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Abstract: The discovery of the first binary pulsar in 1974 has opened up a completely new field
of experimental gravity. In numerous important ways, pulsars have taken precision gravity tests
quantitatively and qualitatively beyond the weak-field slow-motion regime of the Solar System.
Apart from the first verification of the existence of gravitational waves, binary pulsars for the first time
gave us the possibility to study the dynamics of strongly self-gravitating bodies with high precision.
To date there are several radio pulsars known which can be utilized for precision tests of gravity.
Depending on their orbital properties and the nature of their companion, these pulsars probe various
different predictions of general relativity and its alternatives in the mildly relativistic strong-field
regime. In many aspects, pulsar tests are complementary to other present and upcoming gravity
experiments, like gravitational-wave observatories or the Event Horizon Telescope. This review gives
an introduction to gravity tests with radio pulsars and its theoretical foundations, highlights some
of the most important results, and gives a brief outlook into the future of this important field of
experimental gravity.
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1. Introduction

Already one week before Albert Einstein presented his final field equations of general relativity
(GR) to the Prussian Academy of Science [1], he demonstrated that his new theory of gravity naturally
explains the anomalous perihelion precession of Mercury [2]. After this—at least in hindsight—first
experimental verification of GR, many more Solar System tests followed, confirming different
predictions by GR with ever increasing precision [3]. However, there are many aspects of gravity
that cannot be tested in the weak-field slow-motion environment of the Solar System, since they
require higher velocities and/or strong gravitational fields. A well known example is the emission of
gravitational waves (GW). The experimental verification of such radiative aspects of gravity requires
large, highly accelerated masses (m), which are absent in the Solar System. Furthermore, aspects
related to strong gravitational fields cannot be investigated in the Solar System, where gravitational
potentials (Φ) and binding energies (EB) are small (|Φ|/c2 ∼ |EB|/mc2 . 10−6, where c denotes the
speed of light in vacuum). To test such gravity regimes, one has to go beyond the Solar System.

An important step in that direction was the discovery of radio pulsars, i.e., rotating neutron
stars (NS) that emit coherent radio waves along their magnetic poles, by Jocelyn Bell Burnell and
Antony Hewish in 1967 [4]. This discovery itself was already a mile stone for relativistic astrophysics.
Once identified as NSs, it was clear that pulsars with their strong gravitational fields and enormous
matter densities could only be fully understood on the basis of GR. As a comparison to the Solar
System, for NSs one typically finds |Φ|/c2 ∼ |EB|/mc2 ∼ 0.15. The discovery of the first pulsar in a
binary system by Russell Hulse and Joseph Taylor [5], then marked the beginning of precision gravity
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tests with radio pulsars. Since 1974, many more pulsars in binary systems have been discovered [6],
several of them suitable for gravity tests. Binary pulsars provide unique gravity experiments that
allow the exploration of various predictions by GR and its alternatives, depending on aspects like the
nature of the companion and the size of the binary orbit. One of the most constraining tests, when it
comes to alternative gravity theories, do come from a pulsar in a stellar triple system. All this will be
discussed in details below.

In the next section we give a short introduction to pulsars and observational details relevant for
this review. In Section 3 we review some of the theoretical foundations of current gravity experiments
with pulsars, with a focus on GR and some general aspects of alternative theories of gravity. In Section 4
we present different tests of the gravitational interaction of strongly self-gravitating bodies based
pulsars as members of double NS systems. This includes experiments that test the propagation of
photons in the gravitational field of a NS. Section 5 covers the most important binary pulsar tests for the
emission of dipolar GWs, a prediction of many alternatives to GR. In Section 6 we present pulsar tests
of the universality of free fall, a key part of the strong equivalence principle. In Section 7 we summarize
pulsar tests of various gravitational symmetries, some related to strong-field generalizations of different
parameters of the parametrized post-Newtonian (PPN) formalism, others to a temporal and spatial
constancy of the gravitational constant. In Section 8 we give an outlook into the future, with a particular
focus on the prospects coming from new and future radio telescopes. A summary is given in Section 9.

On a final note, the field of gravity experiments with pulsars has grown considerably since its
beginning, nearly half a century ago. Within the scope of this review, it is sheer impossible to give an
overview that is even roughly complete. For that reason, it was necessary to be selective in the topics
covered, a selection that is inevitably biased by personal preferences.

2. Pulsar Population and Pulsar Observations

To date, close to 3000 radio pulsars are known, ranging in their rotational periods from about
1.4 ms up to 23.5 s [6]. More than 10% of these “cosmic light-houses” are members of a binary system.
As binary companion one finds various types of stars, like NSs, white dwarfs (WD), and main sequence
stars, but also rather unexpected companions like planets [7]. There is also a pulsar known to be
member of a stellar triple system1, which we will discuss in more details in Section 6.1. Most of the
known pulsars populate the disc of our Galaxy or reside in Galactic globular clusters. A few pulsars
are known in the large and small Magellanic clouds.

The population of radio pulsars is best presented in a diagram that gives the rotational period (P)
on one axis and its derivative with respect to time (Ṗ) on the other (see Figure 1). The slow-down in
the rotational period is due to the loss of rotational energy due to magnetic dipole radiation, and for a
given period P scales with the square of the surface magnetic field strength. Typical values for the
surface magnetic fields for radio pulsars range from about 107 to about 1014 Gauss. Fast rotating
pulsars with small Ṗ, the so-called millisecond pulsars (MSP; bottom left corner of Figure 1), appear
to be particularly stable in their rotation. In terms of stability on long time-scales, some of them can
compare with the best atomic clocks on Earth [8]. MSPs are the result of a previous, stable mass transfer
from the companion, which leads to a “recycling” of an old pulsar, often spinning it up to millisecond
periods [9]. For that reason, they are mostly found as members of a binary system (see Figure 1). As a
result of the recycling process, fully-recycled binary pulsars (P . 10 ms) are usually found in very
circular orbits.

The rotational stability of recycled pulsars makes them ideal tools for precision measurements,
including experiments in gravitational physics. Most gravity tests with pulsars are based on the precise
measurement of the time of arrival (TOA) of the radio signals at the telescope, while keeping track of
the rotational phase of the pulsar. This technique is called pulsar timing.

1 Another triple system is located in a globular cluster with a white dwarf and a planetary mass system.
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Figure 1. Period-period derivative diagram for radio pulsars. Pulsars in binary systems are marked by
red circles. The pulsar in a stellar triple system is marked with a light blue square. Data have been
taken from [6].

2.1. Pulsar Timing

A TOA is generally not determined for an individual radio pulse of a pulsar. There are two reasons
for that. First, in most cases individual pulses are too weak to be detected, even with the largest radio
telescopes, and therefore it requires the coherent addition of a large number of pulses to obtain a
good signal-to-noise ratio. Furthermore, individual pulses are rather erratic in their appearance and
strongly fluctuate in shape and intensity. Only once a sufficient number of pulses (many hundreds
or even thousands) have been added, one gets a stable pulse profile. This stable, high signal-to-noise
profile is then cross-correlated with a standard profile (different for every pulsar) to obtain a TOA for
a particular rotational phase of the pulsar (see e.g., [10] for details). For some of the MSPs, such an
integrated pulse profile consists of several 100 thousand pulses, achieving a timing precision of well
below 1µs [11].

To connect the TOA of a pulsar signal at the telescope with the rotational phase of the pulsar at
the signal’s emission, one uses a so-called timing model that accounts for all the relevant contributions
in the pulsar system, in the Solar System, and in the interstellar space which have an effect on the
proper times of pulsar and observer and on the signal propagation. The most important contribution
from interstellar space is the presence of free electrons which affect the propagation speed of the
radio waves. This is a frequency dependent effect and can be determined and corrected for by having
observations at (at least) two different radio frequencies. For further details we refer the reader to the
standard literature of pulsar astronomy, like [10]. Once the influence of the Solar System on the TOA,
i.e., the motion of the telescope in the Solar System, the time dilation at the observatory, and the signal
propagation delays in the curved spacetime of the Solar System (Shapiro delay), have been corrected
for, one has the Solar System barycenter (SSB) TOA (tSSB). For a binary pulsar, tSSB is linked to the
proper time Tp of the pulsar by an expression of the following form

tSSB − t0 = D−1 ×
[
Tp + ∆R(Tp) + ∆E(Tp) + ∆S(Tp) + ∆A(Tp)

]
. (1)



Universe 2020, 6, 156 4 of 38

The time t0 is a (chosen) reference epoch. D is the Doppler factor related to the (generally
unknown) radial velocity between the SSB and the pulsar system. Only temporal changes of D are
of interest for gravity tests, and therefore D ≡ 1 can be chosen at a given epoch (see discussion
in [12]). The expressions ∆i correspond to different effects that influence the propagation time of
the pulsar signal. Quite generally, ∆R models propagation delays related to changes in the pulsar
position due to its orbital motion, ∆E describes the time dilation, ∆S encompasses effects that are
related to the propagation of the pulsar signal through the curved spacetime of the binary system,
and finally ∆A accounts for aberration effects, related to the fact that the pulsar acts as a moving
“light-house” having to send signals in a specific direction, i.e., towards Earth. All these contributions
depend on a number of so called Keplerian and post-Keplerian (PK) parameters, which are determined
in a fit of the model to the TOAs. Keplerian parameters are parameters which are known from
Newtonian celestial mechanics, like the orbital period Pb and eccentricity e, while PK parameters
represent phenomenological descriptions of different relativistic contributions present in the timing
signal. More specific details are given in the next section and can be found in [12,13].

The proper time of a pulsar is directly related to its rotational phase φ via the rotational frequency
of the pulsar, νp, and its derivatives [14]:

φ(Tp)

2π
= N0 + νp(Tp − t0) +

1
2

ν̇p(Tp − t0)
2 + . . . . (2)

The quantity N0 is an arbitrary constant. If model Equation (1) represents a complete description
of all relevant contributions to SSB TOAs of a pulsar, then a fit of the Keplerian and PK parameters
will result in a phase coherent solution that accounts for every single rotation of a pulsar via Equation (2).
For some of the best pulsars this covers many years or even decades, and in particular for MSPs that
corresponds to ∼1011 rotations. Covering such a long baseline with high timing precision, which in
some cases is better than 100 ns for a single TOA, leads to an unprecedented precision in many of the
Keplerian and PK parameters (see e.g., [15]). The phase coherent solution is therefore key to most of
the precision gravity tests with pulsars.

To conclude this section, we would like to give some general statements about the actual
measurability of the particularly relevant individual parameters in pulsar timing. Specific examples
are discussed in some of the following sections. The spin parameters of Equation (2) are generally
known to many significant digits, up to around 15 digits for νp in some cases. The pulsar’s location and
proper motion at the sky, i.e., its astrometry, are usually also well known, in particular for pulsars with
high timing precision. Concerning the orbital parameters of pulsars in binary systems, it all depends
on the orbital configuration which of the Keplerian and PK parameters can be measured, and what
precision one obtains for them. For any orbit, the orbital period Pb and the projected semi-major axis of
the pulsar orbit x (exact definition given in Section 3.2) are usually measured with very high precision.
For (sufficiently) eccentric orbits, in addition the orbital eccentricity e, the longitude of the periastron
ω (angle between ascending node and periastron), and a reference time of periastron passage T0

are known with high precision. In terms of relativistic effects, in eccentric orbits it is generally the
relativistic precession of periastron ω̇ that is detected first. Once the periastron has precessed for a
sufficient amount, the amplitude of the time dilation effect ∆E becomes measurable. For systems with
Pb . 1 d, at some stage also the change in the orbital period due to the emission of gravitational waves
Ṗb is observable, although that parameter is often “contaminated” by external effects, which we will
discuss in details further below. If a binary system is sufficiently close to the edge-on orientation,
then the Shapiro delay ∆S results in a prominent feature in the timing data that cannot be absorbed in
other timing parameters. The Shapiro delay gives then direct access to the mass of the companion and
the inclination angle i of the orbit. For a pulsar in a (nearly) circular orbit the location of periastron is
not well measured and therefore neither the advance of periastron nor ∆E can be measured in such
systems. Many examples for the measurement precision achieved in state of the art pulsar timing can
be found in [11].
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2.2. Pulse-Structure Analysis

The precision measurement of the arrival time of pulsar signals at the radio telescope is not
the only kind of pulsar observation that has been used in pulsar gravity experiments. Tests related
to relativistic spin precession require the determination of the orientation of a pulsar and how it
changes over time. Basically there are two features that can be utilized for this, the shape of the
(integrated) pulse profile and the polarization of the radio signal. Both of them are expected to change
in a characteristic way if precession changes the angle between the spin of the pulsar and the line of
sight (LOS) [16–20].

While on the one hand it is generally difficult to convert pulse profile changes (shape and intensity)
into quantitative measurements, since the geometry of the pulsar emission in many cases does not
follow a simple intrinsic geometry, the polarization, on the other hand, is often a more promising tool
to obtain quantitative information about the pulsar orientation. In terms of polarization, many pulsars
show a characteristic “swing” in their polarization as the LOS cuts through the magnetosphere of the
pulsar. In the simplest cases the linear polarization angle in the sky ψ can be sufficiently well described
by the rotating vector model [21]:

tan
(
ψ(φ)− ψ0

)
=

sin α sin(φ− φ0)

cos α sin ζ − sin α cos ζ cos(φ− φ0)
, (3)

with α being the angle between the pulsar spin and the (observed) magnetic pole, and ζ denoting
the angle between the spin and the direction towards the observer. A precession of the pulsar will
generally lead to a long-term change in ψ0 and ζ, which encode the information on the change in the
spin orientation.

Periodic variations of ψ0 and ζ can also result from the aberration caused by the orbital motion of
the pulsar. They depend on the details of the orbit and the orientation of the pulsar with respect to the
observer [13]. This in turn leads to orbital variations of the pulse profile and the polarization pattern,
the latter is evident from Equation (3). Such short-term periodic changes can be used to constrain the
geometry of the pulsar, in particular when combined with the long-term secular changes.

In [13] the phenomenological pulse-structure analysis has been worked out in great details,
by introducing a set of 11 PK parameters that in principle can be extracted from pulse-structure data.
Long-term changes in ψ0 and how this can be used in tests of spin precession has been discussed in
details in [22].

3. Theoretical Foundations

Pulsar timing experiments can be viewed as ranging experiments which are based on the
comparison of two very precise clocks. On the receiver side there is the atomic clock at the radio
telescope, measuring the proper time of the observer τobs. On the emitter side there is the “pulsar clock”
whose proper time τpsr can be determined form the rotational phase of the pulsars, via Equation (2),
where Tp ∝ τpsr. Any constant factor between Tp and τpsr gets absorbed when fitting for the frequency
νp and its derivatives. Figure 2 illustrates a spacetime view of a binary pulsar experiment.

In the previous section we already gave a general discussion of the timing model that connects
τpsr and τobs. In this section we will have a closer look at the theoretical aspects that enter Equation (1),
as they are at the heart of gravity tests with pulsars. In terms of details, we will restrict our discussion
to effects that already have been quantitatively tested with pulsars, and therefore are needed for the
interpretation of the observational results in the following sections. In the picture laid out in Figure 2,
the theoretical treatment of the timing model Equation (1) can be split into two parts, the pulsar’s
world line, including the proper time of the pulsar, and the world line of the photon propagating from
the pulsar to the observer. In other words, one has a combination of the orbital motion and the signal
propagation. We first discuss these two aspects within GR, and then address the most relevant changes
one expects from alternative gravity theories.
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SSBCM

τobs

τpsr

Σt

Figure 2. Spacetime view of pulsar timing. The null-geodesic of the radio signal (red dotted line)
connects the world line of the pulsar (purple) with that of the observer (blue). The pulsar moves around
the center of mass of the binary system (“CM”), while the observer moves around the barycenter of the
Solar System (“SSB”). The signal gets emitted at the pulsar’s proper time τpsr and arrives at the radio
telescope at the observer’s proper time τobs. Σt depicts a hypersurface of constant (coordinate) time t.

3.1. Orbital Dynamics

The orbital dynamics of a binary pulsar is described on the basis of the post-Newtonian (PN)
approximation scheme, where in GR the problem is greatly simplified due to the effacement of the
internal structure of the strongly self-gravitating NS (see [23] and references therein). At the first
PN approximation the orbital dynamics of the relative motion in harmonic coordinates is given by
the Lagrangian

LO = mp

(
~v2

p

2
+

~v4
p

8c2

)
+ mc

(
~v2

c
2

+
~v4

c
8c2

)

+
Gmpmc

r

[
1−

(~r ·~vp)(~r ·~vc)

2c2r2 −
~vp ·~vc

2c2 +
3(~vp −~vc)2

2c2

]
−

G2Mmpmc

2c2r2 , (4)

where mp and mc are the (inertial) masses of pulsar and companion respectively, M ≡ mp + mc ,
~r denotes their (coordinate) separation vector with r ≡ |~r|, and ~vp and ~vc the respective (coordinate)
velocities. The coordinate system assumed in Equation (4) is harmonic at lowest order [24]. At the first
PN level energy and angular momentum are conserved, a consequence of Equation (4). A particularly
elegant solution for this dynamics has been found by [24], where the orbital motion can be described
by a simple quasi-Keplerian parameterization. In terms of structure, the quasi-Keplerian paramerization
is similar to the Keplerian solution in Newtonian celestial mechanics, with two differences at the 1PN
level. First, instead of one eccentricity there are three different eccentricities in the three equations
(Kepler’s equation and the equations for polar coordinates r and φ). More importantly, there is a factor
in the equation for φ, that describes the relativistic precession of periastron. That factor is one of the
PK parameters and in GR is given by

k =
3β2

O
1− e2 , (5)

where βO ≡ (GMnb)
1/3/c, with nb ≡ 2π/Pb. Concerning the eccentricity e in Equation (5), at the 1PN

level there is no need to distinguish between the three different eccentricities. The secular change of
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the longitude of periastron ω is given by ω̇ = knb, while it is important to note that in the Damour &
Deruelle (DD) solution, ω does not advance linearly in time but linearly in the true anomaly (angle
between periastron and pulsar position) [24].

The mutual difference between the three eccentricities gives rise to two PK parameters. However,
while one is (practically) unobservable due to covariances with other timing parameters, the other one,
δθ , is extremely difficult to measure, even for highly eccentric relativistic binary pulsars. So far, δθ has
not been measured with high significance in any binary pulsar. It is important to note, that the actual
observable eccentricity in the DD timing model, as it is implemented in the pulsar standard analysis
software (e.g., [25]), is a combination of the three eccentricities [12], which we will simply denote by e
in this review.

Although in GR the GW damping contributions to the orbital dynamics appear at the 2.5PN
level (O(β5

O)) in the equations of motion, by now there are quite a few binary pulsars where this
contribution needs to be accounted for. GWs carry away energy and angular momentum from the
binary orbit [26,27]. In the DD timing this is incorporated as adiabatic changes of the Keplerian
parameters, first and foremost a secular change in the orbital period, which for GR reads [27]

Ṗb = −192π

5
1 + 73e2/24 + 37e4/96

(1− e2)7/2

mpmc

M2 β5
O . (6)

This is the result of the well-known quadrupole formula [28], which also holds for binary systems
containing strongly self-gravitating bodies (see [23] and references therein). In spite of its high PN
level (O(β5

O)), Ṗb resulting from GW damping is observable in several relativistic binary pulsars, as it
leads to a secular evolution in the orbital phase that grows quadratic in time [12–14].

The orbital motion gives rise to a further PK effect, that is closely linked to the proper time of the
pulsar. The transformation between Tp and the coordinate time t of the binary system is the so-called
Einstein delay, denoted by ∆E in Equation (1). To leading order it accounts for a changing second-order
Doppler effect due to the variation in the pulsar speed |~vp|, and a changing gravitational redshift
in the gravitational field of the companion due to the orbital variation in r. It is only relevant for
eccentric orbits, as constant factors drop out in pulsar timing. The periodic difference between Tp and
t is (with sufficient accuracy) described by a single amplitude, a PK parameter which in GR is given
by [14]

γE =
Pb
2π

e
(

1 +
mc

M

) mc

M
β2

O . (7)

Although the effect becomes stronger for wider orbits (∝ Pb), it is generally only measurable in
relativistic binary pulsars with short orbital periods. The reason for this is, that the Einstein delay
is apriori covariant with the over all Rømer delay (∆R in Equation (1); see Section 3.2 for details),
and can only be separated once the longitude of periastron ω has sufficiently advanced, which requires
a sufficiently large ω̇ [12,14].

3.2. Signal Propagation

The strongest influence on the signal propagation time, related to the binary system, comes simply
from the orbital motion of the pulsar. This is called the Rømer delay and denoted by ∆R in Equation (1).
The strength of that effect is given by the projected semi-major axis of the pulsar orbit, defined as
x ≡ ap sin i/c, where ap is the semi-major axis of the pulsar orbit and i is the orbital inclination,
i.e., the angle between the orbital angular momentum and the direction from the observer to the pulsar.
For relativistic binary pulsars, x is typically in the order of one to a few seconds.

The calculation for the Rømer delay is solely based on the orbital dynamics described in Section 3.1,
and assumes a flat spacetime for the signal propagation. For binary systems close to edge-on, i.e., i close
to 90◦, however, the gravitational field of the companion cannot be ignored. While the radio signal
propagates through the curved spacetime of the companion it is subject to the so-called Shapiro delay [29],
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a well tested effect in the Solar System [30]. In binary pulsars, to leading order the Shapiro delay
depends on two PK parameters, the range rS and the shape sS, and is given by

∆S = 2rS ln
(

1 + e cos f
1− sS sin(ω + f )

)
, (8)

where f is the true anomaly of the orbital motion [14]. In GR one finds

rS =
Gmc

c3 and sS = sin i . (9)

For the Shapiro range one finds rS ' 4.9255(mc/M�)µs, which for high inclinations, where sin i
approaches 1, gets strongly enhanced around superior conjunction (ω + f = 90◦).

Finally, since the time of emission of a pulsar signal is linked to the pulsar’s rotational phase,
at least in principle, one also has to account for aberration. Because of aberration, the rotational phase
of the pulsar at which a signal is sent towards Earth periodically changes as the pulsar moves around
the center of mass of the binary system [12,17]. While aberration can lead to periodic changes in the
pulse profile, as we have discussed in Section 2.2, aberration contributions to the TOAs, however,
become relevant only if there is a change in the spin orientation of the pulsar. For a fixed spin direction,
the aberration delay ∆A cannot be separated from the Rømer delay ∆R [12,13]. Having said that,
for pulsars in relativistic binary orbits, one might expect a change in the spin orientation, as we
discuss next.

3.3. Spin Precession

If the pulsar spin is misaligned with respect to the orbital motion, then relativistic spin-orbit
coupling leads to the so-called geodetic precession of the spin around the orbital angular momentum~L.
Since~L is many orders of magnitude larger than the pulsar spin, it very nearly coincides with the total
angular momentum of the system. The rate of precession for a binary system has first been worked
out within GR in [31]. Averaged over one orbit, one finds

ΩSO
p =

nb

1− e2

(
2 +

3mc

2mp

)
mpmc

M2 β2
O , (10)

For the test particle limit (mp → 0), Equation (10) approaches the well known expression for the
de Sitter-Fokker precession [32,33].

A change in the orientation of the pulsar spin with respect to the LOS has two major observable
effects. First, it leads to changes (intensity and shape) in the pulse profile as the LOS cuts the active
emission region of the pulsar differently at different epochs [16,18,20]. Second, it changes the shape
of the characteristic swing of the linear polarization (Equation (3)), as well as the absolute value of
the position angle of the polarization in the sky [13,16,22]. A test of the relativistic spin precession
in binary pulsars is therefore generally based on a, to some extent model dependent, pulse structure
analysis (see Section 2.2). A somewhat unique exception will be discussed in Section 4.2.

3.4. Testing General Relativity with Post-Keplerain Parameters

In most cases the two masses of a binary pulsar, mp and mc, are apriori unknown. There are
exceptions, for instance, where the companion is a bright WD which allows for high-resolution
spectroscopy, giving access to the masses with the help of optical observations (see Section 5),
but generally one needs the measurement of at least three PK parameters for a test of GR
(see e.g., [13,34]). With two PK parameters the system is fully determined for a given gravity theory,
as both of the masses can be computed based on that theory. Once a third PK parameter has been
measured the system is over-determined, and therefore provides a test of the theory assumed. Only if
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all three PK parameters agree on a certain set of masses, i.e., a common region in the mass-mass plane,
the theory used has passed the test. This will become clearer in Section 4.

3.5. Alternative Gravity Theories and Pulsar Timing

GR is based on two basic postulates [1,35,36]. The first one is the postulate of universal coupling
between the matter fields Ψmat and gravity, meaning that the matter part of the total action has the
form Smat[Ψmat; gµν], where gµν is the spacetime metric. Theories that fulfil this principle are called
metric theories of gravity [3]. The second postulate is the field equations that describe the dynamics of
gµν, and can be derived from the total action [37]

S = Smat[Ψmat; gµν] +
c4

16πG

∫
R[gµν]

√
−g d4x , (11)

where g ≡ det(gµν) and R is the curvature/Ricci scalar. Under the assumptions stated in Lovelock’s
theorem [38,39] (see also [40]), GR emerges as the unique theory of gravity. However, there are various
ways to build a viable gravity theory that circumvents Lovelock’s theorem (see Figure 1 in [41]). One of
the most popular approaches is the introduction of additional dynamical fields in the second term of
the right hand side of Equation (11), while keeping the postulate of universal coupling. Amongst these
theories, scalar-tensor theories are presumably the most well studied alternatives to GR [42].

Introducing additional fields in Equation (11), generally has a significant impact on the structure
and motion of compact bodies (see a detailed discussion in [3]). The “gravitational charges” of bodies
linked to the additional gravitational fields are generally structure dependent, and can be very different
for a NS, as compared to Solar System bodies or WDs. At the same time, these additional gravitational
fields can have a significant impact on the motion of a binary pulsar and the propagation of its radio
signals in the spacetime of the binary system. Pulsar experiments are therefore sensitive to deviations
from GR resulting from the highly relativistic interior of NSs. In this sense, pulsar experiments are
strong-field gravity tests, even though their orbital velocities are small compared to the speed of
light [3,43]. In other words, pulsars probe the mildly relativistic strong-field regime of gravity [44].

Structure dependent modifications of the gravitational interaction enter already at the Newtonian
level, by introducing a body dependent effective gravitational constant Ĝab (= Ĝba) for the interaction
between mass a and mass b. For a wide range of fully conservative theories of gravity, including
scalar-tensor theories, the orbital dynamics up to first post-Newtonian approximation is given by
the modified Einstein-Infeld-Hoffmann formalism (mEIH) [45]. The 1PN equations of motion for
two strongly self-gravitating bodies can be derived from the following Lagrangian

LmEIH
O = mp

(
~v2

p

2
+

~v4
p

8c2

)
+ mc

(
~v2

c
2

+
~v4

c
8c2

)

+
Ĝpcmpmc

r

[
1−

(~r ·~vp)(~r ·~vc)

2c2r2 −
~vp ·~vc

2c2 + (1 + 2γ̂pc)
(~vp −~vc)2

2c2

]

+
(

1− 2
mc

M
β̂

p
cc − 2

mp

M
β̂c

pp

) Ĝ2
pcMmpmc

2c2r2 , (12)

with the three structure dependent parameters γ̂pc, β̂
p
cc, and β̂c

pp at the 1PN level [34,45,46].2 Sub- and
superscripts “p” and “c” correspond to pulsar and companion respectively. In the weak-field limit,
these parameters approach their corresponding body-independent parameters of the PPN formalism,
i.e., γ̂pc = γPPN and β

p
cc = βc

pp = βPPN. In this sense, they can be seen as the strong-field analogues
of the Eddington parameters [47]. Depending on the details of the theory under investigation, in the

2 We will generally use ˆ to indicate a structure dependent strong-field quantity.
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presence of NSs these 1PN strong-field parameters can be very different from their PPN counterparts.
This is particularly prominent in the presence of phenomena like spontaneous scalarization [48],
where the weak-field PPN parameters can be identical to GR but γ̂pc and β̂pc can have large deviations.
In GR, where the internal structure of a body is effaced, one has γ̂pc = β̂

p
cc = β̂c

pp = 1.
The structural similarity between Equations (4) and (12) results in the fact, that for both the solution

to the equations of motion can be cast into the same simple quasi Keplerian structure of [24]. It is then
only the parameters as function of energy, angular momentum, and the masses which are different.
For pulsar timing this means, that the DD timing formula can be applied as a phenomenological model,
where the PK parameters as functions of the Keplerian parameters and the (inertial) masses are theory
dependent [13]. For instance, for the precession of periastron, Equation (5) changes to

k =
(

2 + 2γ̂pc −
mc

M
β̂

p
cc −

mp

M
β̂c

pp

) β̂2
O

1− e2 , (13)

where β̂O ≡ (ĜpcMnb)
1/3/c. We will demonstrate below that the statement of the (rather) general

applicability of the DD model also holds for the Einstein and the Shapiro delay.
The damping of the orbital motion and therefore the change in the orbital period, i.e., Equation (6),

also gets generally modified in alternatives to GR, as the additional (dynamical) gravitational fields
contribute to the loss of orbital energy (and angular momentum). In asymmetric binaries, where pulsar
and companion have different amount of “gravitational charges”, the orbital motion gives rise to a
time-varying gravitational dipole which is the source of dipolar GWs [3,49]. The GW damping related
to the dipolar GWs generally enters the equations of motion already at the 1.5PN level, i.e., order β̂3

O
(see e.g., [50]). This contribution is therefore (formally) many orders of magnitude stronger than the
quadrupolar GW damping of GR. However, the actual amount of dipolar radiation depends quite
sensitively on the difference in the gravitational charges. For that reason pulsar-WD systems are
particularly interesting to test this aspect of GW generation, as we show in Section 5. An explicit
equation for the orbital period change due to dipolar GW will be given further below, within a specific
class of gravity theories.

Time dilation, i.e., Equation (6), gets modified as well, since both the orbital velocity of the pulsar
and the gravitational redshift caused by the companion are usually different from GR. Quite generally,
one finds the same orbital behaviour as in GR but a change in the amplitude of the Einstein delay
according to

γE =
Pb
2π

e

(
Ĝ0c

Ĝpc
+

mc

M

)
mc

M
β̂2

O , (14)

where Ĝ0c is the effective gravitational constant between the companion and a test particle,
i.e., the effective gravitational constant that enters the g00 component of the companion’s spacetime
metric (cf. Equation (16)) [13,45].

In alternative gravity theories, the local gravitational constant Gloc as seen by the pulsar when
moving in the gravitational field of the companion is generally expected to change as a function of
the distance r [49]. As a consequence, the pulsar’s compactness and therefore its moment of inertia Ip

change along the orbit, leading to a periodic variations in the rotational velocity of the pulsar while
its angular momentum (i.e., its spin Sp = 2πνp Ip) is conserved. To leading order one generally has
Gloc = G0(1− η̂cmc/c2r), where η̂c is a body-dependent parameter related to the gravitational field of
the companion [45]. As a consequence, the variation in the time of emission of the pulsar signal due to
the change of Gloc has the same orbital dependency as the time dilation effect. It is therefore part of the
observed Einstein delay amplitude, i.e., γnew

E = γE + δγE with

δγE =
Pb
2π

e

(
κpη̂c

Ĝpc

)
mc

M
β̂2

O , (15)
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where κp ≡ −∂(ln Ip)/∂(ln G) measures the change of the moment of inertia due to a change in the
gravitational constant [51]. In GR, where there is no variation of the local gravitational constant,
one has δγE = 0.

The modification of the gravitational field of the companion also affects the signal propagation,
i.e., the Shapiro delay Equation (8). If the spacetime metric of the companion in the first
post-Minkowskian approximation has the form (i, j = 1, 2, 3)

g00 = −1 + 2
Ĝ0cmc

c2r
, g0j = 0 , gij =

(
1 + 2γ̂0c

Ĝ0cmc

c2r

)
δij , (16)

as it is the case for many alternatives to GR, then the functional form of the Shapiro delay as given in
Equation (8) remains unchanged [13,45]. Also the Shapiro shape parameter sS can still be identified
with sin i. It is only the range of the Shapiro delay in Equations (9) that gets modified according to

rS =
1 + γ̂0c

2
Ĝ0cmc

c3 . (17)

Similarly to γ̂pc, γ̂0c corresponds to γPPN in the weak-field limit. Note, while sS is still the sine
of the orbital inclination i, its connection to the masses via Kepler’s third law (with Ĝpc) and the
observed projected semi-major axis of the pulsar orbit, x, gets however modified with respect to
GR: sS = xnbM/mc β̂O.

Finally, in [13] a generic expression for the geodetic precession of a pulsar is given, which reads

ΩSO
p =

nb
1− e2

[
Γ̂c

p

Ĝpc
+

(
Γ̂c

p

Ĝpc
− 1

2

)
mc

mp

]
mpmc

M2 β̂2
O , (18)

where Γ̂c
p is the body-dependent coupling function that enters the Lagrangian for the spin-orbit

interaction. In GR one has Γ̂c
p = 2G, and in the weak-field (PPN) limit one finds Γ̂c

p = (1 + γPPN)G.
Although the latter expression suggests Γ̂c

p = (1 + γ̂pc)Ĝpc, in a fully generic approach Γ̂c
p can be seen

as an independent strong-field parameter, where even Γ̂c
p 6= Γ̂p

c [13].
For a given (conservative) gravity theory, the strong-field parameters Ĝpc, Ĝ0c, γ̂pc, γ̂0c, β̂

p
cc,

β̂c
pp, κp, η̂c, Γ̂c

p, and Γ̂p
c can be calculated from first principles as a function of the masses mp and mc.

Since they generally depend on the structure of the bodies, one also needs to specify the equation of
state (EOS) for the body under consideration. In practice, there is some uncertainty for the EOS of NSs,
which needs to be accounted for when testing a theory.

To illustrate the above, with the help of a specific gravity theory, we will use the mono-scalar-tensor
theory of Damour & Esposito-Farèse (called DEF gravity in this review; see [48,52,53] for the details
given below). This class of alternatives to GR is well studied and shows a number of effects
that quite generally illustrate how gravity could deviate from GR, in particular in the presence
of strongly self-gravitating bodies. Besides a spacetime metric gµν, it contains a mass-less scalar field
ϕ, with asymptotic value ϕ0 at spatial infinity. The field equations of DEF gravity can be derived from
the (Einstein frame) action

S = Smat[Ψmat; g̃µν] +
c4

16πG∗

∫
(R[gµν]− 2gµν∂µ ϕ∂ν ϕ)

√
−g d4x , (19)

where all matter fields couple universally to the physical (Jordan) metric
g̃µν ≡ gµν exp[2α0(ϕ− ϕ0) + β0(ϕ− ϕ0)

2]. The Newtonian gravitational constant, as measured in
a Cavendish-type experiment, is related to the bare gravitational constant G∗ by G = G∗(1 + α2

0).
The parameters α0 and β0 define the two-dimensional space of DEF gravity. Jordan-Fierz-Brans-Dicke
gravity [54–56] corresponds to β0 = 0, and GR corresponds to α0 = β0 = 0. The quantities
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(“gravitational form factors”) of a body with mass ma and moment of inertia Ia that enter the PK
parameters are

αa ≡
∂ ln ma

∂ϕ0
, βa ≡

∂αa

∂ϕ0
, Ka ≡ −

∂ ln Ia

∂ϕ0
, (20)

where the number of baryons is kept fixed when taking the partial derivatives. The quantity αa is the
effective scalar coupling of the body and gives its specific scalar charge. For weakly self-gravitating
masses αa approaches α0. In the parameter space where spontaneous scalarization does occur for
NSs (β0 . −4.5), αa can be of order unity even if α0 = 0. The effective gravitational constant for the
interaction of two bodies is given by Ĝab = G∗(1 + αaαb), and for the strong-field PPN parameters
one finds

γ̂ab = 1− 2αaαb
1 + αaαb

and β̂a
bc = 1 +

βaαbαc

2(1 + αaαb)(1 + αaαc)
. (21)

Consequently, the PK parameters read

k =

(
3− αpαc

1 + αpαc
−

mpα2
pβc + mcα2

c βp

2M(1 + αpαc)2

)
β̂2

O
1− e2 , (22)

γE =
Pb
2π

e
(

1 +Kpαc

1 + αpαc
+

mc

M

)
mc

M
β̂2

O , (23)

rS =
G∗mc

c3 , (24)

sS =
xnb

β̂O

M
mc

. (25)

Above we did not provide an expression for ΩSO
p , since so far this quantity has not played any

role in constraining DEF gravity. For the orbital period decay due to dipolar GWs one has

Ṗdipole
b = −2π

1 + e2/2
(1− e2)5/2

mpmc

M2
(αp − αc)2

1 + αpαc
β̂3

O +O(β̂5
O) . (26)

Apart from the dipole contribution, there are also monopole and quadrupole contributions related
to the scalar field. Both of them start at the 2.5PN level (O(β̂5

O)) and are usually subdominant to Ṗdipole
b .

Detailed expressions can be found in [52].
There are various theories that deviate from above assumptions. For instance, semi-conservative

theories that admit a global preferred frame of reference for the gravitational interaction,
like Einstein-Æther and Bekenstein’s TeVeS. We will not go into details here, and refer the interested
reader to [3,57], and references therein. Some of these alternatives have recently been tightly
constrained or even been ruled out by the multi-messenger observations of the double NS merger
GW170817 [58], which confirmed the speed of the tensorial GW modes to be practically equal to c
within about one part in 1015 (see e.g., [59]). Note, however, this is not the case for DEF-like gravity
theories, where the tensorial GW modes travel at the speed of light (if the scalar field is mass-less,
this also holds for the scalar mode) [3].

4. Gravitational Interaction of Strongly Self-Gravitating Bodies

Binary pulsars where the companion is likewise a NS are in their orbital dynamics driven by
the interaction of two strongly self-gravitating bodies. If the binary orbit is sufficiently compact
(Pb . 1 day), in order to show prominent relativistic effects in the orbital motion of the pulsar, then this
should allow a number of unique tests of GR and its alternatives (see Section 3). Furthermore, if the
system is seen sufficiently close to edge-on, meaning its orbital inclination i being close to 90◦, then this
allows to probe how the radio signals from the pulsar travel in a spacetime geometry sourced by the
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strongly self-gravitating companion.3 Currently, out of the ∼300 binary pulsars there are about 20
which have (most likely) a NS companion, half of which have an orbital period of less than one day [6].
Quite a few of the latter group has turned out to be excellent gravity laboratories. Notably, the very
first binary pulsar discovered, PSR B1913+16, belongs to them.

4.1. Hulse-Taylor Pulsar and the Existence of Gravitational Waves

PSR B1913+16, which by now called the Hulse-Taylor pulsar, was discovered in summer 1974 by
Russell Hulse and Joseph Taylor [5]. It is a mildly recycled 59-ms pulsar in a quite eccentric (e = 0.62)
7.8-h orbit with an unseen companion, which almost certainly is a NS as well. Already a few months
after its discovery, a significant change in the longitude of periastron was measured, amounting to
ω̇ = 4.2 deg yr−1 [60]. This relativistic precession of periastron is 35,000 times larger than the GR
contribution to the precession of the Mercury perihelion. At that stage it was therefore already clear
that the discovery of the Hulse-Taylor pulsar would be a milestone in experimental gravity.

Since the two masses, mp and mc were apriori unknown, Taylor and his group had to wait a few
years to measure two more PK parameters, in order to conduct a GR test (cf. Section 3.4). By the end of
1978, besides a greatly improved measurement of ω̇, the Einstein delay amplitude γE and the change
in the orbital period Ṗb had been measured [61]. At that time, the measurement error Ṗb was still
about 20%, which nevertheless marked the first confirmation of the existence of GWs as predicted by
GR, seen through their back reaction onto the emitting system. Over the time the precision on these
three PK parameters has greatly improved [62–65], leading to a precise measurement of the masses
(mp = 1.438± 0.001 M� and mc = 1.390± 0.001 M�). The observed change in the orbital period is by
now measured with a precision of 0.04%, i.e., Ṗobs

b = (−2.423± 0.001)× 10−12 [65]. This, however,
is not the intrinsic change of the orbital period purely due to GW emission. Ṗobs

b is “contaminated”
by an apparent orbital period change due to the Shklovskii effect (an apparent acceleration due to
the transverse motion of the pulsar system [66]) and the Galactic differential acceleration between
the SSB and the pulsar system [67]. In order to correct for these contributions, one needs to know
the distance to the Hulse-Taylor pulsar. Unfortunately, there is a large uncertainty in the estimation
of that distance (9 ± 3 kpc [68]), which dominates the error in the determination of the intrinsic
Ṗb. As a result, on gets for the ratio between the intrinsic and the predicted orbital period change
Ṗintr

b /ṖGR
b = 0.9983± 0.0016 [65]. The GR prediction has been computed from Equation (6), based

on the masses determined from Equations (5) and (7). In spite of the limitation due to the distance
uncertainty, currently the Hulse-Taylor pulsar is the second best test for the quadrupole formula of
GW emission.

Apart from the ω̇-γE-Ṗb test, the Hulse-Taylor pulsar in the meantime allowed for the detection of
a Shapiro delay in that system, and there is a hint on the presence of the relativistic deformation of the
orbit δθ [65].

4.2. The Double Pulsar: A Wealth of Relativistic Effects

The year 2003 saw the discovery of a truly remarkable system, the so-called Double Pulsar
(PSR J0737−3039A/B) [69,70]. The Double Pulsar consists of two active radio pulsars, a mildly
recycled 23 ms pulsar (pulsar A) and a non-recycled slow pulsar with 2.8 s rotational period (pulsar B).
They move around each other in a mildly eccentric (e = 0.089) orbit in a bit less than 2.5 h. The system
is therefore clearly more relativistic than the Hulse-Taylor pulsar (Section 4.1), showing an advance of
periastron ω̇ of nearly 17 degrees per year. From the simultaneous timing observations of A and B
one has the projected semi-major axes of both of the orbits, which directly gives the mass ratio of the

3 Strictly speaking, the radio signals propagate in a spacetime sourced by the pulsar and the companion. However, to leading
order the effect on the signal propagation (Shapiro delay) is dominated by the potentials of the companion.
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system, since q ≡ mA/mB = xB/xA = 1.0714± 0.0011 [70,71]. In fact, this ratio is correct up to 1PN
order for any Lorentz-invariant gravity theory (see discussion in [34]).

In terms of relativistic effects, the Double Pulsar shows, to begin with, the ones already known
from the Hulse-Taylor pulsar [71]: ω̇, γE, and Ṗb. The GW damping test from Ṗb by now has reached
a level of well below 0.1% [15], which is currently the best test for the quadrupole formula of GW
generation in GR. Compared to the Hulse-Taylor pulsar, the Double Pulsar has the big advantage of
being comparably close by (distance ∼1 kpc), where Shklovskii and Galactic corrections to Ṗb are small.
Furthermore, there are direct ways of measuring its distance via very long baseline interferometry
(VLBI) [72], and eventual via pulsar timing [22].

It is interesting to compare this with tests of GW emission by the LIGO/Virgo collaboration [73,74].
At the 0PN level in the radiation reaction force (corresponding to the 2.5PN level in the equations of
motion), the Double Pulsar is about three orders of magnitude more constraining. This is also the case
for the dipolar term (−1PN in the radiation reaction force, 1.5PN in the equations of motion). One has
to keep in mind, however, that in particular the LIGO/Virgo tests based on binary black hole mergers
probe the GW generation of a completely different class of objects, and it therefore depends on the
details of a gravity theory how these limits can be compared. Needless to say, that the Double Pulsar
becomes very quickly unconstraining as one moves to higher PN orders, due to its comparably small
orbital velocity (v ∼ 0.002 c).

The Double Pulsar is also unique in its orientation. It is the most highly inclined binary pulsar
known to date. The tilt of the orbital plane with respect to the LOS is so small, that at every superior
conjunction of pulsar A, for about 30 s its signals get (periodically) blocked by the rotating plasma-filled
magnetosphere of pulsar B [75,76]. From modelling these eclipses, [77] found an inclination of
i = 89.3◦ ± 0.1◦. Such a high inclination leads to a very prominent Shapiro delay of about 130µs,
allowing the measurement of the Shapiro range, rS, and the Shapiro shape, sS, parameters. The shape
parameter, which can be identified with sin i within GR and a broad class of other gravity theories
(see Section 3), has been measured with a precision of 0.05% already a few years after the discovery of
the Double Pulsar [71]. The resulting (timing) inclination agrees well with the inclination derived from
the modelling of the eclipses of A [77]. The range rS is somewhat less precise (a few %), but agrees
well with the mass of B derived from other PK parameters. This is the most precise test for the
propagation of photons in the spacetime of a strongly self-gravitating object. When looking at the
maximum spacetime curvature probed, this is many orders of magnitude stronger than in Solar System
signal-propagation experiments or in Event Horizon Telescope (EHT) observations [78], since the
signals of A come as close as ∼10,000 km to B (see Section 9 for more details).

Finally, due to its nearly edge-on orientation, the Double Pulsar allowed for a quite novel test of
relativistic spin precession (Equations (10) and (18)), by using the eclipses of pulsar A at its superior
conjunction caused by the magnetosphere of pulsar B [79]. More details will be given in Section 4.3.
Interestingly, the spin-precession of B around the orbital angular momentum, which is about 5 degrees
per year, has changed the orientation of B such that since 2008 B is no longer visible from Earth [80].
This, however, does not pose a significant limitation to our gravity tests with the Double Pulsar system,
since most of these tests do come from the anyway much more precise timing of A. It is not expected
that pulsar A will suffer the same fate as B, since in the case of A the rotational axis is closely aligned
with the orbital angular momentum [81].

Figure 3 gives the mass-mass diagram for the Double Pulsar, which combines all the GR tests
discussed here. As one can see, GR passes all these tests with flying colors.

With this wealth on PK parameters and the mass ratio at hand, one can even derive some
generic limits on the strong-field PK parameter of the modified Einstein-Infeld-Hoffmann formalism
in Section 3.5 (see [22,79] for details).
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Figure 3. Mass-mass diagram for the Double Pulsar assuming GR. Each pair of curves corresponds to a
measured PK parameter (±1σ), with the exception of the mass ratio q. The corresponding equations are
given in Sections 3.1–3.3. The orange regions are excluded by the fact that sin i ≤ 1. The inset clearly
shows that there is a small region in the mass-mass plane which all seven PK parameters agree on.
Having apriori two unknowns (mA and mB), this means (7− 2) = 5 successful tests of GR from the
Double Pulsar.

4.3. Spin Precession

Shortly after the discovery of the Hulse-Taylor pulsar, the idea was put forward that this system
could allow for a test of the spin precession resulting from relativistic spin-orbit coupling (geodetic
precession) [82]. While eventually changes in the pulse profile could be observed and modelled under
the assumption of geodetic precession [18,20,83], till today the Hulse-Taylor pulsar has not allowed for
a quantitative test of the precession rate. Quantitative tests of the relativistic spin precession of a pulsar
came then from other systems, some of them discovered decades later. Although the precision of these
tests is moderate (order few %) compared to the test of geodetic precession with Lunar laser ranging
(LLR) [84] or Gravity Probe B (GPB) [85], there are two qualitatively different aspects in binary pulsar
tests. Firstly, it tests spin-orbit coupling in systems where both masses are of similar size, therefore
testing terms beyond the test-particle limit. Secondly, it is a test with a strongly self-gravitating
“gyroscope”, and therefore also providing constraints on strong-field effects in spin-orbit coupling.
In the following we will summarize the three binary pulsars that so far have allowed for a good
quantitative test of geodetic precession.

4.3.1. PSR B1534+12

PSR B1534+12 was the second pulsar with a NS companion discovered in the Galactic disk [86].
It is a mildly recycled 38 ms pulsar in an eccentric (e = 0.27) 10.1-h orbit. By now the PK parameters
ω̇, γE, and Ṗb have been measured with high precision. Unfortunately there is a large uncertainty in
the distance to PSR B1534+12 leading to a large uncertainty in the Shklovskii correction for Ṗb. As a
consequence, the GW damping in this system is not well determined. The PSR B1534+12 system has



Universe 2020, 6, 156 16 of 38

an orbital inclination of 78◦, leading to a prominent Shapiro delay and the measurement of the PK
parameters rS and sS. Details on the latest timing results for this pulsar can be found in [87].

The spin of PSR B1534+12 is tilted by about δ = 27◦ (or 153◦) with respect to the orbital angular
momentum, as a result of the second supernova explosion in that system [87]. Consequently, orbital
modulations of the pulse profile and the polarization along the orbit are expected, as well as long-term
secular changes in these as the spin precesses with a rate of 0.514 deg yr−1 (GR prediction) around
the orbital angular momentum. And indeed, as a result of the good signal-to-noise ratio obtained for
PSR B1534+12 with the 305-m William E. Gordon Arecibo radio telescope, such changes were first
reported by [88], providing the first quantitative test of geodetic precession in a binary pulsar. While the
uncertainties in [88] were still comparably large, a refined analysis based on a longer observing time
span by [87] lead to a measurement of ΩSO

p = 0.59+0.12
−0.08 deg yr−1, in agreement with the GR prediction.

Modelling the precession of PSR B1534+12 also lead to the actual measurement of the tilt δ of its spin
(within the δ→ 180◦ − δ ambiguity) obtaining a precision of about three degrees, with the value for δ

already given above. Considerations from binary evolution and arguments with respect to asymmetric
supernova explosions and resulting kicks onto the newborn NS suggest that the smaller misalignment
angle, i.e., δ < 90◦, is more likely [89].

4.3.2. PSR J1906+0746

The so far best test for the geodetic precession of a pulsar comes from the non-recycled 144 ms
pulsar PSR J1906+0746, which is in a relativistic 4.0-hour orbit with an unseen companion, that most
likely is also a NS. In terms of certain properties, like the eccentricity (e = 0.085) and the masses
(mp = 1.29± 0.01 M� and mc = 1.32± 0.01 M�), it shares similarities with the Double Pulsar, but here
we only seem to see the non-recycled component [90].

For PSR J1906+0746 the (present) orientation of the spin and the magnetic axis is such that the
LOS passes close to both of the magnetic poles while the pulsar rotates. Consequently, observations
revealed the presence of two polarized components in the pulse profile about half a period apart
and well described by Equation (3) [91]. Having this information from both of the emission regions
allowed a precise determination of the viewing geometry. Regular monitoring with the 305-m William
E. Gordon Arecibo radio telescope since 2012, revealed a gradual change in the orientation due to
geodetic precession. In combination with earlier data from the Arecibo and Nançay telescopes, it was
possible to determination of the precession rate with good precision: ΩSO

p = 2.17± 0.11 deg yr−1,
in excellent agreement with the GR value of 2.23 deg yr−1 [91].

4.3.3. PSR J0737–3039B

A quite unique approach to test the spin precession of a pulsar was taken in the Double Pulsar.
As mentioned in Section 4.2, pulsar A gets eclipsed by the magnetosphere by pulsar B, every 2.45 h
when it moves through its superior conjunction [75]. The eclipse lasts for about 30 s. Soon it had been
noticed in high signal-to-noise observations from the 100-m Robert C. Byrd Green Bank Telescope that
the eclipse is not continuous during these 30 s [92]. In fact, as the “doughnut-shaped” magnetosphere
of B rotates with B’s period of 2.8 s, there are phases where the signals from A can get through to
Earth. The spacing between these “bright” phases during the eclipse encodes the orientation of B’s
magnetosphere as it rotates and therefore the orientation of B’s spin. A simple geometrical model
was proposed in [79], able to quantitatively describe the eclipse pattern over a period of several years
during which the spin precession had significantly altered the direction of B’s spin, before it eventually
precessed away from the LOS [80]. The model allowed for a fit of the precession rate, leading to
ΩSO

B = 4.77+0.66
−0.65 deg yr−1 which agrees with the GR prediction of 5.073 deg yr−1 (see also Figure 3).

The result is somewhat less precise than the one from PSR J1906+0746 (Section 4.3.2), but comes
from a completely different method. Moreover, the fact that the Double Pulsar gives a (generally)
theory independent access to the mass ratio (see Section 4.2) allowed for a generic constraint on the
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body-dependent spin-orbit coupling function in Equation (18): Γ̂A
B /2ĜAB = 0.95± 0.11 [22,79]. Note,

in GR Γ̂A
B /2ĜAB = 1.

5. Dipolar Gravitational Radiation

In the previous section we have seen that pulsars with NS companions provide the so far best test
for the emission of quadrupolar gravitational waves as predicted by GR. However, as discussed in
Section 3, in most alternatives to GR that predict additional gravitational charges (e.g., scalar charges)
for NSs, the leading order contribution to the GW damping of the orbit comes from dipolar GWs, which
enter the equations of motion already at the 1.5PN level (see Section 3). Yet, a significant emission of
dipolar GWs generally requires a sufficient asymmetry in the compactness (respectively in the fractional
binding energy) of the two masses in a binary system.4 For that reason, the double NS systems of
Section 4, where mp ∼ mc, provide only weak limits on dipolar GWs, in spite of the high precision
obtained in the measurement of their orbital period decay. Sufficient asymmetry in compactness can
be found in binary pulsars with WD companions. While the compactness C ≡ Gm/Rc2 for typical
pulsar (mass m ∼ 1.4 M�) is of the order of 0.2, for WDs one finds, due to their comparably large radii
R, C . 10−3. That makes such systems certainly interesting for dipolar radiation tests.

The large majority of the ∼300 binary pulsars have a WD as a companion, and quite a few of
them are in compact orbits with Pb . 1 day. Some of the most precise “pulsar clocks” are found in
such systems. They are fully recycled MSPs, which then generally means that the binary orbits have
very low eccentricities (see Section 2). As a consequence, often neither the advance of periastron (ω̇)
nor the Einstein delay (γE) is observable in such systems. And if the system is not seen sufficiently
edge on, meaning that no Shapiro delay is detected, then the orbital period change Ṗb is often the only
PK parameter measurable. Still, a small number of these systems provide some of the best tests of
dipolar GWs. In fact, the current best limits on dipolar GW damping do come from PSR J1738+0333,
a MSP where the only relativistic effect measured from timing is the orbital period decay Ṗb.

5.1. PSR J1738+0333: Constraining Dipolar Gravitational Radiation

PSR J1738+0333 is a 5.9 ms pulsar with a Helium WD companion. Pulsar and WD orbit each
other in a nearly circular orbit (e < 4 × 10−7) in just 8.5 h (see [94] for the latest timing results).
The orbital inclination of the system is only 33◦, and a Shapiro delay therefore undetectable, as it
is completely covariant with the Rømer delay (cf. [95]). Fortunately, the Helium WD companion
is seen optically, with prominent Balmer lines, which eventually allowed the determination of the
WD mass (mc = 0.181+0.007

−0.005 M�) and, in combination with the timing observations, the mass ratio
(q ≡ mp/mc = 8.1± 0.2) [96]. With this, and the well measured Keplerian parameters, the system is
fully determined.

Extensive timing observations, in particular with the 305-m William E. Gordon Arecibo radio
telescope, allowed the measurement of the distance to the system (1.5 kpc), and more importantly the
observation of the orbital period decay due to GW emission. After correcting for the Shklovskii effect
and the Galactic differential acceleration, [94] obtained for the (intrinsic) change in the orbital period

Ṗintr
b = −25.9± 3.2 fs s−1 , (27)

which agrees well with the GW damping predicted by GR (see Figure 4).

4 In principle, a difference in the proper rotation of the masses can also create a gravitational dipole (see e.g., [93]), which
however is generally negligible for the typical rotations found in double-NS binary pulsar.
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Figure 4. Mass-mass diagram for PSR J1738+0333 based on GR. All three curves (companion mass
mc, mass ratio q, and GW damping Ṗb) agree on a common range of pulsar and companion masses
(solid lines indicate the one-sigma range). The grey area is excluded by the mass function and the
condition i ≤ 90◦.

Compared to the <0.1% GW test with the Double Pulsar (Section 4.2), the limit (27) appears to
be quite weak and of no interest. However, in the dipolar radiation test the lack of precision is more
than compensated by the high asymmetry of the system. To illustrate this, one can do a comparison
of the compactness between pulsar and companion. For the Double Pulsar ∆C = CA − CB ≈ 10−2,
while for the PSR J1738+0333 system one finds ∆C = Cp − Cc ' Cp ≈ 0.2 (these numbers depend to
some extent on the chosen EOS). Keeping in mind that the figure of merit for dipolar radiation tests
is proportional to ∆C2, it becomes clear why PSR J1738+0333 can still provide better tests on certain
aspects of GWs. Considerations based on ∆C give only a rough estimate on the limits one can obtain
from PSR J1738+0333. The actual limits on dipolar radiation depend on the specifics of the gravity
theory under consideration. For DEF gravity Equation (26) applies, and one obtains the following
constraint on the scalar dipole:

|αp − αc| < 2× 10−3 (95% C.L.) . (28)

Since αc ' α0, this directly limits the (specific) scalar charge of the pulsar. As αp depends on
the two parameters α0 and β0 of the scalar coupling strength of DEF gravity, Equation (28) can be
converted into constraints in the α0−β0 parameter space (details on this will be given in a comparison
with other experiments in Section 6.1).

The limit Equation (28) is actually more general. To obtain the mass of the WD only well tested
Newtonian physics was needed, and the mass ratio is also quite theory independent (see discussion in
Section 4.2). Hence, the limit Equation (28) on the scalar dipole in DEF gravity can be generically seen
as a limit on any gravitational dipole linked to dynamical gravitational fields (cf. [97]).

5.2. Other Systems for Dipolar Radiation Tests

Although, formally speaking, PSR J1738+0333 currently provides the best pulsar limit on the
existence of a gravitational dipole, this does not necessarily mean that it generally leads to the best
pulsar constraints on alternatives to GR in the radiative sector. This is even the case within the
class of DEF gravity theories. In the highly non-linear area of DEF gravity, where one also finds the
phenomenon of spontaneous scalarization (β0 . −4) [48], the scalar charge of a NS depends crucially
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on the mass of the NS. On top of that, the scalarization behaviour is quite sensitive to the EOS for NS
matter, which currently is not very well constrained. Figure 5 illustrated this for a specific choice of α0

and β0 in DEF gravity. For that reason, other binary pulsar experiments become important, even if
they provide a weaker limit for the difference in the scalar charges, i.e., the scalar dipole. In particular
pulsars with a higher mass than PSR J1738+0333 are important to probe such potential strong-field
deviations from GR. The timing observations of PSR J0348+0432, a two Solar mass pulsar in a 2.5-h
orbit [98] was an important step in that direction, as one can see in Figure 5.

mNS

α N
S

Figure 5. Effective scalar coupling αNS of a NS as function of its inertial mass mNS, to illustrate the
highly non-linear mass and EOS dependence of the scalar charge of a NS. DEF gravity with α0 = 10−4

and β0 = −4.5 was assumed. The different curves correspond to five different EOSs which we have
chosen as an example (from left to right: WFF1, SLy4, ENG, MPA1, BSk22 [99,100]). The black triangles
give the limits (95% C.L.) from four different pulsar-WD systems, from left to right: PSR J1738+0333
[Section 5.1], PSR J1012+5307 [101], PSR J2222−0137 [102], PSR J0348+0432 [98]. Error bars indicate
one-sigma uncertainties in the pulsar masses.

Depending on the parameters α0 and β0 and the EOS for NS matter, PSR J1738+0333 and
PSR J0348+0432 limits can still be circumvented (see [103] and EOS ENG in Figure 5). Including more
systems with masses between 1.46 and 2.0 Solar masses is therefore necessary, and will eventually help
to close this “mass gap” for spontaneous scalarization [104,105].

DEF gravity serves here only as an example on how nature can deviate in the presence of strongly
self-gravitating masses. Quite generally, when it comes to gravity tests with pulsar it is important to
obtain a good coverage in terms of NS masses. We will revisit this point in Section 8.

Finally, for gravity theories that invoke screening mechanisms to suppress deviations from GR in
strong gravitational fields, the less compact WD might be more relevant than the pulsar, and therefore
the criteria for gravity tests are more closely linked to the WD properties (see for instance [106]).

6. Universality of Free Fall

The universality of free fall (UFF) of (electrically neutral) test bodies stood right at the beginning
of the genesis of GR, when in 1907 Einstein had the “most fortunate thought” of his life [107] that
eventually led him to the insight that gravity is a manifestation of curved spacetime. To date the UFF for
test masses, also known as the weak equivalence principle (WEP) [3], has been confirmed to a precision
of ∼10−14 with the MICROSCOPE satellite experiment [108]. For that reason, many alternatives to GR
are so called metric theories of gravity, which by design fulfill the WEP. In fact, metric theories of gravity
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fulfill, as a result of their postulate of universal coupling (see Section 3.5), the Einstein equivalence
principle (EEP), which in addition to the WEP demands the fulfillment of the local position invariance
(LPI) and the local Lorentz invariance (LLI) for the outcome of any non-gravitational experiment. In a
sense, the WEP plays insofar a leading role here, as Schiff’s conjecture states that the WEP implies the
full EEP for any consistent theory of gravity (see e.g., Section 2.4 in [3]).

While all metric theories of gravity agree on the EEP, they generally do not fulfill the strong
equivalence principle (SEP), which extends the EEP to (local) gravitational experiments. In fact,
GR might be the only valid gravity theory in four spacetime dimensions that fully embodies the
SEP [3,109] 5. This explains the importance of SEP tests for gravitational physics.

In the SEP, the WEP gets promoted to the gravitational WEP (GWEP), which states that
in an external gravitational field all bodies fall the same, independent of their amount of
gravitational self-energy. Solar System experiments have tightly constrained the violation of the GWEP,
i.e., the presence of a so-called Nordtvedt effect. For instance, [84] find a confirmation of the GWEP at
the .10−13 level in their analysis of LLR data. One has to keep in mind, however, that experiments in
the Solar System can probe the GWEP only in the weak field at leading (linear) order in the fractional
binding energy ε. To give an example, for the Earth ε ≈ −4.6× 10−10, which makes order ε2 terms
totally inaccessible to current and (foreseeable) future LLR experiments.

In [111] it has been suggested to use binary pulsars with WD companions for a test of the UFF
of strongly self-gravitating bodies. In this experiment the pulsar (ε ∼ −0.15) and its WD companion
(|ε| . 10−3) fall in the external gravitational field of our Galaxy. A violation of the GEWP by the
strong field of the NS would then lead to a gravitational Stark effect on the binary system, causing a
characteristic change of its orbital eccentricity [111]. On the upside, the fractional binding energy of
the pulsar is many orders of magnitude larger than that of any Solar System body. On the downside,
the Galactic gravitational filed at the location of the pulsar is comparably weak, typically of the order
of 2× 10−8 cm s−2. As a result, such UFF tests have not lead to any tight constraints on alternatives to
GR (see [112] and references therein). For that reason, the discovery of a MSP in a stellar triple system
by [113] was a real game changer (see also discussion in [114]).

6.1. The Pulsar in a Stellar Triple System

PSR J0337+1715 is a 2.7 ms pulsar in a hierarchical triple system with two WDs and orbital periods
of 1.63 and 327 days [113]. The inner orbit consists of the pulsar and a 0.2 M� Helium WD (optically
identified). The outer WD has a mass of 0.4 M�, and is the source of the external gravitational field in
the UFF test. The acceleration of the inner orbit due to the outer WD is about 0.17 cm s−2. Therefore
the polarizing force, in case of a violation of GWEP, is 107(!) times stronger than that for binary pulsars
falling in the gravitational field of our Galaxy.

A violation of the GWEP manifests itself already at the Newtonian level in the three-body
dynamics. It is best described by the presence of a body-dependent gravitational constant Ĝab
(cf. Section 3.5). The acceleration of a mass ma in the gravitational field of the other masses is then
determined according to

~̈xa = − ∑
b 6=a

Ĝabmb
~xa −~xb
|~xa −~xb|3

+O(c−2) , (29)

where ~xi denotes the (coordinate) position of the ith body (see the modified Einstein-Infeld-Hoffmann
equations for a N-body system in [13,45]). We use the definition Ĝab ≡ G(1 + ∆ab) with G denoting

5 Nordström’s conformally-flat scalar theory also fulfils the SEP [110], but is excluded by Solar System experiments as,
for instance, it predicts no light deflection.
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the Newtonian gravitational constant, as measured in a Cavendish-type experiment. A violation of
GWEP in the hierarchical triple of PSR J0337+1715 leads to a non-vanishing

δGWEP ≡
ĜAC − ĜBC

(ĜAC + ĜBC)/2
' ∆AC − ∆BC , (30)

where A denotes the pulsar, B the inner and C the outer WD.6 Since B and C are both weakly
self-gravitating bodies, one quite generally finds that ∆BC ' 0 can be assumed in Equation (30).
This however depends on the details of the theory. For theories with screening mechanisms,
for instance, the situation can be different (cf. discussion at the end of Section 5.2).

Already a few years after its discovery, a tight limit of order few times 10−6 on a violation of
GWEP has been obtained from PSR J0337+1715 [115]. The so far best limit comes from regular timing
observations with the Nançay radio telescope [116]:

δGWEP = (0.5± 1.8)× 10−6 (95% C.L.) . (31)

This limit is three orders of magnitude better than the best limit from a binary pulsar in the
Galactic field [117].

A comparison of limit Equation (31) with limits from the Solar System is not at all straight forward,
since these are two different regimes of gravity [112]. While for the Solar System calculations can be
done within the generic PPN formalism, the presence of the strongly self-gravitating pulsar in the
triple system requires the full non-linearity of the field equations of a theory to consistently calculate
its motion [118]. In an expansion of δGWEP ' ∆AC with respect to the fractional binding energy of the
pulsar ε, like in [111], one has

δGWEP = η ε + η′ε2 + . . . (32)

where η is the so-called Nordtvedt parameter [119]. Solar System experiments already provide tight
constraints for η of the order of 10−4 [84,120]. The higher order terms, as mentioned already above,
are out of reach for Solar System tests due to the small fractional binding energy of Solar System bodies.
Then again, for PSR J0337+1715 with its 1.44 M� one finds (within GR) a typical of ε ≈ −0.13, which
makes that test sensitive to higher order contributions in Equation (32). If we ignore higher order
contributions, then the limit Equation (31) converts into |η| . 2× 10−5, which is significantly tighter
than the Solar System limit. Ignoring higher order contributions, however, means rather restrictive
assumptions about the strong-field behaviour of a gravity theory.

An alternative approach to compare pulsar experiments with tests in other regimes, like the
Solar System or LIGO/Virgo observations, is the use of a theory-dependent framework [34]. For the
triple-system test, such a comparison has been done on the basis of DEF gravity [115,116]. In DEF
gravity (cf. Section 3.5)

Ĝab = G∗(1 + αaαb) = G
1 + αaαb

1 + α2
0

, (33)

and consequently

∆ab =
αaαb − α2

0
1 + α2

0
' αaαb − α2

0 , (34)

6 Often the UFF is formulated in terms of the equivalence between the inertial and the (passive) gravitational mass of a body.
However, that concept breaks down in the presence of strongly self-gravitating bodies, as ∆ab then can contain significant
cross terms of the two bodies [3].
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where the experimental fact that α0 � 1 has been used in the last step.7 Since αB ' αC ' α0 in the
triple system, it is the quantity

δGWEP ' α0(αA − α0) (35)

that is being constrained by the limit Equation (31). Figure 6 shows the limit on the parameter space of
DEF gravity, in comparison with other limits. Currently, PSR J0337+1715 provides the most stringent
limits on DEF gravity for most of the parameter space. In particular for positive β0, it will be difficult
to surpass these limits in the near future with other experiments, including merger events observed
with gravitational wave observatories [121]. This is not restricted to DEF gravity, but should be the
case for many alternatives to GR that violate GWEP due to the presence of additional “gravitational
charges” (see e.g., [122,123]).

Figure 6. Constraints in the α0-β0 plane of DEF gravity by the triple system (red), dipolar radiation
test with PSR J1738+0333 [Section 5.1] (purple), Cassini [30] (black, dashed), and SEP test with
MESSENGER [120] (black, dotted). The region above a curve is excluded by the corresponding
experiment. Pulsar constraints are based on the rather stiff EOS BSk22 [99], which generally gives
conservative limits (see [116] for a discussion, and a more EOS-agnostic approach). The β0 = 0 line
corresponds to Jordan-Fierz-Brans-Dicke gravity.

6.2. UFF Towards Dark Matter

As mentioned above, limits on a violation of the GWEP coming from pulsar-WD binaries, falling
in the gravitational field of our Galaxy, are generally in no way competitive to the∼10−6 test conducted
with the pulsar in the stellar triple (Section 6.1). There is an exception, however, which is the UFF
towards dark matter (DM) [124]. If the attraction towards the DM distribution in our Galaxy is different
between a NS and a WD, then a pulsar-WD system would experience a gravitational Stark effect,
leading to a polarization of the binary orbit [111]. The result of such a polarization would be a temporal
change of the orbital eccentricity. Wide orbits are particularly sensitive to such an effect. As it turns
out, the MSP PSR J1713+0747 is particularly suitable for such a test, for several reasons. It is in a
wide 68-day orbit with a WD companion. It is one of the most precisely timed pulsars with more
than 20 years of high-precision timing data, leading to a firm limit on any change in the eccentricity.
And from precise timing one could infer with high precision its location in Galaxy and the spatial

7 The Cassini experiment [30] leads to |α0| . 0.003 [34].
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orientation of the orbit. The latter is important to calculate how a potential polarizing force acts on the
orbit. For details on that system and the latest timing parameters we refer the reader to [117]. Based on
the results of [117] and a model of the DM distribution in the Galaxy, in [124] a limit on the difference
in the accelerations aDM toward DM was derived:∣∣∣∣ aDM(PSR)− aDM(WD)

[aDM(PSR) + aDM(WD)]/2

∣∣∣∣ < 0.004 (95% C.L.) . (36)

There are two aspects which make that experiment particularly interesting in comparison with
UFF experiments related to DM and conducted in the Solar System. On the one hand, it is the large
material difference between the NS and the WD, where the composition of the NS is dominated
by neutrons. On the other hand, it is the large (fractional) gravitational binding energy of the NS.
A comparison with other experiments of the UFF towards DM can be found in [124].

7. Gravitational Symmetries

Apart from the universality of free fall (see Section 6, there are are two symmetries that enter
the SEP [3,125], the local position invariance (LPI) and the local Lorentz invariance (LLI). For SEP,
these symmetries get extended to the gravitational sector. LPI therefore states that the outcome of
any local gravitational experiment is independent of when and where the experiment is performed.
And LLI demands that a gravitational experiment does not depend on the velocity of the system.
More specifically, the existence of a (global) preferred frame for the gravitational interaction would
violate the LLI in the gravitational sector. Experiments with pulsars allow to test if these gravitational
symmetries also hold in the presence of strongly self-gravitating bodies.

In the following we will summarize some of the pulsar tests for a spatial and temporal change
in the local gravitational constant, and experiments related to symmetries that are linked to PPN
parameters, more specifically their strong-field generalization.

Pulsars can also be used to test certain parameters of the standard model extension (SME; [126]).
We will not cover this important field of experimental gravity here, but refer the reader to [104,127–129].

7.1. Variation of the Gravitational Constant

For alternative theories of gravity that violate the SEP, it is generally expected that the locally
measured gravitational constant G changes with the expansion of the Universe. A classical example are
scalar-tensor theories where the gravitational constant, as measured in a Cavendish-type experiment,
depends on the cosmological value of the scalar field(s) [56,130]. Tight constraints on a (present day)
variation of the gravitational constant do come from Solar System experiments, many of them limiting
|Ġ|/G to the order of 10−13 yr−1, and even below [3]. The limit given in [120], based on the NASA
MESSENGER mission to Mercury, is |Ġ|/G < 4× 10−14 yr−1.

The orbital motion of binary pulsars gets affected by a temporal variation of G in two ways [131].
First, like for planetary orbits, it directly modifies the size of the orbit and consequently the orbital
period of the pulsar due to a change in the universal gravitational coupling parameter, i.e., G(t).
Secondly, because of the compactness of the pulsar (and its companion if it is also a NS) a change in
G has a significant impact on the mass of the pulsar, which in turn as well changes the gravitational
attraction between pulsar and companion. More specifically, a change in G changes the gravitational
binding energy of a self-gravitating body, and therefore it leads to a change of the pulsar and companion
mass, i.e., mp and mc. In total one has [104,131]

Ṗb
Pb

= −2
Ġ
G

[
1−

(
1 +

mc

2M

)
sp −

(
1 +

mp

2M

)
sc

]
, (37)
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where the “sensitivity”

sa ≡ −
∂(ln ma)

∂(ln G)

∣∣∣∣
N

, (38)

measures how the mass of body a changes with a change of the local gravitational constant G, for a
fixed baryon number N (see e.g., Ref. [45] for details). For a given mass, sa depends on the specifics
of the gravity theory and the nature of the star. WDs have very small sensitivities (comparable to
their fractional binding energy ∼10−5 . . . ∼10−3), while for a NS |sa| can in principle be very large
(�1). For that reason, binary pulsar experiments for Ġ either have to be interpreted in a theory specific
context, or if generic have to make assumptions about the sensitivity. But it is also obvious that the test
aspects of a change in G are related to the strong internal fields of NSs.

The best limit of Ġ from binary pulsars currently comes from PSR J1713+0747, a pulsar in a wide
orbit (Pb ' 67.8 d) with a 0.3 M� WD companion [117], already introduced in Section 6.2. For a typical
sensitivity of sp ∼ 0.16 for the 1.33 M� pulsar, in [117]

Ġ/G = (−1± 9)× 10−13 yr−1 (95% C.L.) . (39)

is found. This limit is still an order of magnitude weaker than the Solar System limits, however it
comes from a very different technique with different experimental challenges, and it is an experiment
with a strongly self-gravitating mass. The importance of the latter becomes clear in two ways.
For instance in theories with Ġ = 0, a NS could still change its mass with the cosmic expansion.
For instance, in Barker’s constant-G theory [132] or in DEF gravity with β0 = −(1 + α2

0), a change of
the background scalar field leads to a change of the NS mass and therefore a change in the orbital
period of a binary pulsar, while the Solar System remains practically unaffected, since Ġ = 0. Another
regime, where binary pulsars can be superior to Solar System tests, is the strongly non-linear regime,
for instance for β0 . −4 in DEF gravity. In such a regime the sensitivities in Equation (37) can become
large. Moreover, in Equation (37) the gravitational constant needs to be extended by a body-dependent
parameter Kpc(t) [133], which has been neglected so far. Depending on the details of the theory,
such an “effective gravitational constant” G(t)Kpc(t) (= Ĝpc in Section 3.5) can respond much stronger
to a change of, for instance, the background scalar field, than only G(t) [112], making binary pulsars
(with suitable masses) a more sensitive probe to a temporal variation of the gravitational constant.

Finally, a modification of the local gravitational constant does not only change the mass of a
pulsar. In Section 3.5 we have discussed the change of the moment of inertia of a pulsar due to a local
gravitational constant that depends on the distance to the companion, i.e., Gloc(r). For that reason,
a pulsar on an eccentric orbit around its companion would periodically speed up and slow down in its
rotation. As shown in Section 3.5, this can to first order be incorporated in the PK parameter γE of the
Einstein delay. In this sense, every binary pulsar experiment that includes the PK parameter γE tests a
spatial variation of the gravitational constant (cf. Section 4).

7.2. Strong-Field Generalizations of PPN Parameters

The parametrized post-Newtonian (PPN) formalism is one of the most successful frameworks
in the interpretation of gravity experiments. In the standard PPN gauge, the framework contains
10 dimensionless PPN parameters in the metric components as coefficients of various gravitational
potentials. These 10 parameters describe in a general way how metric theories of gravity can deviate
from GR at the post-Newtonian level. The PPN parameters take different values in different gravity
theories. We refer the reader to [3] and references therein for further details on the PPN formalism.
Some of the PPN parameters are directly linked to a violation of LPI (ξ) or LLI (α1, α2, α3). The PPN
parameter α3 combines a violation of LLI with a violation of the conservation of the total momentum.
Another PPN parameter of interest in the context of pulsar experiments is ζ2, which is also linked to a
violation of the conservation of total momentum. For GR one has ξ = α1 = α2 = α3 = ζ2 = 0. A fairly
up to date summary on experimental constraints for PPN parameters can be found in [3].



Universe 2020, 6, 156 25 of 38

In the following, we quickly summarize the most important observable effects for pulsars related
to the PPN parameters listed above. A non-vanishing Whitehead parameter ξ leads to an anisotropy of
gravitational interaction, induced by the gravitational field of the Galaxy. As a result of this, the spin
of a solitary pulsar should precess around a direction that approximately coincides with the direction
to the Galactic center [134,135]. The most important effect of a non-vanishing α1 is a polarization of
the orbit (gravitational Stark effect) of a binary which moves with respect to a preferred frame of
reference for the gravitational interaction (most naturally the rest frame of the cosmic microwave
background) [136]. Similarly to ξ, a non-vanishing α2 leads to a spin precession, this time around
the direction of motion of the pulsar with respect to the preferred frame [134]. In the presence of an
α3, a pulsar experiences a self-acceleration, which is perpendicular to the pulsar spin and the motion
of the pulsar with respect to the preferred frame. The most important consequence, for testing that
parameter, is the polarization of a binary pulsar orbit [137]. Finally, ζ2 leads to a self-acceleration of an
asymmetric (mp 6= mc) eccentric binary pulsar system in the direction of periastron [138].

For binary pulsars, the weak-field PPN parameters are expected to have modifications related to
the strong gravitational self-field of a NS [136]. See for instance [139], who have explicitly calculated
α̂1 and α̂2 (corresponding to α1 and α2 respectively in the weak field) for NSs in Einstein-Æther and
khronometric gravity. Quite generally, one expects a dependence on the (fractional) gravitational
binding energy ε of the pulsar and its companion. In the absence of non-perturbative phenomena,
one could think of an expansion in terms of εp and εc. For a generalized strong-field PPN parameter
X̂ one then has

X̂ = XPPN + ∑
i=p,c

Aiεi + ∑
i=p,c

∑
j=p,c

Aijεiεj + . . . , (40)

where Ai, Aij, etc. are expected to depend on the specifics of the theory.
Table 1 lists the current pulsar limits on various strong-field PPN parameters. In the absence of a

cancellation between the PPN term and the εi dependent terms in Equation (40), one can consider the
limits for the strong field generalizations also as a limit for the weak field PPN parameter. Furthermore,
compared to weak-field tests, binary pulsar experiments are also sensitive to a violation of these
gravitational symmetries that are limited to the strong self-fields of NSs. Combined with sufficiently
accurate weak-field tests, pulsar limits can therefore be used to test for such strong-field specific
deviations [104].

Table 1. Limits for strong-field PPN parameters from pulsar experiments. A “<” means that the limit
applies to the absolute value. Some of these limits are significantly (orders of magnitude) tighter
than limits on the corresponding (weak-field) PPN parameter obtained in the Solar System (see [3] for
a comparison).

Parameter Limit (95% C.L.) Pulsar Experiment

ξ̂ <3.9× 10−9 PSRs B1937+21 and J1744−1134 [135]
α̂1 −0.4+3.7

−3.1 × 10−5 PSR J1738+0333 [140]
α̂2 <1.6× 10−9 PSRs B1937+21 and J1744−1134 [141]
α̂3 <4× 10−20 PSR J1713+0747 [117]
ζ̂2 <1.3× 10−5 Combination of several pulsars [142]

8. Future Outlook

In the previous sections, we have demonstrated that pulsars allow us to perform high-precision
tests of aspects of strong-field gravity that are either unique or complement efforts with other
experiments or observations. Even though we have mostly concentrated on binary pulsars, we note
that also selected isolated pulsars help with this undertaking (see e.g., PSRs B1937+21 and J1744−1134
as listed in Table 1). Overall, it is therefore not surprising that gravity tests with pulsars remain a
most important key science driver in pulsar astronomy. There are indeed many developments in the
field that promise important progress, quantitatively in terms of improved measurements, but also
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qualitatively in testing new effects. In this section we will present some of those expected short
and mid-term science goals. The list, naturally, has to be incomplete given the richness of that field
of research. Especially since the history of pulsar astronomy demonstrates that some of the most
important results came from discoveries that had not at all been anticipated.

8.1. Time and Sensitivity

As indicated in Section 2, the overall precision of pulsar gravity tests scales with the precision of
the TOAs, which in turn scales with the sensitivity of our observations. At the same time, cadence,
orbital phase coverage and, in particular, the length of the timing experiments—which in some cases
spans several decades!—are crucial. For instance, our ability to measure the orbital period decay due
to GW damping improves rapidly with the time span of our experiment, Tobs. Given the same cadence
in the observations, δṖb ∝ T−2.5

obs [13,14]. Hence, continued timing observations of the known systems,
some of them introduced in the previous sections, will continue to improve the measurement precision.

The improvement due to longer time baselines is greatly supported by continuous advances in
radio astronomical techniques. Especially, in the last decade, the new availability of fast digitizers,
powerful real-time processing units, as well as affordable commodity computing power has allowed
us to develop new broad band radio receivers. With significantly larger bandwidths, one does not
only improve the sensitivity and hence timing precision, but one can also measure and mitigate more
precisely the effects of the interstellar medium on the signal propagation described in Section 2.1.

New telescopes with bigger collecting area will also give an immediate improvement in the TOA
precision. The distance based on the timing parallax, for instance, is one of those measurements
particularly benefiting from such a development [143]. About two years ago the 500-m FAST
radio telescope in the northern hemisphere (China) and the 64 × 13.9-m dishes of the MeerKAT
interferometer in the southern hemisphere (South Africa) have started with their regular observations,
both of which already have proven to provide superb timing data with promising early science
results [144,145]. Over the next few years these two telescopes are expected to greatly benefit the field
of gravity tests with pulsars. Of great importance here is the fact that the MeerKAT interferometer
will soon be extended to MeerKAT+ in a collaboration between the South African Radio Astronomy
(SARAO) and the Max-Planck Society (MPG)8 and eventually to SKA1. How this will improve our
gravity tests has recently be demonstrated in [146] on the basis of extensive mock data simulations for
the Double Pulsar. Many of the timing parameters of the Double Pulsar, including the timing parallax,
are expected to improve significantly over the next 10 years. At some point (&2030) they are in the
reach of GW-related 3.5PN corrections in the equations of motion [147]. By then the Double Pulsar
should allow, presumably for the first time in a binary pulsar, for a (moderately precise) test of the
Lense-Thirring effect, via its contribution to the advance of periastron [31,148].9 In terms of improving
GR tests, newly discovered, more relativistic systems, like PSRs J1946+2052 [151] (a more compact
version of the Double Pulsar, but unfortunately not equally highly inclined) and J1757−1854 [152]
(a more compact version of the Hulse-Taylor pulsar) are promising as well.

8.2. Complementary Information

Pulsar tests also often benefit from significant progress in other areas of astronomy providing
important crucial information. For instance, at some point, for many of the relativistic systems the error
in the distance measurement and the uncertainty in the Galactic potential will become the limiting

8 https://www.sciencemag.org/news/2020/02/powerful-observatory-studying-formation-galaxies-getting-massive-54-
million-expansion

9 While Lense-Thirring tests with binary pulsars might in the future still be interesting for constraining the EOS [146,149,150],
due to their comparably low precision they will presumably not provide particularly relevant constraints on (well-motivated)
modifications of GR.

https://www.sciencemag.org/news/2020/02/powerful-observatory-studying-formation-galaxies-getting-massive-54-million-expansion
https://www.sciencemag.org/news/2020/02/powerful-observatory-studying-formation-galaxies-getting-massive-54-million-expansion
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factor in measuring the GW damping (cf. Section 4.1). However, better understanding of the Galactic
gravitational potential is expected from new models based on GAIA data [153].

When it comes to dipolar radiation tests with pulsar-WD systems (Section 5), then in some of
the cases, like PSRs J1738+0333 and J0348+0432, the limiting factor will be the uncertainty in the
WD models restricting our capability of deriving the WD masses from high resolution spectroscopy.
Improvements in our understanding of WDs are therefore also highly beneficial. However, pulsars
like PSR J2222−0137 will not be limited by this, as there are additional PK parameters measured in
that system, like ω̇ and the Shapiro parameters [102], whose errors will just get smaller with time and
better telescopes. A promising pulsar in that context is PSR J1913+1102, which was discovered only a
few years ago [154]. Although the companion is a NS, the high asymmetry in mass [155] also means an
asymmetry in compactness and therefore in many alternatives to GR a significant gravitational dipole.

8.3. New Laboratories & New Avenues

New telescopes do not only promise an improvement in timing precision, they also come with
new superior survey capabilities. This warrants high hopes for the discovery of new pulsars suitable
for gravity tests. Apart from the discovery of more relativistic systems of the known kind, there is the
potential of discovering systems which allow for qualitatively new tests. In the first place, there is
the discovery of a pulsar-black hole (BH) system. Such a system could be used for precision tests of
BH physics, complementary to other tests [156–159]. The ultimate system in this sense would be the
discovery of a pulsar in a sufficiently relativistic orbit (Pb . 1 yr) around Sgr A∗, the supermassive
BH in the Galactic center [160–162]. Gravity tests with such a pulsar could nicely complement the
tests with the S-stars and the EHT [163]. Finding binary pulsars in the central region of our Galaxy,
would already be of great interest for gravity tests, for instance to improve tests related to DM [124,164].

The most interesting binary systems to find are those that are most compact and that exhibit
the largest accelerations of our pulsar clock. In those cases, search techniques developed over the
last 50 years need to probe a highly dimensional parameter space that not only covers spin period
and orbital parameters but also pulse width and the a priori unknown dispersion of the signal in
the interstellar medium. Apart from benefiting from the steady increase in available computer
power, astronomers have developed special techniques (“acceleration” and “jerk searches”, see [10]),
have adopted algorithms successfully developed for GW detector experiments (see e.g., [165]) or have
leveraged the power of Global Volunteer Computing like “Einstein@Home” [166]. Using these and
other techniques, each search observation can result in a huge number of candidates, most of which
will be due to random statistical fluctuations or the impact of man-made radio interference signals.
Pulsar astronomers have therefore also developed techniques to sift these candidates for the real pulsar
signals in an efficient manner. Without the introduction of techniques related to machine learning
and artificial intelligence (e.g., [167]), it would nowadays be impossible to cope with the large data
volumes that will increase even further in the era of SKA. As an example, the TRAPUM survey to
discover pulsars and transients with MeerKAT [168] produces about 3 PB per observing night, which
cannot be stored but needs to be searched in (quasi-) realtime. Another benefit of the larger collecting
area of MeerKAT, FAST or finally SKA is that deeper sensitivity is often achieved with much smaller
integration times, Tobs. Hence, shorter parts of the orbits are covered during one pointing, which
reduces the amount of acceleration space that needs to be searched enormously, since the number of
acceleration steps scales as T3

obs. This alone is an important factor and gives reasons to believe that
many more, and even more compact systems will be discovered in the near future.

Last but not least, pulsars can also be used in the detection and eventually study of ultra-low
frequency GWs. Rather than serving as the GW emitters, they can form a Galaxy-sized GW detector
in the ongoing effort of so-called pulsar timing array (PTA) experiments [169]. The most promising
sources are binary supermassive BHs. Although detection is still pending, with new telescopes like the
SKA one might eventually even be able to study the properties of these light-years long GWs in details,
like their polarization modes and their dispersion relation, complementary to similar tests at high
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frequencies with ground-based GW observatories [170,171]. Prospects and details of PTA experiments
(see e.g., [169]) are beyond the scope of this review.

9. Summary

In the last few decades since the discovery of the first binary pulsar, pulsar astronomy has
provided some of the best experiments for gravitational physics, with GR having passed them all with
flying colors. Binary pulsars provided the first verification of the existence of gravitational waves,
having reached by now a precision of well below 0.1% in confirming the quadrupole formula of GR
(Section 4). Quite generally, pulsars with NS companions could be utilized to test various aspects
in the gravitational interaction of two strongly self-gravitating (material) objects, this includes the
spin precession of pulsars due to relativistic spin-orbit coupling (Section 4.3) and the propagation of
electromagnetic signals in the curved spacetime of a NS (Section 4.2). Pulsar WD systems have been
used to constrain the existence of dipolar GWs, a prediction by many alternatives to GR (Section 5).
Various pulsar experiments lead to tight constraints on potential violations of different building blocks
of the SEP. There is the confirmation of the UFF of a strongly self-gravitating body within a hierarchical
stellar triple system (Section 6.1), a test of the UFF towards DM (Section 6.2), and the verification of the
constancy of the gravitational constant (Section 7.1), complementary to the weak-field limits from the
Solar System. There are various pulsar experiments that lead to tight constraints on the strong-field
generalizations of different PPN parameters, linked to violations of the gravitational LPI and LLI
(two of the columns of the SEP) and the conservation of momentum (Section 7). In many ways, pulsar
experiments are complementary to other gravity experiments, like the ones coming from the Solar
System or from LIGO/Virgo merger events. The reason is multi-layered. In some cases it is because
pulsars reach an unmatched precision, in other cases because they test specific effects only accessible
in pulsar experiments. Pulsars certainly test a quite specific part of the parameter space of gravity
(see Figure 7).

In the future we expect significant improvements in gravity tests with pulsars coming from
two major directions, mostly driven by new facilities, like FAST, MeerKAT and the upcoming SKA,
but also driven by new developments in field of big data and high-performance computing (Section 8).
On the one hand there is the improvement in timing precision and the continuous extension of the
timing baseline for known pulsars. On the other hand, there is the discovery of new, more relativistic
or qualitatively different pulsar systems. Here, the discovery of a pulsar with a BH companion is on the
top of the list of many pulsar astronomers, ideally a pulsar in orbit around Sgr A∗, the supermassive
BH in the Galactic center.
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Figure 7. Comparison of different gravity experiments. On the x-axis is the spacetime curvature probed,
for instance the curvature associated with the external mass at the location of the pulsar. The y-axis
gives the maximum spacetime curvature in the system. The curvature is calculated as the square-root
of the Kretschmann scalar RαβγδRαβγδ (full contraction of the Riemann tensor). For material objects
(blue) the maximum curvature is related to their compactness. For BHs (black) it is the curvature
at the horizon (∝ R−2

BH), as this is the maximum “observable” curvature, and there are examples
where the surface gravity/size of a BH determines the strength of additional gravitational charges
(see e.g., [172–174]). Pulsars are labeled with their abbreviated names. ‘Earth’ stands for near-Earth
orbit experiments, like GPB. ‘WD-WD’ refers to a test with a double WD system [175]. From the
several LIGO/Virgo events [176] we have picked two as representatives, the first double BH merger
(GW150914) and the first double NS merger (GW170817). Concerning supermassive BHs, there are
the experiments with the S2 star around Sgr A∗ [177,178] and the EHT [78], where an image from
Sgr A∗ is expected for the future. Red circles indicate photon-propagation experiments. As one can see,
the Double Pulsar (‘J0737 (Shapiro)’) probes by far the strongest spacetime curvature in terms of how
gravity acts on electromagnetic waves. The curvature plane nicely illustrates how pulsars complement
the other experiments by probing the mildly relativistic strong-field regime.
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Abbreviations

The following abbreviations are used in this manuscript:

BH Black hole
DM Dark matter
EHT Event Horizon Telescope
EOS Equation of state (for neutron stars)
GPB Gravity Probe B
GR General relativity
GW Gravitational wave
LPI Local position invariance
LLI Local Lorentz invariance
LLR Lunar Laser Ranging
LOS Line of sight
MSP Millisecond pulsar
NS Neutron star
PK Post-Keplerian
PN Post-Newtonian
PPN Parametrized post-Newtonian
PTA Pulsar timing array
SEP Strong equivalence principle
SSB Solar System barycenter
TOA Time of arrival (of a pulsar signal)
UFF Universality of free fall
WD White dwarf
WEP Weak equivalence principle

References

1. Einstein, A. The Field Equations of Gravitation. Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1915,
1915, 844–847.

2. Einstein, A. Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity.
Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1915, 1915, 831–839.

3. Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 2018.
4. Hewish, A.; Bell, S.J.; Pilkington, J.D.H.; Scott, P.F.; Collins, R.A. Observation of a Rapidly Pulsating Radio

Source. Nature 1968, 217, 709–713. [CrossRef]
5. Hulse, R.A.; Taylor, J.H. Discovery of a pulsar in a binary system. Astropys. J. 1975, 195, L51–L53. [CrossRef]
6. Manchester, R.N.; Hobbs, G.B.; Teoh, A.; Hobbs, M. The Australia Telescope National Facility Pulsar

Catalogue. Astron. J. 2005, 129, 1993–2006. [CrossRef]
7. Wolszczan, A.; Frail, D.A. A planetary system around the millisecond pulsar PSR 1257+12. Nature 1992,

355, 145–147. [CrossRef]
8. Hobbs, G.; Guo, L.; Caballero, R.N.; Coles, W.; Lee, K.J.; Manchester, R.N.; Reardon, D.J.; Matsakis, D.;

Tong, M.L.; et al. A pulsar-based time-scale from the International Pulsar Timing Array. Mon. Not. R.
Astron. Soc. 2020, 491, 5951–5965.

9. Bhattacharya, D.; van den Heuvel, E.P.J. Formation and evolution of binary and millisecond radio pulsars.
Phys. Rep. 1991, 203, 1–124. [CrossRef]

10. Lorimer, D.R.; Kramer, M. Handbook of Pulsar Astronomy; Cambridge University Press: Cambridge,
UK, 2005.

11. Perera, B.B.P.; DeCesar, M.E.; Demorest, P.B.; Kerr, M.; Lentati, L.; Nice, D.J.; Osłowski, S.; Ransom, S.M.;
Keith, M.J.; Arzoumanian, Z.; et al. The International Pulsar Timing Array: Second data release. Mon. Not.
R. Astron. Soc. 2019, 490, 4666–4687. [CrossRef]

12. Damour, T.; Deruelle, N. General Relativistic Celestial Mechanics of Binary Systems. II. The Post-Newtonian
Timing Formula. Ann. Inst. H. Poincaré (Phys. Théor.) 1986, 44, 263–292.

http://dx.doi.org/10.1038/217709a0
http://dx.doi.org/10.1086/181708
http://dx.doi.org/10.1086/428488
http://dx.doi.org/10.1038/355145a0
http://dx.doi.org/10.1016/0370-1573(91)90064-S
http://dx.doi.org/10.1093/mnras/stz2857


Universe 2020, 6, 156 31 of 38

13. Damour, T.; Taylor, J.H. Strong–Field Tests of Relativistic Gravity and Binary Pulsars. Phys. Rev. D 1992,
45, 1840–1868. [CrossRef] [PubMed]

14. Blandford, R.; Teukolsky, S.A. Arrival-time analysis for a pulsar in a binary system. Astropys. J. 1976,
205, 580–591. [CrossRef]

15. Kramer, M. Pulsars as probes of gravity and fundamental physics. Int. J. Mod. Phys. D 2016, 25, 1630029.
[CrossRef]

16. Dass, N.D.H.; Radhakrishnan, V. The new binary pulsar and the observation of gravitational spin
precession. Astrophys. Lett. 1975, 16, 135–139.

17. Smarr, L.L.; Blandford, R. The binary pulsar: Physical processes, possible companions and evolutionary
histories. Astropys. J. 1976, 207, 574–588. [CrossRef]

18. Weisberg, J.M.; Romani, R.W.; Taylor, J.H. Evidence for geodetic spin precession in the binary pulsar
1913+16. Astropys. J. 1989, 347, 1030–1033. [CrossRef]

19. Cordes, J.M.; Wasserman, I.; Blaskiewicz, M. Polarization of the binary radio pulsar 1913+16: Constraints
on geodetic precession. Astropys. J. 1990, 349, 546–552. [CrossRef]

20. Kramer, M. Determination of the Geometry of the PSR B1913+16 System by Geodetic Precession. Astropys. J.
1998, 509, 856–860. [CrossRef]

21. Radhakrishnan, V.; Cooke, D.J. Magnetic poles and the polarization structure of pulsar radiation.
Astrophys. Lett. 1969, 3, 225–229.

22. Kramer, M.; Wex, N. TOPICAL REVIEW: The double pulsar system: A unique laboratory for gravity.
Class. Quantum Gravity 2009, 26, 073001. [CrossRef]

23. Damour, T. The problem of motion in Newtonian and Einsteinian gravity. In Three Hundred Years of
Gravitation; Cambridge University Press: Cambridge, UK, 1987; pp. 128–198.

24. Damour, T.; Deruelle, N. General Relativistic Celestial Mechanics of Binary Systems. I. The Post-Newtonian
Motion. Ann. Inst. H. Poincaré (Phys. Théor.) 1985, 43, 107–132.

25. Manchester, R.; Taylor, J.; Peters, W.; Weisberg, J.; Irwin, A.; Wex, N.; Stairs, I.; Demorest, P.; Nice, D.
Tempo: Pulsar Timing Data Analysis. 2015. Available online: http://ascl.net/1509.002 (accessed on 15.
August 2020)).

26. Peters, P.C.; Mathews, J. Gravitational Radiation from Point Masses in a Keplerian Orbit. Phys. Rev. 1963,
131, 435–440. [CrossRef]

27. Peters, P.C. Gravitational Radiation and the Motion of Two Point Masses. Phys. Rev. 1964, 136, 1224–1232.
[CrossRef]

28. Einstein, A. Über Gravitationswellen. Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1918
1918, 154–167.

29. Shapiro, I.I. Fourth Test of General Relativity. Phys. Rev. Lett. 1964, 13, 789. [CrossRef]
30. Bertotti, B.; Iess, L.; Tortora, P. A test of general relativity using radio links with the Cassini spacecraft.

Nature 2003, 425, 374–376. [CrossRef]
31. Barker, B.M.; O’Connell, R.F. Gravitational two-body problem with arbitrary masses, spins, and quadrupole

moments. Phys. Rev. D 1975, 12, 329–335. [CrossRef]
32. De Sitter, W. On Einstein’s theory of gravitation and its astronomical consequences. Second paper.

Mon. Not. R. Astron. Soc. 1916, 77, 155–184. [CrossRef]
33. Fokker, A.D. De geodetische precessie: Een uitvloeisel van Einstein’s gravitatietheorie. Versl. Kon. Ak. Wet.

1920, 29, 611–621.
34. Damour, T. Binary systems as test-beds of gravity theories. Physics of relativistic objects in compact

binaries: From birth to coalescence. In Astrophysics and Space Science Library; Colpi, M., Casella, P., Gorini, V.,
Moschella, U., Possenti, A., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 359, p. 1.

35. Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 354, 769–822. [CrossRef]
36. Damour, T. Theoretical aspects of the equivalence principle. Class. Quantum Gravity 2012, 29, 184001.

[CrossRef]
37. Hilbert, D. Die Grundlagen der Physik. Math. Ann. 1924, 92, 1–32. [CrossRef]
38. Lovelock, D. The Einstein Tensor and Its Generalizations. J. Math. Phys. 1971, 12, 498–501. [CrossRef]
39. Lovelock, D. The Four-Dimensionality of Space and the Einstein Tensor. J. Math. Phys. 1972, 13, 874–876.

[CrossRef]

http://dx.doi.org/10.1103/PhysRevD.45.1840
http://www.ncbi.nlm.nih.gov/pubmed/10014561
http://dx.doi.org/10.1086/154315
http://dx.doi.org/10.1142/S0218271816300299
http://dx.doi.org/10.1086/154524
http://dx.doi.org/10.1086/168193
http://dx.doi.org/10.1086/168341
http://dx.doi.org/10.1086/306535
http://dx.doi.org/10.1088/0264-9381/26/7/073001
http://ascl.net/1509.002
http://dx.doi.org/10.1103/PhysRev.131.435
http://dx.doi.org/10.1103/PhysRev.136.B1224
http://dx.doi.org/10.1103/PhysRevLett.13.789
http://dx.doi.org/10.1038/nature01997
http://dx.doi.org/10.1103/PhysRevD.12.329
http://dx.doi.org/10.1093/mnras/77.2.155
http://dx.doi.org/10.1002/andp.19163540702
http://dx.doi.org/10.1088/0264-9381/29/18/184001
http://dx.doi.org/10.1007/BF01448427
http://dx.doi.org/10.1063/1.1665613
http://dx.doi.org/10.1063/1.1666069


Universe 2020, 6, 156 32 of 38

40. Navarro, J.; Sancho, J.B. On the naturalness of Einstein’s equation. J. Geom. Phys. 2008, 58, 1007–1014.
[CrossRef]

41. Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.;
Yagi, K.; Baker, T.; et al. Testing general relativity with present and future astrophysical observations.
Class. Quantum Gravity 2015, 32, 243001. [CrossRef]

42. Fujii, Y.; Maeda, K.I. The Scalar-Tensor Theory of Gravitation; Cambridge University Press: Cambridge,
UK, 2003.

43. Taylor, J.H.; Wolszczan, A.; Damour, T.; Weisberg, J.M. Experimental constraints on strong-field relativistic
gravity. Nature 1992, 355, 132–136. [CrossRef]

44. Barausse, E. Testing the strong equivalence principle with gravitational-wave observations of binary black
holes. arXiv 2017, arXiv:1703.05699.

45. Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 1993.
46. Damour, T.; Esposito-Farèse, G. Testing gravity to second post-Newtonian order: A field-theory approach.

Phys. Rev. D 1996, 53, 5541–5578. [CrossRef]
47. Eddington, A.S. The Mathematical Theory of Relativity; Cambridge University Press: Cambridge, UK, 1922.
48. Damour, T.; Esposito-Farèse, G. Nonperturbative Strong-Field Effects in Tensor-Scalar Theories of

Gravitation. Phys. Rev. Lett. 1993, 70, 2220–2223. [CrossRef]
49. Eardley, D.M. Observable effects of a scalar gravitational field in a binary pulsar. Astropys. J. 1975, 196, L59.

[CrossRef]
50. Mirshekari, S.; Will, C.M. Compact binary systems in scalar-tensor gravity: Equations of motion to

2.5 post-Newtonian order. Phys. Rev. D 2013, 87, 084070. [CrossRef]
51. Will, C.M.; Zaglauer, H.W. Gravitational Radiation, Close Binary Systems, and the Brans-Dicke Theory of

Gravity. Astropys. J. 1989, 346, 366–377. [CrossRef]
52. Damour, T.; Esposito-Farèse, G. Tensor-multi-scalar theories of gravitation. Class. Quantum Gravity 1992,

9, 2093–2176. [CrossRef]
53. Damour, T.; Esposito-Farèse, G. Tensor-Scalar Gravity and Binary-Pulsar Experiments. Phys. Rev. D 1996,

54, 1474–1491. [CrossRef]
54. Jordan, P. Schwerkraft und Weltall; Die Wissenschaft, Vieweg: Braunschweig, Germany, 1955.
55. Fierz, M. Über die physikalische Deutung der erweiterten Gravitationstheorie P. Jordans. Helv. Phys. Acta

1956, 29, 128.
56. Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961,

124, 925–935. [CrossRef]
57. Will, C.M. Testing general relativity with compact-body orbits: A modified Einstein–Infeld–Hoffmann

framework. Class. Quantum Gravity 2018, 35, 085001. [CrossRef]
58. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;

Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star
Merger: GW170817 and GRB 170817A. Astropys. J. 2017, 848, L13. [CrossRef]

59. Oost, J.; Mukohyama, S.; Wang, A. Constraints on Einstein-aether theory after GW170817. Phys. Rev. D
2018, 97, 124023. [CrossRef]

60. Taylor, J.H.; Hulse, R.A.; Fowler, L.A.; Gullahorn, G.E.; Rankin, J.M. Further observations of the binary
pulsar PSR 1913+16. Astropys. J. 1976, 206, L53–L58. [CrossRef]

61. Taylor, J.H.; Fowler, L.A.; McCulloch, P.M. Measurements of General Relativistic Effects in the Binary
Pulsar PSR 1913+16. Nature 1979, 277, 437. [CrossRef]

62. Taylor, J.H.; Weisberg, J.M. A new test of general relativity: Gravitational radiation and the binary pulsar
PSR 1913+16. Astropys. J. 1982, 253, 908–920. [CrossRef]

63. Taylor, J.H.; Weisberg, J.M. Further experimental tests of relativistic gravity using the binary pulsar
PSR 1913+16. Astropys. J. 1989, 345, 434–450. [CrossRef]

64. Weisberg, J.M.; Nice, D.J.; Taylor, J.H. Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16.
Astropys. J. 2010, 722, 1030–1034. [CrossRef]

65. Weisberg, J.M.; Huang, Y. Relativistic Measurements from Timing the Binary Pulsar PSR B1913+16.
Astropys. J. 2016, 829, 55. [CrossRef]

66. Shklovskii, I.S. Possible causes of the secular increase in pulsar periods. Sov. Astron. 1970, 13, 562–565.

http://dx.doi.org/10.1016/j.geomphys.2008.03.007
http://dx.doi.org/10.1088/0264-9381/32/24/243001
http://dx.doi.org/10.1038/355132a0
http://dx.doi.org/10.1103/PhysRevD.53.5541
http://dx.doi.org/10.1103/PhysRevLett.70.2220
http://dx.doi.org/10.1086/181744
http://dx.doi.org/10.1103/PhysRevD.87.084070
http://dx.doi.org/10.1086/168016
http://dx.doi.org/10.1088/0264-9381/9/9/015
http://dx.doi.org/10.1103/PhysRevD.54.1474
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1088/1361-6382/aab1c6
http://dx.doi.org/10.3847/2041-8213/aa920c
http://dx.doi.org/10.1103/PhysRevD.97.124023
http://dx.doi.org/10.1086/182131
http://dx.doi.org/10.1038/277437a0
http://dx.doi.org/10.1086/159690
http://dx.doi.org/10.1086/167917
http://dx.doi.org/10.1088/0004-637X/722/2/1030
http://dx.doi.org/10.3847/0004-637X/829/1/55


Universe 2020, 6, 156 33 of 38

67. Damour, T.; Taylor, J.H. On the Orbital Period Change of the Binary Pulsar PSR 1913+16. Astropys. J. 1991,
366, 501–511. [CrossRef]
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