer easier visualization of
its tendencies.

(2) Of particular interest may be the highly elongated orbits. The stars with such orbits
spend the shortest amount of time in the vicinity of black holes and may be detected within
much shorter observational timeframes than those required for quasi-circular orbits.

(3) The more elongated the orbit, the “sharper” the turn at the periastron, the greater
the acceleration experienced by the traveling body. When acceleration is the highest,
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the (destroyed into charged “fragments”) body emits the maximum amount of electromag-
netic radiation. Greater brightness makes it easier to detect astronomically and interpret
theoretically. (synchrotron or bremsstrahlung radiation are the examples of this effect for
charged particles.) Thus, elongated orbits offer the most promise for observations.

Novel Perspectives: Recently, the quest for measuring spins of supermassive black
holes at the centers of galaxies has received an additional impetus. In the set of publica-
tions [20–22], we advanced and supported the hypothesis that an additional nucleogenetic
process—fission-driven rather than nucleosynthesis-driven—contributes (and has histor-
ically contributed) to chemical enrichment of galaxies. This process depends (to a large
extent) on the crushing and catapulting power of the central galactic black holes. More
massive black holes with greater spins can catapult pieces of crushed neutron stars further,
with greater speeds. Thus, the resulting distribution of the fission-driven nuclei-production
relative to the nucleosynthesis-driven nuclei-production would differ between galaxies.
See Ref. [20] for details. In our own galaxy, this fission-driven mechanism has impacted
chemical compositions of stars, compositions and properties of exoplanets, structures of
exoplanetary systems, and (not less importantly) the composition and structure of our
own solar system (see Ref. [21]). To properly analyze the differences between chemical
enrichments of galaxies, and to better understand the nucleogenetic signature of the fission-
driven enrichment mechanism, accurate estimates of the masses and spins of central black
holes are required.
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