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Abstract: In this paper, we study the properties of gravitational waves in the scalar–tensor–vector
gravity theory. The polarizations of the gravitational waves are investigated by analyzing the relative
motion of the test particles. It is found that the interaction between the matter and vector field in
the theory leads to two additional transverse polarization modes. By making use of the polarization
content, the stress-energy pseudo-tensor is calculated by employing the perturbed equation method.
Additionally, the relaxed field equation for the modified gravity in question is derived by using the
Landau–Lifshitz formalism suitable to systems with non-negligible self-gravity.

Keywords: gravitational waves; polarizations; stress-energy pseudo-tensor

1. Introduction

The recent observation of gravitational waves (GWs) by the LIGO and Virgo Scientific
Collaboration opens up a new avenue to explore gravitational physics from an entirely
new perspective [1–7]. As a matter of fact, the direct detection of gravitational waves is
an extremely elaborated process due to the smallness of the effect that the waves produce.
In the case of the resonant mass antennas and interferometers, that most GW detectors
employ, precise measurements critically rely on the rate of change of the GW phase and
frequency. The latter, in turn, may depend on the specific theory of gravity. To be specific, a
particular choice of the theory of gravity entails subtlety and how the relevant information
is separated from the noise. Subsequently, it affects how the physical content is interpreted.

Moreover, comparing to the plus and cross polarizations in Einstein’s General Relativ-
ity, alternative metric theories of gravity usually possess more polarizations associated with
additional degrees of freedom [8–15]. Therefore, the measurement of distinct polarization
modes of GWs can serve to discriminate between different gravitational theories [16–18].
If a vector or scalar polarization component is observed in GWs, it could provide strong
evidence for modified gravity, as General Relativity only predicts tensorial polarizations.
In particular, the event GW170814 was, for the first time, utilized to extract the polarization
character of the GWs [4]. The results are consistent with Einstein’s gravity as the analysis
indicated that the pure tensor polarizations are favored over the scenario of pure vector or
scalar polarizations. Nonetheless, the properties of the modified gravity regarding GWs
have recently become a topic of increasing interest [19–23]. On the theoretical side, several
methods can be employed to analyze the polarization modes of gravity theory. Among
others, one commonly employed approach is to study the polarization of weak, plane,
and null GWs by using Newman-Penrose (NP) formalism [8,12,24–28]. Another method
consists of reducing the metric into irreducible components and rewriting the linearized
gravitational equations into the independent scalar, vector, and tensorial parts [29,30]. Sub-
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sequently, the latter can be classified into radiative and non-radiative degrees of freedom.
A third method is to investigate the relative motion of neighboring particles in terms of the
geodesic deviation equation in General Relativity [31]. In alternative theories, however,
test particles do not necessarily move along geodesics. Moreover, the relative acceleration
of neighboring particles may also deviate from what is expected from General Relativity.
Subsequently, the information on polarizations can be understood by placing test particles
on a sphere around the observer, and studying how the sphere deforms in time [12,32,33].
This work will employ the third method to explore the polarization content.

The energy and momentum propagation is also an intriguing aspect in the study of
GWs. From the experimental viewpoint, the extraction of GW from the noise depends
on accurate modeling of the rate of change of the energy of a gravitational system. The-
oretically, according to the balance law, the latter is identical to what emitted from a
gravitational system via the GWs in terms of all possible degrees of freedom. The latter can
be obtained via the GW stress-energy pseudo tensor (SET) [31,34,35]. With the information
of polarizations for GWs at hand, it is possible to find the rate of energy by enumerating all
propagating degrees of freedom. In literature, a variety of approaches have been developed
and discussed [36–38]. For a review, see Ref. [39]. The traditional perturbed field equation
method consists of obtaining the equation of motion of small deviations of the metric from
a generic background. In particular, the equation of motion of the second-order metric
perturbations furnishes the GW SET by carrying out the short-wavelength average [34,35].

In practice, the linearized theory is typically adopted to handle the generation of GW
when the source’s self-gravity has a negligible influence on its motions. However, particular
attention is required when the above condition does not hold. To be specific, for systems
whose dynamics are dominated by self-gravity, even for the case of weak gravity, the
linearized theory is no longer applicable. This was first pointed out by Eddington. Typical
examples of such scenarios are binary star systems or those with nonlinear GW memory
effect [40–43]. In this case, one needs to elaborate on a specific approach for the system of
the weak field but with non-negligible self-gravity [29,44]. In General Relativity, such a
formalism of the Einstein equations is known as “relaxed Einstein equations”. Therefore,
in the present study, the resultant equation would be referred to as “relaxed gravitational
equation”. In Ref. [45], the author developed such a formalism for the Brans-Dicke theory.

Scalar–Tensor–Vector gravity (STVG) is an alternative metric theory that is character-
ized by the exchange of spin-zero and spin-one bosons. As a modified gravitational (MOG)
theory [46], it has been successfully applied to many contexts. The latter include solar
system observations [47], the rotation curves of galaxies [48,49], the dynamics of galactic
clusters [50,51], description of the growth of structure, the matter power spectrum, as well
as the cosmic microwave background (CMB) acoustical power spectrum data [52].

In Refs. [48,50], Moffat et al. investigated the weak field approximation and the con-
straints associated with the observed galaxy rotation curves and Chandra X-ray Clusters.
Moreover, in Ref. [53], Moffat et al. studied the linearized field equations, the metric tensor
quadrupole moment power, as well as an in-spiraling binary system in the framework
of MOG. The author performed a fit for GW150914 and GW151226 with small binary
black hole masses consistent with the bound extracted from the X-ray binary observa-
tions, namely, M . 10M⊙. In Ref. [54], the authors speculated the existence of three
gravitons in the STVG theory, which propagate at the speed of light. It was shown that
such results are in accordance with observations of the events GW170817/GRB170817A.
Furthermore, the MOG was applied to the gravitational wave event GW190814 in Ref. [55].
The modified Tolman-Oppenheimer-Volkoff equation may imply a neutron star with mass
M = 2.6 ∼ 2.7M⊙, which allows for the binary secondary component to be identified
as a heavy neutron star. More recently, in Ref. [56], the theory is adopted for the event
GW190521. The authors concluded that the mass of the black hole binary components can
be less significant for a standard stellar mass collapse channel to describe the formation of
the black hole binary system.
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Therefore, it is intriguing to extend further the study of the STVG theory, which have,
by and large, explored regarding weak field applications, to the context of GW. The present
study involves an attempt to investigate various aspects of the GWs in STVG gravity. In
the near future, aLIGO is expected to be able to discriminate distinct polarizations of the
planar GWs. Moreover, other detectors, such as pulsar timing arrays, are also capable of
distinguishing the polarization content of GWs [57]. As a result, distinct polarization modes
presented in MOG could be directly imposed as a constraint for the theory. In this regard,
we explore the polarization modes of weak plane GWs in the STVG theory by the relative
motion of test particles in Fermi normal coordinates. Also, the calculations of the SET
are carried out by employing both the perturbed equation method and Landau–Lifshitz
formalism. Besides the properties of the plane GW, we are also interested in the “relaxed
gravitational equation” which could be used to describe systems with with non-negligible
self-gravity. Such results may serve to futher study of the binary star systems or those with
non-linear GW memory effect [40–43], which subsequently build up the foundation for
future investigations.

The rest of the paper is organized as follows. In Section 2, we present the formalism
of the STVG. The linearized field equations regarding small perturbations in the STVG
theory is derived in Section 3. Section 4 is dedicated to discussing the polarization of the
perturbations by investigating the relative motion of neighboring particles in Fermi normal
coordinates. The calculations of the SET is carried out in Sections 5 and 6. In Section 5, the
traditional perturbed field equations method is employed to obtain the SET. The latter is
compared against that obtained by utilizing the Landau–Lifshitz formulation in Section 6.
Also, the relaxed field equation is obtained and discussed. Concluding remarks are given in
the last section. Throughout this work, we make use of the metric signature (−,+,+,+).

2. The STVG Theory

The generic form of the STVG action is given by [46,48,50]:

S = SG + Sφ + SS + SM. (1)

It is composed of degrees of freedom of the metric gµν with the cosmological constant
Λ, a vector field φµ and dynamical scalar fields. The latter consists of the gravitational
coupling strength G and the mass of the vector field µ. To be specific,

SG =
1

16π

∫
d4x
√
−g

1
G
(R + 2Λ), (2)

Sφ =
∫

d4x
√
−g
[
−1

4
BµνBµν +

1
2

µ2φµφµ + Vφ

]
, (3)

SS =
∫

d4x
√
−g
[

1
G3

(
1
2

gµν∂µG∂νG−VG

)
+

1
µ2G

(
1
2

gµν∂µµ∂νµ−Vµ

)]
, (4)

where Bµν = ∂µφν − ∂νφµ. The self-potentials Vφ, VG, and Vµ are associated with the vector
field and the scalar fields.

The field equations are given by,

Xµν = Gµν −Λgµν + Qµν − 8πGTµν = 8πGTM
µν, (5)

∇νBµν +
∂Vφ

∂φµ = 0, (6)

�G = K, (7)

�µ = L, (8)
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where

Tµν = Tφ
µν + TG

µν + Tµ
µν, (9)

Tφ
µν = − 1

4π

[
Bα

µBνα − gµν(
1
4

BραBρα + Vφ)

]
, (10)

TG
µν = − 1

4πG3 (G;µG;ν − 1
2

gµνG;αG;α), (11)

Tµ
µν = − 1

4πGµ2 (µ;µµ;ν −
1
2

gµνµ;αµ;α), (12)

Qµν =
2

G2 (G
;αG;αgµν − G;µG;ν)−

1
G
(G;α

;α gµν − G;µ;ν), (13)

K =
3
G
(

1
2

G;µG;µ + VG)−
G
µ2 (

1
2

µ;µµ;µ −Vµ)−
∂VG
∂G
− G

16π
R, (14)

L =
1
G

G;µµ;µ +
µ;µG;µ

G
− Gµ3φµφµ +

2
µ

Vµ −
∂Vµ

∂µ
. (15)

Here the Einstein tensor Gµν = Rµν − 1
2 Rgµν. Tφ

µν, TG
µν, and Tµ

µν are the energy-
momentum tensors for the fields φµ, G, and µ, respectively. TM

µν represents the energy-
momentum tensor of matter fields, the semicolon “;” denotes the covariant derivative
compatible with the metric gµν. We note that Qµν governs the boundary contribution
arising from the presence of the coupling of the scalar field G and the Ricci scalar. In the
present study, both the cosmological constant Λ and the energy-momentum tensor TM

µν are
taken to be zero as we are only interested in the GWs in the flat vacuum spacetime. For
simplicity, one also assumes that self-interaction potentials Vφ, VG, and Vµ vanish in the
following discussions.

3. Linearized Field Equations

In this section, we derive the equations of motion of small perturbations under the
weak field approximation. Following the strategy presented in Refs. [48,50], one perturbs
the metric around the Minkowski spacetime ηµν to the first order

gµν = ηµν + h(1)µν , (16)

and similarly expands the scalar and vector fields, namely

G = G(0) + G(1), (17)

µ = µ(0) + µ(1), (18)

φµ = φ
(0)
µ + φ

(1)
µ . (19)

In the above equations, the superscript “(0)” indicates a zeroth order contribution,
while “(1)” denotes the first-order perturbations. Regarding the flat spacetime background,
G(0) and µ(0) are constants in time and φ

(0)
µ vanishes. As a standard practice, linearized

tensors are raised or lowered by the Minkowski metric ηµν.
Then, one linearizes Equation (5) and introduces the notation

hµν = h(1)µν −
1
2

h(1)ηµν + ψηµν, (20)

where one has rewritten the scalar perturbation as ψ = G(1)/G(0). Here, for linear pertur-
bations, the perturbation of the metric hµν and the scalar field G are of the first-order (or
higher). While those of the scalar field µ and vector field φ are also of the first-order, they
only present themselves in the form of the second-order (or higher) terms, such as (µ(1))2

and φ
(1)
µ φ

(1)
ν . As a result, to the lowest order that we consider here, effectively the fields
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h and G(1) do not couple to µ(1) and φ
(1)
µ , and subsequently the trace-reversed tensor h̄µν

only involves the scalar ψ.
It is straightforward to see that Equation (20) implies

h(1)µν = hµν −
1
2

hηµν + ψηµν, (21)

where h(1) and h are the traces of h(1)µν and hµν, respectively.

Subsequently, by making use of Equation (20), the equation of motion for h(1)µν can be
rewritten as

h
,γ

αβ,γ + ηαβh
,γδ

γδ − h
,αγ

βγ + h
,βγ

αγ = 0. (22)

where the comma “,” denotes the ordinary derivative with respect to the metric ηµν. We
observe that Equation (22) possesses the same form as in General Relativity. Therefore, one
can similarly impose the Lorenz gauge ∂µhµν = 0 , and Equation (22) is thus simplified to

h
,γ

αβ,γ = 0. (23)

It is also noted that the Lorenz condition does not entirely fix the gauge freedom, one
can utilize the residual symmetry to require h = 0. This is called the transverse-traceless
gauge, or TT gauge.

The plane wave solution of Equation (23) can be expressed as

hαβ = Cαβ exp(iqµxµ) + c.c., (24)

where c.c. stands for the complex conjugation, Cµν, a constant matrix, is the amplitude
which satisfies the transverse-traceless conditions qµCµν = 0 and ηµνCµν = 0, qµ is the
wave-vector with ηµνqµqν = 0 .

For the vector field φ(1)µ, the linearized equation of Equation (6) gives

φ
(1)µ,ν

,ν − φ
(1)ν

,µ,ν − (µ(0))2φ(1)µ = 0. (25)

According to the discussions presented in Ref. [54], the mass of vector field is approx-
imately 2.8× 10−28 eV. Since it is of the same order of the experimental bound for the
photon mass, we will ignore the mass of the vector field hereafter. By imposing the Lorenz
gauge φ

(1)µ
,µ = 0, the resultant equation governing the vector perturbation reads

φ
(1)µ,ν

,ν = 0. (26)

The solution of the above equation takes the form

φ(1)µ = Aµ exp(ipνxν) + c.c., (27)

where pν is the wave number satisfying ηµν pµ pν = −(µ(0))2 ≈ 0.
For the perturbations of scalar fields G(1) and µ(1), the equations of motion are given by

ψ,µ
,µ = 0, (28)

µ
(1),ν

,ν = 0. (29)

The plane wave solution to Equation (28) are

ψ = Aψ exp(ikµxµ) + c.c., (30)

µ(1) = Aµ exp(ik̃νxν) + c.c., (31)
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where Aψ and Aµ are the amplitudes, while kµ and k̃ν represent the wave-vcectors. From
Equations (23), (26), and (28), one also concludes that the transverse-traceless part h

µν
,

vector perturbation φ(1)µ, and scalar perturbation ψ propogate at the speed of light [54].

4. The Relative Motion of Neighboring Particles

In this section, we set out to determine the relative motion of neighboring particles in
Fermi normal coordinates. These discussions regarding the dynamics of a test particle give
rise to the polarization of the GWs in STVG.

Let us start by writing down the action of a point-like particle [46,58] in STVG,

S =
∫
(−m−ωq5φµuµ)dτ (32)

where the integral is along the worldline of the test particle. Here ω is a dimensionless
coupling constant, q5 represents the “fifth force” charge of the test particle. It is related to
the inertial mass of the particle, namely, q5 = κm, where κ is a constant. uµ is the 4−velocity
of the test particle. By varying the action, one obtains the equation of motion of a test
particle where a force is exerted on the right-hand side of the equation [46,59]

aµ =
d2xµ

dτ2 + Γµ
αβ

dxα

dτ

dxβ

dτ
= ωκBµ

α
dxα

dτ
, (33)

where aµ is interpreted as the four-acceleration of the test particle. By making use of the
antisymmetric property of Bµν, it is easy to see that aµ satisfies uµaµ = 0. However, since
the four-acceleration aµ is finite, the test particle does not free-fall along a geodesic.

By Equation (33), one could investigate the relative displacement of the neighboring
particles. Consider an observer whose motion is described by the worldline σ0(τ), where
τ is the proper length of the worldline. Let us use uµ and aµ to indicate his four-velocity
and four-acceleration, respectively. Moreover, let us introduce a spatial displacement of a
neighboring particle with respect to the observer, denoted by Sα. The resultant equation for
the relative four-acceleration of the test particles to the observer, aµ

rel , is found to be [32,33]

aµ
rel = −R µ

ναβ uνSαuβ + Sαaµ
;α, (34)

where uµ = ( ∂
∂τ )

µ is the tangent vector of the trajectory of the test particle, chosen to be
identical to that of the observer.

To study the relative motion of neighboring particles in the proper frame of reference
of the observer [31], one resorts to the Fermi normal coordinates of the latter associted
with the worldline σ0(τ). Let us assume that the observer σ0(τ) carries an orthonormal
tetrad {(e0̂)

a = ua, (e1̂)
a, (e2̂)

a, (e3̂)
a}. The latter satisfies the orthonormality condition

gab(eµ̂)
a(eν̂)

a = ηµ̂ν̂. While the tetrad is Fermi-Walker transported along the worldline of
the observer σ0(τ), the line element near the observer’s worldline reads [31]

ds2 = −(1 + 2a ĵx
ĵ)dτ2 + δĵk̂dx ĵdxk̂ + O(|x ĵ|2), (35)

where the indexes ĵ, k̂ = 1, 2, 3. According to Equation (34), the relative acceleration follows

a ĵ
rel = −R ĵ

0̂k̂0̂
Sk̂ + Sk̂a ĵ

;k̂
(36)

In the proper reference frame of the observer σ0(τ), the non-vanishing components of
the Christoffel connection are

Γ0̂
0̂ ĵ = Γ0̂

ĵ0̂ = Γ ĵ
0̂0̂

= a ĵ. (37)
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Therefore, the relative acceleration can be expanded as

a ĵ
rel = uµ̂∇ν̂(uν̂∇ν̂S ĵ) =

d2S ĵ

dτ2 + a ĵak̂Sk̂. (38)

By further combining Equation (36) with Equation (38), one finds [60]

d2S ĵ

dτ2 = −R ĵ
0̂k̂0̂

Sk̂ + Sk̂a ĵ
;k̂
− a ĵak̂Sk̂. (39)

Up to the linear order in perturbation, Equation (39) can be simplified to

d2S ĵ

dt2 = −R ĵ
0̂k̂0̂

Sk̂ + Sk̂∂k̂a ĵ = T ĵ
k̂

Sk̂, (40)

where the matrix T ĵ
k̂
= −R ĵ

0̂k̂0̂
+ ∂k̂a ĵ . Following the discussions of Ref. [33], to linear order

the components of T ĵ
k̂

in Fermi normal coordinates are equal to their counterparts in the
TT coordinates, namely,

T ĵ
k̂
≈ T j

k = −R j
0k0 + aj

,k, (41)

where aj = ωκB j
0 .

For a plane wave propagating along the z-axis, associated with the solution of the weak
field in TT coordinates Equations (24) and (30), one has h(1)µν = hµν(t− z)− ψ(t− z)ηµν.
As expected, hµν induces the “+” and “×” polarizations, and the massless scalar field is
related to the breathing mode [12,61].

Now let us investigate the relative motion of neighboring particles caused by the
vector field φµ. For simplicity, we take hµν = 0 and ψ = 0. Concerning the solution of
φ(1)µ in TT gauge Equation (27), we write it down as φ(1)µ = Aµ

φ cos(kφt− kφz). Here, the

amplitudes Aµ
φ = {A3, A1, A2, A3} are defined in Lorenz gauge. Also, the matrix aj

,k reads0 0 −A1k2
φ cos(kφt− kφz)

0 0 −A2k2
φ cos(kφt− kφz)

0 0 0

.

Putting all pieces together, it is straightforward to show that the system of equations
for the relative motion can be simplified to

δ̈x + ωκA1k2
φ cos(kφt− kφz)δz = 0, (42)

δ̈y + ωκA2k2
φ cos(kφt− kφz)δz = 0, (43)

δ̈z = 0, (44)

where the dotted “.” means the derivative with respect to t, and A1 and A2 are the
components of the amplitude of plane wave solution φ(1). Due to Equation (44), if the
z-components of the initial relative velocity and acceleration are zero, then the deviation δz
will remain unchanged, thus labeled by δz0. The solutions to Equation (42) are

δx = δx0 + ωκA1k2
φδz0[cos(kφt− kφz)− cos(kφt0 − kφz)],

δy = δy0 + ωκA2k2
φδz0[cos(kφt− kφz)− cos(kφt0 − kφz)],

δz = δz0,

where δx0(x, y, z), δy0(x, y, z), and δz0(x, y, z) are the components of the initial relative
displacement. The above solution indicates that there exist two transverse oscillation
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modes induced by the vector field. We depict in Figure 1 how a sphere is distorted during
a full period of oscillation as the GWs of x− z transverse mode passes by. It is noted that
the sphere remain unchanged when projected onto the z− y plane. The distortion of a
sphere excited by the y− z transverse mode behaves similarly.

Figure 1. The distortions of a sphere during a full oscillation period due to the presence of the x− z transverse mode viewed
from different perspectives. From top to bottom, the three rows correspond the distortion projected onto the x− y, x− z,
and z− y planes, respectively. From left to right, the columns represent the results at the instants 0, 1/4, 1/2, 3/4, 1 of an
oscillation period.

To conclude, there are a total of five polarization modes. Two transverse modes and
one breathing mode are induced by the metric tensor, namely, the TT part and the trace
part excited by the scalar field. Another two transverse modes are associated with the
vector field. The results on the polarization in this section are in agreement with those
discussed in Ref. [54].

5. The Stress-Energy Pseudo-Tensor

In this section, we evaluate the GW SET by using the perturbed field equation method,
which was first developed in general relativity by Isaacson [34,35]. We first expand the
fields to the second order as follows

gµν = ηµν + h(1)µν + h(2)µν , (45)

φµ = φ(1)µ + φ(2)µ, (46)

G = G(0) + G(1) + G(2), (47)

µ = µ(0) + µ(1) + µ(2), (48)

where ηµν is the Minkowski metric. The superscript “(n) = (1), (2)” denotes the order of

the perturbation. For instance, h(1)µν and h(2)µν are the first and second-order perturbation of
the metric, respectively. By substituting Equation (45), one may systematically derive the
linearized equation order by order. In fact, the equations of the first order are precisely
Equations (23), (26), and (28), as we have obtained before.
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Now, by expanding Equation (5) to the second-order, one obtains the expressions for
the effective SET TGW,e f f

µν as follows.

Gαβ(h(2)) = 8πG(0)(TGW,e f f
αβ + tµ

αβ),

8πGµν(h(2)) = −
〈

Xµν

[
(h(1))2, (φ(1))2, (G(1))2, h(1)G(1), G(2)

]〉
, (49)

where tµ
αβ denotes the energy-momentum tensor of the vector field perturbation µ(1), the

angled-brackets stand for short-wavelength averaging [34,35]. As discussed in the previous
section, the GWs in STVG theory are propagated in the form of the transverse-traceless
tensor hTT

µν of the metric, G(1) of the scalar, and φ(1)µ of the vector field perturbations.
Since the resultant SET is averaged, one may utilize the integration by parts to elimi-

nate the boundary terms. Furthermore, by plugging in the equation of motion of the first
order perturbations, Equations (23), (26), and (28), while imposing the transverse-traceless
gauge for hµν, one finds

32πG(0)TGW,e f f
µν =

〈
h

TT
γδ,µh

γδ
TT,ν + (32π − 6)ψ,µψ,ν + 32πG(0)φ

(1)γ
,µφ

(1)
γ,ν

〉
(50)

In particular, if the vector (φµ) and scalar (µ) fields vanish, it is readily to show that
the action Equation (2) falls back to the Brans-Dicke theory by redefining φ̃ = 1/G. Also,
the result given by Equation (50) is consistent with the GW SET of Brans-Dicke theory
in [39,62].

With the plane wave solutions Equations (24), (27), and (30) at our disposal, we
proceed to calculate the stress-energy tensor for a single plane wave. The resultant plane
waves read

h
TT
αβ = Cαβ cos(qλxλ), (51)

φ(1)α = Aα
φ cos(pλxλ), (52)

ψ = Aψ cos(kλxλ). (53)

By imposing the sin2 term over several wavelengths is equal to 1/2, the stress-energy
tensor (50) is then

TGW,e f f
αβ =

1
64πG(0)

[
qαqβCµνCµν + (32π − 6)kαkβ A2

ψ + 32π(G(0))2 pα pβ Aφ
µ Aµ

φ

]
(54)

For the plane wave propagating along the z direction, so that

pλ = (−p, 0, 0, p), qλ = (−q, 0, 0, q), kλ = (−k, 0, 0, k). (55)

In the TT gauge, the only nonvanishing components of the matrix Cµν are
C11 = −C22 = h+, C12 = C21 = h×. Subsequently, one obtains

TGW,e f f
αβ =

π

8G(0)

[
f 2
1

(
h2
+ + h2

×

)
+(16π − 3)( f3)

2 A2
ψ + 16πG(0)( f2)

2
(
(A1)2 + (A2)2

)]
eαβ, (56)

where f1 = q
2π , f2 = p

2π , f3 = k
2π are the ordinary frequencies, and

eαβ =


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

.



Universe 2021, 7, 9 10 of 14

Equation (56) is obtained in the TT coordinate. Similar to the discussions in Ref. [33],
the Fermi normal coordinates differ from the TT coordinates for quantities of order one.

Since the field perturbations h
TT
αβ , φ(1)µ, and ψ are all of the linear order, any change in their

components due to the coordinate transformation is of the second order in perturbations.
Therefore, the SET in the proper reference frame of the observer σ0(τ) remains the same
as Equation (56). As the vector and scalar fields vanish, Equation (56) falls back to its
counterpart in General Relativity.

6. Extension to Sources with Non-Negligible Self-Gravity

For systems with weak gravity whose dynamics are dominated by self-gravity, the
above procedure of obtaining the linearized gravitational field equation is no longer appli-
cable. This was first pointed out by Eddington. Examples of such systems are binary star
systems or those with non-linear GW memory effect [40–43]. In this case, it is still possible to
extend the derivation to encompass systems with non-negligible self-gravity. In this section,
following Ref. [44], we derive the exact, nonlinear gravitational field equations Equation (5)
in an arbitrary coordinate system using the Landau–Lifshitz formalism [31,37]. Also, the
GW SET is evaluated for a second time in this part by employing the above formalism.

One first defines

gµν = (−g)1/2gµν, (−g) = −det‖gµν‖ = −det‖gµν‖, (57)

Hµγνδ = G−2(gµνgγδ − gγνgµδ), (58)

By making use of the above notations, Equation (5) can be rewritten as

Hαγβδ
,γδ = −

16πg
G

(Tαβ
M + tαβ + tαβ

µ ). (59)

The symmetric properties of Hµγνδ ensure that the left-hand side of Equation (59)
vanishes upon differentiation with respect to µ or ν. To be specific, we have[

(−g)(Tαβ
M + tαβ + tαβ

µ )/G
]

,α
= 0. (60)

By a rather lengthy calculation, one arrives at the following relations for tµν

tµν = tµν
LL + tµν

f , (61)

tαβ
µ =

1
2Gµ2 (gαβµ;γµ;γ − 2µ;αµ;β), (62)

tµν
f =

1− 4π

4πG3 G;µG;ν +
gµνG;γ

;γ − G;µν

8πG2 + gµν(2π − 1)
G;γG;γ

4πG3

+
1
2

gµνφγ;δBγδ + Bµγφ ;ν
γ + φνBγµ

;γ + φµBγν
;γ

+ φν;γB µ
γ + (gµνgγδ − gµγgνδ)(3G,γG,δ − G,δγG)/8πG3

+ gεζ(,δG,γ)(gµνgγ[εgδ]ζ + gµγgν[δgζ]ε + gµεgδ[νgγ]ζ)/2πG2, (63)

where Bµν = ∂µφν − ∂νφµ = φν;µ − φµ;ν, tµν
LL is known as the Landau–Lifshitz pseudoten-

sor [37], defined by

16πG
√
−gtαβ

LL = gαβ
,γgγδ

,δ − gαγ
,γgβδ

,δ +
1
2

gαβgγδgγκ
,εgδε

,κ

− 2gδεgγ(αgβ)ε
,κgδκ

,γ + gγδgεκgαγ
,εgβδ

,κ

+
1
8
(2gαγgβδ − gαβ − gαβgγδ)(2gεκ − gκλgεδ)gεδ

,γgκλ
,δ. (64)
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For the case of weak field, we define the potentials

G = G(0) + δG, (65)

gµν = (ηµν − h̃µν)G/G(0), (66)

gµν = ηµν − hµν, (67)

By combining Equation (57) and Equation (68), we obtain

h̃µν = G
√
−g(ηµν − hµν). (68)

It is convenient to work in a particular coordinate system introduced by the de Donder,
namely, the harmonic gauge condition h̃µν

,µ = 0, we have

Hµγνδ
,γδ = −

(
�F h̃µν + h̃µγ

,δ h̃νδ
,γ − h̃γδ h̃µν

,γδ

)
/(G(0))2, (69)

where �F ≡ ηµν∂µ∂ν is the flat-spacetime wave operator.
By putting all the pieces together, the resultant relaxed gravitational equations takes

the form

�F h̃µν = −16π(G(0))2τµν. (70)

The source on the right-hand side is interpreted as the “effective” SET, namely,

τµν = (−g)(G(0))2(Tµν
M + tµν

f + tµν
µ )/G + (16π)−1(h̃µγ

,δ h̃νδ
,γ − h̃γδ h̃µν

,γδ). (71)

If, in the action Equation (1), the vector field φµ and scalar field µ vanish, by redefining
φ̃ = 1/G, one observes that the STVG theory falls back to Brans-Dicke theory, while
Equation (70) also reduces to its counterpart in Brans-Dicke theory [63]. For the latter, the
authors studied the nonlinear memory effect and discovered two new types of memory.

From Equation (61), if one considers the field perturbations as those given in Equation (45),
the SET of GWs can be obtained. This can be achieved by first expanding Equation (61) to the
second order. Equation (68) can be further expanded to read

h̃µν = hµν − 1
2

ηµν +
δG

G(0)
ηµν + O[(h)2, (δG)2, hδG]. (72)

We note that, to the first order, the above equation is precisely Equation (20).
Subsequently, one integrates relevant terms by parts to eliminate the boundary term,

plugs in the equation of motion of the first order perturbations, and imposes the transverse-
traceless gauge for h̃µν. Eventually one finds

32πG(0)TGW,e f f
µν =

〈
h̃TT

γδ,µ h̃γδ
TT,ν + (32π − 6)ψ,µψ,ν + 32πG(0)φ

(1)γ
,µφ

(1)
γ,ν

〉
. (73)

We note that Equation (73) is identical to the form of the GW SET found previously in
Equation (50).

7. Concluding Remarks

To summarize, the present paper is dedicated to studying various aspects of the GWs
in a modified theory of gravity, namely, the STVG theory. The latter is an alternative
gravity theory characterized by the exchange of dynamical scalar fields. As the model is
shown to be in good agreement in the context of the weak field, it is meaningful to further
investigate its validity for the strong field, in terms of the GWs. In particular, we analyze
the polarization in terms of geodesic deviation equation. The SET is explored by using
both the perturbed equation method and the Landau–Lifshitz formalism. The obtained
GW SET from both methods is shown to be identical, although the latter is understood to
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be appropriate to the systems where self-gravitation is essential. Also, the relaxed field
equation is obtained by employing the latter method. By studying the relative motion of
the test particles, we derive the polarization modes of the GWs.

While not addressed in the present study, it is meaningful to eventually compare the
properties of GWs, namely, the polarization and energy propagation, against experimental
observations. Further study in this direction is in progress.
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