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Abstract: Short timescale variability is often associated with a black hole system. The consequence of
an electromagnetic outflow suddenly generated near a Kerr black hole is considered assuming that it
is described by a solution of a force-free field with a null electric current. We compute charged particle
acceleration induced by the burst field. We show that the particle is instantaneously accelerated to the
relativistic regime by the field with a very large amplitude, which is characterized by a dimensionless
number κ. Our numerical calculation demonstrates how the trajectory of the particle changes with κ.
We also show that the maximum energy increases with κ2/3. The typical maximum energy attained
by a proton for an event near a super massive black hole is Emax ∼ 100 TeV, which is enough observed
high-energy flares.
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1. Introduction

Active galactic nuclei are very bright sources, and collimated relativistic plasma jets
launched from the inner part are often observed in the universe. Their activities are pow-
ered by accreting flow to supermassive black holes (SMBHs) that lurk at the center. Recently,
for the first time, the event horizon telescope (EHT) team [1] acquired a near-horizon image
of a nearby galaxy M87, which is an example of an SMBH. The resolved structure confirms
what many researchers anticipated for many years. Black hole astrophysics relevant to
both observational and theoretical approaches are expected to be researched further. For ex-
ample, the central part of a black hole can be described using the Kerr metric with high
precision, or using a new theory.

General relativistic magneto-hydro-dynamic (MHD) simulation is a powerful tool to
study the nature near a black hole theoretically. Several studies have clearly demonstrated
the site of conversion from material inflow to outward jet launching. However, as a different
approach, the so-called force-free electrodynamics (FFE) is employed for tenuous plasma
regions such as those in the magnetosphere and in the magnetized jet. In the approach,
material motions are decoupled, so that only the electromagnetic field can be solved under
certain conditions. The Blandford–Znajek process [2] of extraction of energy from a rotating
black hole was studied assuming a steady force-free magnetosphere. The magnetosphere is
governed by the highly nonlinear equations of FFE, and the analytic solutions are limited;
the simplest being a split-monopole solution [3]. It describes a radial magnetic field near
the center and a rotation-induced outward electromagnetic field at infinity. The radial
field generated by the magnetic monopole charge is unphysical; however, the solution is
useful to study the behavior away from the central object. Therefore, the global structure
of the magnetosphere is studied using a perturbation method from the solution in the
Schwarzschild spacetime [4–7] (a problem regarding the perturbation method is discussed
in Reference [8]). Other approaches require intense numerical computations; for example,
solving the Grad–Shafranov equation with some iteration techniques [9–12] and performing
the time-dependent calculations [13–20].
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Recently, a class of exact solutions satisfying the force-free condition in a Kerr space-
time were derived [21,22] (see also early works [23,24]). The solution was reduced to a
split-monopole solution as a limiting case. The solutions were characterized by the fact that
two Lorentz invariant scalars vanish: ~E · ~B = 0 and B2 − E2 = 0. Such an electromagnetic
field propagates at the speed of light, and the four-current is a null vector. The field is
analogous to the traveling-wave mode that appears in the dynamical perturbations of
stationary force-free solutions [25–27]. The wave propagates along the principal null direc-
tion of the background spacetime without any back scattering. An attempt to resolve the
null four-current was discussed [28,29] and it involved artificial decomposition to a linear
combination of two time-like four-currents with opposite charges.

It is unclear how such a null field is produced in astrophysical scenarios. Some theo-
retical works however suggest a possibility occurred near a black hole horizon. It is shown
that any stationary, axisymmetric and regular FFE solution reduces to the same form in the
near-horizon limit of extreme Kerr [30,31]. The “attractor solution” is still stationary and
axisymmetric, but it is null. The near-horizon region of highly spinning black hole is very
important for astrophysical scenarios such as the jet formation. Magnetically dominated
solutions (B2 − E2 > 0) are stable, whereas electrically dominated solutions (B2 − E2 < 0)
are unstable since the electromagnetic energy is transferred to plasma acceleration and/or
heating. Some energy may be ejected as the null field.

Present numerical codes cannot simulate the situation, but some results are suggestive.
Through the numerical calculations of time-dependent FFE, it is well known that current
sheets may develop within the black hole magnetospheres [13,16,19,32]. For asymptotically
uniform magnetic configuration, the singular current-sheet forms on the equator inside
ergo-sphere of a rapidly rotating black hole. As described in Reference [13], part of the
outward energy and angular momentum can be traced to the current sheet. The equatorial
boundary condition is therefore important to determine the global solution [32,33]. Numer-
ical simulations show that magnetic dominance (B2 − E2 > 0) tends to break down in the
singular regions. The calculation requires artificial reduction of the electric field to ensure
B2 − E2 ≈ 0 [13,16,19,32]. This mimics some physical mechanisms of electromagnetic
energy loss; the energy is locally dissipated. Some part of the energy is also carried away by
a burst wave, which may be approximated by a null field, as suggested by the perturbation
analysis of FFE [25–27]. Thus, we expect that the null FFE field or the field approximated
by it must appear as a burst near a black hole and propagate outwardly. We consider the
consequence of the burst field approximated by the null FFE solution. We discuss plasma
motion under strong gravity when the electromagnetic burst-field passes. The charged
particle is treated as a test particle, and its interaction with the incident null field is studied.

The rest of this manuscript is organized as follows. In Section 2, we review the null FFE
solutions in Kerr spacetime. The original work [21] was based on the Newman–Penrose
formalism [34]. Their result is summarized using the 3 + 1 formalism for complemental
understanding. In Section 3, we explicitly present axially symmetric magnetosphere
relevant to some astrophysical situations. In Section 4, we calculate a charged particle
motion driven by the electromagnetic field in the curved spacetime. The particle moves by
the electromagnetic acceleration and gravitational attraction. The motion is trivial only in
two extreme limits, for which one of forces exceeds the other in magnitude. We numerically
estimate the critical value and examine the acceleration behavior by the electromagnetic
burst. Finally, we discuss the results and provide the summary in Section 5. We use
geometrical units of c = G = 1.

2. Electromagnetic Fields

We briefly summarize the relevant equations in a Kerr spacetime with the same
notations in Reference [35]. The metric in the Boyer–Lindquist coordinate is given by

ds2 = −α2dt2 +
ρ2

∆
dr2 + ρ2dθ2 + v2(dφ−ωdt)2, (1)
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where

α2 =
ρ2∆
Σ2 , ρ2 = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2Mr,

v2 =
Σ2

ρ2 sin2 θ, ω =
2Mar

Σ2 , Σ2 = (r2 + a2)2 − a2∆ sin2 θ. (2)

Electromagnetic vectors ~E and ~B refer to quantities measured in the fiducial observer
(FIDO), which is sometimes called the nonrotating zero angular momentum observer
(ZAMO). Using the vector analysis in a three-dimensional curved space, the Maxwell
equations are expressed as

~∇ · ~E = 4πρe, (3)

~∇ · ~B = 0, (4)

∂t~B + ~∇× (α~E + ~β× ~B) = 0, (5)

− ∂t~E + ~∇× (α~B− ~β× ~E) = 4π(α~j− ρe~β), (6)

where
~β = −ωv~eφ̂. (7)

In this paper, î denotes the component of a vector in the orthogonal basis. Four-
dimensional basis vectors are given by

~e0̂ =
1
α
(∂t − ~β), ~er̂ =

√
∆

ρ
∂r, ~eθ̂ =

1
ρ

∂θ , ~eφ̂ =
1
v

∂φ. (8)

Force-Free Electromagnetic Field with Null Current

We impose two conditions on the electromagnetic field to construct a magnetosphere
in a curved spacetime. They include an ideal MHD condition

~E · ~B = 0, (9)

and a force-free condition
ρe~E +~j× ~B = 0. (10)

Many studies have calculated electromagnetic fields under these conditions. Numeri-
cal calculations are required except for the simplified scenarios in a flat spacetime. A class of
exact FFE solutions in Kerr spacetime [21,22] is remarkable; they yield an analytical solution
when the four-electric current is proportional to the principal null congruence of the Kerr
spacetime. Their solutions are derived by the Newman–Penrose formalism [34]; however,
the solutions are provided in terms of the 3 + 1 language for complemental understanding.

Three-dimensional current~j is expressed by charge density ρe and a unit vector~n as

~j = ρe~n, (11)

with

~n =
εout/inΣ
r2 + a2 ~er̂ +

a
√

∆ sin θ

r2 + a2 ~eφ̂, (12)

where εout = +1 and εin = −1 for outgoing and incoming fields, respectively. The four-
dimensional null vector with ~n corresponds to outgoing and incoming principal null
congruences. The condition (10) obtained using the current (11) is reduced to ~E +~n× ~B = 0
in the case of ρe 6= 0. The condition ~E +~n× ~B = 0 leads to the orthogonality ~E · ~B = 0 in
Equation (9). The null field condition B2 − E2 = 0 is obtained by assuming~n · ~B = 0.

The null electromagnetic fields can be expressed by two functions provided below:
Sout/in and Tout/in. These functions correspond to the real and imaginary parts of one com-
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plex function in the Newman–Penrose formalism. The electromagnetic field components
are explicitly written as

~B =
a
Σ

Sout/in~er̂ −
r2 + a2

αvΣ
Tout/in~eθ̂ −

εout/inSout/in

αv
~eφ̂, (13)

~E = − a
Σ

Tout/in~er̂ −
r2 + a2

αvΣ
Sout/in~eθ̂ +

εout/inTout/in

αv
~eφ̂. (14)

The functions Sout and Tout are provided in the outgoing coordinates as Sout(u, θ, χ)
and Tout(u, θ, χ), where

u ≡ t−
∫ r2 + a2

∆
dr, χ ≡ φ−

∫ a
∆

dr. (15)

The ingoing fields are expressed using ingoing coordinates. Ingoing solutions with εin
are obtained by t→ −t and φ→ −φ. Poynting flux at r � M for these fields is given by

~SPoyn =
εout/in

4πr2 sin2 θ

(
S2

out/in + T2
out/in

)
~er̂. (16)

It is understood that Sout/in and Tout/in are associated with the relevant outgoing/ingoing
flux. Hereafter, we limit our consideration to the outgoing fields.

The Maxwell Equations (3)–(6) for (13) and (14) are reduced to a pair of first-order
differential equations of Sout and Tout given as

a∂uSout +
1

sin2 θ
∂χSout +

1
sin θ

∂θTout = 0, (17)

a∂uTout +
1

sin2 θ
∂χTout −

1
sin θ

∂θSout = 4πhout, (18)

where the source term hout(u, θ, χ) is related to the charge density as

ρe =
r2 + a2

αΣ2 hout. (19)

Here, we summarize the mathematical method to calculate the null electromagnetic
fields. Once two functions Sout and Tout are solved for the source term hout, which is related
to the charge density and electric current, the electromagnetic fields can be expressed using
these functions. These functions Sout and Tout may be flexibly specified, since the initial
configuration outwardly propagates with the light velocity. In next section, we explicitly
model the functions to apply an astrophysical problem.

3. Axially Symmetric Magnetosphere

We consider the following separated form of Sout(u, θ) and Tout(u, θ),

Sout = W(u)Q(θ), Tout = −aW ′(u)P(θ), (20)

where W = W(u) and the angular function Q(θ) ≡ (sin θ)−1P′(θ). A prime denotes a
derivative. Equation (17) is automatically satisfied with this choice (20). Equation (18) is
reduced to

− 4πhout = a2W ′′P + W(sin θ)−1Q′. (21)

The charge density is given by Equation (19), and the electric current~j is given by
Equation (11). The electromagnetic fields (13) and (14) are explicitly rewritten as

~B =
aWQ

Σ
~er̂ +

a(r2 + a2)W ′P
αvΣ

~eθ̂ −
WQ
αv

~eφ̂, (22)
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~E =
a2W ′P

Σ
~er̂ −

(r2 + a2)WQ
αvΣ

~eθ̂ −
aW ′P

αv
~eφ̂. (23)

Note that the terms containing W ′, “time-derivative” of W, vanish in the Schwarzschild
limit. The amplitude of the electromagnetic field changes with time; however, the direction
is always fixed in the spherically symmetric spacetime. The behavior in a Kerr case is more
complicated. Both the amplitude and direction of the fields vary with time. Some compo-
nents vanish when the fields settle to a stationary state.

It is helpful to write down the potentials ~A and Φ to derive these electromagnetic fields,

~B = ~∇× ~A, α~E + ~β× ~B = −∂t ~A− ~∇Φ. (24)

Two examples are provided below.

(I) [Φ, ~A] =

[
0, − a2PW

ρ
√

∆
~er̂ +

QW†

ρ sin θ
~eθ̂ +

aWP
v

~eφ̂

]
, (25)

(II) [Φ, ~A] =

[
WQ†,

W
ρ
√

∆
((r2 + a2)Q† − a2P)~er̂ +

aWP
v

~eφ̂

]
, (26)

where

W† =
∫ u

Wdu′, Q† =
∫ θ

(sin θ′)−1Qdθ′. (27)

Note that the azimuthal component Aφ is gauge invariant for only the axially sym-
metric field.

The angular function P(θ) in Equation (20) is an arbitrary function. To specify this
function, we consider the astrophysical possibility of a magnetosphere near a black hole.
The poloidal magnetic field far from the black hole is initially penetrated from −z to +z
as shown in Figure 1. The magnetic field is frozen to accreting matter on the equator.
The rotation of the matter drags the magnetic field in the azimuthal direction. After the
matter falls, the magnetic field formed outside it has a specific symmetry: both radial Br̂
and azimuthal components Bφ̂ change their direction across the equator. In the case of a
sharp change in the magnetic field, a current sheet may remain on the equator. Based on
this consideration, the function Q(θ) denotes an odd function with respect to θ = π/2;
P(θ) is an even function.

Figure 1. The formation of the magnetosphere is described by the split-monopole solution near
a black hole. Accreting matter on the equator drags the global magnetic field (left panel). Next,
a split-monopole-like magnetosphere is formed (right panel).

We first select the angular function P(θ) as

P =
1
3
(2 + | cos θ|)(1− | cos θ|)2. (28)
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This function P is continuous in 0 ≤ θ ≤ π; however, its derivative contains a
discontinuity at θ = π/2. The function Q(θ) is given by

Q = (1− 2Hπ/2) sin2 θ, (29)

where a function Hπ/2(θ) is the unit step function Hπ/2 = 0 for θ < π/2, and Hπ/2 = 1
for θ > π/2. That is, Q = ± sin2 θ. We explicitly write down the charge density

4πρe = − r2 + a2

αΣ2

[
a2W ′′P + 2W

{
(1− 2Hπ/2) cos θ − δD(θ −

π

2
)
}]

, (30)

where δD(= H′π/2) is Dirac’s delta function.
For a while, we consider the limit of a = 0. Equations (22)–(23) are reduced to

~B = −W
αr

(1− 2Hπ/2) sin θ~eφ̂, ~E = −W
αr

(1− 2Hπ/2) sin θ~eθ̂ . (31)

It is possible to add the magnetic monopole solution ~B = ±µMr−2~er̂ to Equation (31),
where µM is a constant representing magnetic charge. The total electromagnetic field
becomes a solution of FFE satisfying the magnetic dominance condition.

We explicitly express the field as ~B = µMr−2~er̂ in the upper hemisphere, ~B =
−µMr−2~er̂ in the lower hemisphere, and W = µMΩ in Equation (31), where Ω denotes
the angular velocity of the magnetic field line. The combined field is the split-monopole
solution [3]. It is possible to introduce the time-dependent function of Ω [36], that is,
W = µMΩ(u) in Equation (31). However, this extension from the null field to the magneti-
cally dominated field is possible only for the a = 0 case [21].

To avoid the current sheet on the equator, we select angular functions P(θ) and Q(θ) as

P =
1
4

sin4 θ, Q = cos θ sin2 θ. (32)

For this model, we have Q(π/2) = 0, and therefore, Bφ̂(π/2) = Eθ̂(π/2) = 0.
The discrete function (1− 2Hπ/2) in Equation (29) is replaced by a continuous function
cos θ in Equation (32). There is no singular behavior in the current and charge density on
the equator,

4πρe = − r2 + a2

αΣ2

[
a2W ′′P + W(3 cos2 θ − 1)

]
. (33)

The charge density distribution for a = 0 is determined by θ only; it is negative for
polar regions (| cos θ| > 3−1/2) and positive for an equatorial region (| cos θ| < 3−1/2),
if W > 0.

4. Particle Acceleration
4.1. Model

Some electromagnetic fields are approximated by the null electric current. For example,
~j = ρe~er̂ in the split-monopole solution. The solution is useful to describe a radiative field
in the far region. Our concern is a null electromagnetic field near a black hole. We assume
that an electromagnetic burst is temporally generated there, and that the impulsive field is
approximated by Equations (22) and (23). The consequence for plasma in strong gravity
region is studied.

To model the burst profile, we specify the function W(u) in Equation (20) as a function
of outgoing time u,

W(u) = B0Msech2[(u− u0)/τd], (34)

where B0 denotes a constant representing the field strength, u0 denotes a constant for the
burst peak-time, and the duration of the burst is ∼ τd; further, we fix the timescale as
τd = M. In addition, we adopt the angular functions P(θ) and Q(θ) in Equation (32),
which are smooth on the equator.
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We consider a charged-particle motion when the impulsive field passes. The equation
of motion is given by

dUα

dτ
+ Γα

βγUβUγ =
q
m

FαβUβ, (35)

where m, q, and Uα denote the mass, charge, and the four-velocity of the particle, respec-
tively. Further, Γα

βγ is the Christoffel symbol and Fαβ is the Faraday tensor. Equivalently,
it may be convenient to derive the equation of motion from the Lagrangian

L =
m
2

gαβUαUβ + qAαUα. (36)

Equation (35) involves a one-dimensionless parameter κ ≡ qB0 M/m. We estimate
it for a typical SMBH with M ∼ 108 M�: |κ| ≈ 1013(B0/kG) (M/108 M�) for an electron,
and |κ| ≈ 1010(B0/kG) (M/108 M�) for a proton. This implies that the impulsive field
appears as a large amplitude electromagnetic field. The response to the incident field is
considerably different depending on κ. When the particle motion is an oscillatory motion
for the small |κ|, it is accelerated for the large |κ|. A similar field with |κ| � 1 is produced
by a rotating pulsar, and the particle acceleration was discussed in References [37–39].
We focus on exploring a similar acceleration under a strong gravity.

4.2. Results

We numerically follow the particle’s trajectory for a fixed value of κ. Figure 2 demon-
strates some trajectories near a Kerr black hole with a = 0.99 M. A particle starts from the
initial position (r0, θ0) = (1.5 M, π/16), when the burst field passes. The initial θ-motion
depends on the sign of κ: Uθ̂ < 0 for positively charged particle, whereas Uθ̂ > 0 for
negatively charged particle because Eθ̂ < 0 in the upper hemisphere.

1 2 3 4
(r/M)sinθ0

1

2

3

4

(r/M)cosθ

Figure 2. Examples of trajectories in (r, θ) plane near the Kerr black hole with a = 0.99 M. All trajec-
tories start from the initial position (r0, θ0) = (1.5 M, π/16); however, they depend on κ. The black
straight line represents θ = θ0, and the blue quarter circle represents the horizon.

For a small value of |κ| � 103, the acceleration is very weak. After the burst, the parti-
cle eventually falls owing to the gravitation pull of the central back hole. As |κ| increases,
the acceleration increases, thereby allowing the particle to escape. The outward direction
approaches a line with θ = θ0 as |κ| increases. We found that it is numerically difficult to
simulate the motion of the particle with a considerably large value such as >1010 because
of the stiff nature of the differential Equation (35).
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It might be interesting whether to escape near a threshold κ; however, we focus
on particle acceleration for a sufficiently large value of |κ|. Hereafter, we set κ = ±103,
±106, and ±109. Figure 3 shows the evolution of the Lorentz factor γ as measured by
FIDO. The top panels from the left to the right show the results for the initial position
(r0, θ0) = (2.5 M, π/8), (2.5 M, π/4), and (2.5 M, 3π/8) in the Schwarzschild spacetime.
For the strong case |κ| = 106, or 109, the particle is accelerated in a moment, whereas the
particle is alternatively accelerated or decelerated for |κ| = 103. This behavior originates
from bounces of the θ-motion.
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Figure 3. Lorentz factor log10(γ) as a function of proper time τ. Results are shown for the initial radius r0 = 2.5 M in a Schwarzschild
black hole (top panels), for r0 = 2.5 M in a Kerr with a = 0.99 M (middle panels) and for r0 = 1.5 M and a = 0.9 M (bottom panels).
Blue curves are for positive κ, whereas red curves denote negative κ.

A symmetric property can be seen with respect to the initial angle θ0. For example,
the behavior of positively charged particles started from θ0 = π/8 is the same as that of
negatively charged particle started from θ0 = 3π/8. The electromagnetic field with the
angular functions, Equation (32) in the Schwarzschild spacetime, is symmetric with respect
to θ = π/4.

To study the effect of the spacetime, the results for the Kerr black hole with a = 0.99 M
are shown in the second row of Figure 3. The initial positions of the particle are the same
as those in the first row. The results are not considerably different from those for a = 0,
except for the fact that the symmetry with respect to θ = π/4 is no longer observed.

The bottom panels of Figure 3 show the results for which the initial position is closer to
the black hole, that is, r0 = 1.5 M. The oscillation in γ becomes prominent for a particle with
|κ| = 103 from the polar region, and the terminal Lorentz factor is reduced. This is because
gravity becomes stronger by inwardly shifting the initial position. For accelerated trajec-
tories with |κ| = 103, 109, there is no clear difference between the results with r0 = 2.5 M
and those with r0 = 1.5 M because the electromagnetic force dominates. Note that the
initial position (r0, θ0) = (1.5 M, π/8) in the left bottom panel of Figure 3 is outside the
ergo-sphere, whereas others—(r0, θ0) = (1.5 M, π/4) and (1.5 M, 3π/8)—are inside the
ergo-sphere. The acceleration is the same whether the initial position is the interior or the
exterior of the ergo-sphere.
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Figure 4 shows the particle trajectory in the meridian plane. The initial direction
of θ-motion is determined by the sign of κ; for example, the positively charged particle
is accelerated towards the polar region because of Eθ̂ < 0 in 0 < θ < π/2. In the case
of κ = 103, a positively charged particle that started from θ0 = π/8 is reflected on the
pole, as shown in the left panel of Figure 4. After the direction of θ-motion changed,
the particle is decelerated and the velocity eventually becomes zero. Again, it accelerates
towards the polar region. A negatively charged particle is accelerated towards the equator
because of Eθ̂ < 0 in the region of 0 < θ < π/2. This particle may pass through θ = π/2;
however, it is decelerated because of Eθ̂ > 0 in the region of π/2 < θ < π. Thus,
the particle goes back to the upper hemisphere. For positively charged particles started
from a near pole or negatively charged particles started from a near equator, their motions
are significantly affected by the boundary at θ = 0 or π/2. Thus, the particles undergo
deceleration during the burst. The total acceleration is less effective for the small |κ| case.
Further, we demonstrate the particle trajectories started near the Kerr black hole for large
cases |κ| = 106 and 109 in the right panel of Figure 4. The acceleration is instantaneous,
and therefore, it is not affected by the boundary. The change in angle θ becomes smaller as
|κ| increases.
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Figure 4. Examples of trajectories in the (r, θ) plane. The trajectory of the positively charged particles
is shown by the blue curve, whereas that of negatively charged particle is shown by the red curve.
The left panel shows the results for |κ| = 103 in Schwarzschild spacetime. The initial positions
are (r0, θ0) =(2.5 M, π/8), (2.5 M, π/4), and (2.5 M, 3π/8). The black dotted line represents
cos θ = 3−1/2. The right panel shows results for |κ| = 106 (dotted curve) and 109 (solid curve) in
the Kerr spacetime with a = 0.99 M. The initial positions are (r0, θ0) =(1.5 M, π/8), (1.5 M, π/4),
and (1.5 M, 3π/8). The evolution of the Lorentz factor for these parameters are shown in the bottom
panels in Figure 3. The horizon and ergo-region are shown by the black curve.

As shown in Figure 4, the incident electromagnetic field affects the θ-motion in the
opposite direction based on charge in the particle; hence, it will result in some distribution
of the charge density and electric current with respect to the angle θ. We consider the
relation with those in the background field. In the Schwarzschild case, both the sign of the
charge density and the direction of the outflow current are distinguished by only θ: ρe < 0
in the range of 0 ≤ θ < arccos(3−1/2), whereas ρe > 0 in the range of arccos(3−1/2) < θ <
arccos(−3−1/2) (see Equation (33).) In the left panel of Figure 4, a line of θ = arccos(3−1/2)
is plotted. Figure 4 shows that the positive particles move toward the pole and the negative
ones move toward the equator. This tendency appears in the counteracting direction of the
background current flow.

The counteracting flow found by our test-particle approximation means that the
incident field decays by the energy transfer to plenty of particles in a realistic model.
Critical number density is nc ∼ j/q. This backreaction to the burst field is important for
n > nc, but is beyond present consideration.
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5. Discussion

Acceleration mechanisms for achieving cosmic-ray energies of 1020 eV have been
discussed so far. The mechanisms are basically classified into two types, statistical or direct
acceleration [40]. Stochastic acceleration successfully explains power law spectrum, but has
the disadvantage of being slow. On the other hand, the direct process is fast, but does not
clearly explain the spectrum. Particles may be accelerated directly to very high energy
by an extended electric field, which is generally associated with the rapid rotation of
magnetized compact objects.

Our calculation of charged particle motion driven by null electromagnetic field is
also relevant to the direct acceleration mechanism. We examined the burst field under
strong gravity near a black hole. The typical duration τ ∼ M of the burst is short from
a macroscopic view; however, it is sufficiently long for a particle to be accelerated to
the relativistic energy. Thus, the interaction between the particle and the burst field is
characterized by a large dimensionless number κ = qB0τ/m ∼ qB0M/m. This large
number is an essential quantity to determine the maximum energy in direct acceleration
mechanisms. The maximum energy also increases with κ in other acceleration processes
near a Kerr black hole, such as magnetic Penrose process (e.g., References [41,42]), or wake-
field acceleration by intensive Alfvén pulses from an accretion disk [43].

Acceleration mechanism in the radiative zone of a pulsar is discussed in Refer-
ences [37–39]. For a wave with a very large amplitude and very low frequency, a particle
is instantaneously accelerated to the relativistic regime, and it moves in the direction of
wave propagation. The null field always corresponds to the radiative zone, and it similarly
affects the particle for |κ| � 1. The acceleration becomes more effective with an increase
in |κ|. An increase of the Lorentz factor γ was calculated by analytic approximation in
flat spacetime in previous works [37–39]. Here we performed numerical calculations to
obtain an empirical relationship between the maximum Lorentz factor γmax and κ (� 1),
given by

γmax ≈ 10−2 × κ2/3.

We adopted the power index 2/3 of the analytic approximation and obtained numeri-
cal coefficient 10−2. The threshold for the acceleration is approximately given by |κ| ∼ 103.
For the values of |κ| ∼ 103, the terminal Lorentz factor depends on initial position of the
particle and the black hole spacetime. The trajectory is complicated near a critical value,
using which the dominant force—electromagnetic acceleration or gravity—is determined.
When the acceleration is insufficient, the particle is eventually absorbed in the black hole.
However, the gravity is less sensitive for large |κ| because the particle is instantaneously
accelerated by the very strong electromagnetic field. In the extreme cases of |κ| � 1,
the direction of motion is along the propagation of the incident null field. The particle rides
the background field at an essentially constant phase.

We estimate the maximum Lorentz factor γmax for a typical SMBH, γmax ∼ 105

(Emax ∼ 100 TeV) for a proton. There is ambiguity concerning the field strength B0 at
various astrophysical sites. However, the upper limit Bmax is given by Bmax ∼ M−1

for a gravitational bound object with mass M, since the magnetic energy B2M3 is less
than the rest mass energy M. Thus, the parameter is limited to κmax ≈ q/m, and the
maximum energy for a proton Emax ∼ 1019 eV is less than the observed highest energy of
the cosmic rays.

For a significantly large |κ|, the acceleration process is instantaneous and is therefore
local. Namely, the curved spacetime effect is unimportant. We consider the burst ejection
as a null field to retain the magnetic dominance. The propagation range may not be very
long when the energy transfer to the particle is effective. However, there are numerous
astrophysical situations where |κ| is not extremely large, but moderately large, for example,
|κ| ∼ 103. Some factors in more realistic cases reduce κ; the timescale τ associated with local
irregularity becomes smaller, and the electromagnetic field-amplitude of a dynamical event
is smaller than that of the stationary field, which is inferred from observations. In scenarios
with moderately large κ, the particle acceleration is complicated, but such a scenario could
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be interesting to study in the future. Moreover, the black hole spacetime would be also
relevant in such cases.

Finally, we discuss the magnetic field configuration in astrophysical situations. Exter-
nal magnetic field, for example, asymptotically uniform field described in Figure 1, is likely
to coexist with the transient null field considered in this paper. Such a global magnetic
field along the polar axis significantly affects the particle motion. The trajectory in the
transverse plane is circular with a Larmor radius, and particles are confined. On the other
hand, particles along the polar axis are allowed to escape on a straight line. Thus, the global
magnetic configuration determines the outflow structure. The particle propagation is also
an important study in the future.

Author Contributions: Authors have contributed equality to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number JP17H06361 and JP19K03850.

Institutional Review Board Statement: Not applicable for studies not involving humans or animals.

Informed Consent Statement: Not applicable for studies not involving humans.

Data Availability Statement: The data underlying this article will be shared on reasonable request
to thecorresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D. First M87
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