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Abstract: We studied the behavior of nonlinear spinor field within the scope of a static cylindrically
symmetric space–time. It is found that the energy-momentum tensor (EMT) of the spinor field in this
case possesses nontrivial non-diagonal components. The presence of non-diagonal components of
the EMT imposes three-way restrictions either on the space–time geometry or on the components of
the spinor field or on both. It should be noted that the analogical situation occurs in cosmology when
the nonlinear spinor field is exploited as a source of gravitational field given by the Bianchi type-I
cosmological model.
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1. Introduction

In recent years spinor field has been used in cosmology by many authors [1–6]. The ability of
spinor field to simulate different kinds of source fields such as perfect fluid, dark energy etc. [7,8]
allows one to study the evolution of the Universe at different stages and consider the spinor field as an
alternative model of dark energy.

To our knowledge, except for the Friedmann–Robertson–Walker (FRW) model given in Cartesian
coordinates, in all other space–times spinor field possesses nontrivial non-diagonal components of the
energy-momentum tensor. This very fact imposes severe restrictions on the geometry of space–time
and/or on the components of the spinor field [9]. As far as static spherically symmetric space–time is
concerned, the presence of non-diagonal components of EMT imposes restrictions on the spinor field
only [10].

Introduction of the spinor field in a classical theory such as general relativity and cosmology
gives rise to several questions due to its quantum origin. Many specialists think that even if one
uses the spinor field in general relativity, he should treat it as Grassmann variables. This is partially
right, though we think that spinors can be treated as classical complex projective coordinates in the
spirit of Dirac-Sommerfeld-Brioski [11–13] as well. In this approach they describe the condensation of
“quark-antiquarks” and are ordinary classical fields [14].

Note that spinor fields were introduced into the Einstein system exploiting both quantum and
classical interpretations. A Fermi field coupled to a homogeneous and isotropic gravitational field was
considered in [15], while the spinor was treated as a Grassmann variable in [16]. Dolan has studied
the Chiral Fermions and the torsion arising from it within the scope of FRW geometries in the early
Universe [17]. In doing so he argued that a quantum matter can be used as a source for the classical
field while the quantum aspects of the field itself can be ignored.

As it was mentioned earlier, recently spinor field is being used in astrophysics. Most of these
works were done within the scope of static spherically symmetric space–time [10,14,18]. Since a
number of astrophysical objects are given by cylindrically symmetric space–time [19] in this report we
plan to consider the spinor field within this model. String-like configurations of nonlinear spinor field
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in a static cylindrically symmetric space–time was obtained in [20]. An interacting system of nonlinear
spinor and scalar fields in a static cylindrically symmetric space–time filled with barotropic gas was
considered in [21]. Unfortunately, the authors did not take into account influence of the spinor field
that occurs due to the presence of non-diagonal components of EMT. In this paper I plan to address
those problems overlooked there and see if spinor field can be exploited to construct different types of
configurations seen in astrophysics.

2. Basic Equations

The action we choose in the form

S =
∫ √

−g
[

R
2κ

+ Lsp

]
dΩ. (1)

where κ = 8πG is Einstein’s gravitational constant, R is the scalar curvature and Lsp is the spinor field
Lagrangian given by [2]

Lsp =
ı
2

[
ψ̄γµ∇µψ−∇µψ̄γµψ

]
−mψ̄ψ− λF(K). (2)

To maintain the Lorentz invariance of the spinor field equations the self-interaction (nonlinear
term) F(K) is constructed as some arbitrary functions of invariants generated from the real bilinear
forms. On account of Fierz equality in (2) we set K = K(I, J) = b1 I + b2 J. Setting (b1 = 1, b2 = 0),
(b1 = 0, b2 = 1), (b1 = 1, b2 = 1), (b1 = 1, b2 = −1) for K we obtain one of the following expressions
{I, J, I + J, I − J}. Here I = S2 and J = P2 are the invariants of bilinear spinor forms with S = ψ̄ψ

and P = ıψ̄γ̄5ψ being the scalar and pseudo-scalar, respectively. In (2) λ is the self-coupling constant.
The covariant derivatives of spinor field takes the form [2]

∇µψ = ∂µψ−Ωµψ, ∇µψ̄ = ∂µψ̄ + ψ̄Ωµ, (3)

where Ωµ is the spinor affine connection which can be defined as [2]

Ωµ =
1
8
[
∂µγα, γα

]
− 1

8
Γβ

µα

[
γβ, γα

]
. (4)

Here [a, b] = ab − ba and Γβ
µα is the Christoffel symbol. In (4) the Dirac matrices in curve

space–time γ are connected to the flat space–time Dirac matrices γ̄ in the following way

γβ = e(b)β γ̄b, γα = eα
(a)γ̄

a,

where eα
(a) and e(b)β are the tetrad vectors such that

eα
(a)e

(a)
β = δα

β, eα
(a)e

(b)
α = δb

a .

The γ matrices obey the following anti-commutation rules

γµγν + γνγµ = 2gµν, γµγν + γνγµ = 2gµν.

Let us consider the cylindrically symmetric space–time given by

ds2 = e2γdt2 − e2αdu2 − e2βdφ2 − e2µdz2, (5)

where γ, α, β and µ are the functions of the radial coordinate u only.
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The tetrad we will choose in the form

e(0)0 = eγ, e(1)1 = eα, e(2)2 = eβ, e(3)3 = eµ,

e0
(0) = e−γ, e1

(1) = e−α, e2
(2) = e−β, e3

(3) = e−µ.

From γη = eη

(a)γ̄
a we find

γ0 = e−γγ̄0, γ1 = e−αγ̄1, γ2 = e−βγ̄2, γ3 = e−µγ̄3,

γ0 = eγγ̄0, γ1 = eαγ̄1, γ2 = eβγ̄2, γ3 = eµγ̄3,

with

γ0 = γ0, γ1 = −γ1, γ2 = −γ2, γ3 = −γ3.

The nontrivial Christoffel symbols corresponding to the metric (5) are

Γ0
01 = γ′, Γ1

11 = α′, Γ2
21 = β′, Γ3

31 = µ′,

Γ1
00 = e2(γ−α)γ′, Γ1

22 = −e2(β−α)β′, Γ1
33 = −e2(µ−α)µ′.

Then from the definition (4) we find the following spinor affine connections Ωµ:

Ω0 = −1
2

eγ−α γ′ γ̄0γ̄1, Ω1 = 0, Ω2 =
1
2

eβ−α β′ γ̄2γ̄1, Ω3 =
1
2

eµ−α µ′ γ̄3γ̄1. (6)

The spinor field equations corresponding to the spinor field Lagrangian (2) are [2]

ıγµ∇µψ−mψ−Dψ− ıGγ̄5ψ = 0, (7a)

ı∇µψ̄γµ + mψ̄ +Dψ̄ + ıGψ̄γ̄5 = 0, (7b)

where we denote D = 2λFKb1S, G = 2λFKb2P. On account of (7) from (2) one finds that
Lsp = λ (2KFK − F) .

Let the spinor field be a function of u only, then in view of (6) the spinor field equations can be
written as

ψ′ +
1
2

τ′ψ− ıeα (m +D) γ̄1ψ− eαGγ̄5γ̄1ψ = 0, (8a)

ψ̄′ +
1
2

τ′ψ̄ + ıeα (m +D) ψ̄γ̄1 − eαGψ̄γ̄5γ̄1 = 0, (8b)

where prime denotes differentiation with respect to u. In (8) we also define

τ = (γ + β + µ) . (9)

The energy-momentum tensor of the spinor field is defined as [2,22,23]

T ρ
µ =

ı
4

gρν

(
ψ̄γµ∇νψ + ψ̄γν∇µψ−∇µψ̄γνψ−∇νψ̄γµψ

)
− δ

ρ
µLsp

=
ı
4

gρν

(
ψ̄γµ∂νψ + ψ̄γν∂µψ− ∂µψ̄γνψ− ∂νψ̄γµψ

)
− ı

4
gρνψ̄

(
γµΩν + Ωνγµ + γνΩµ + Ωµγν

)
ψ − δ

ρ
µLsp. (10)
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From (10) one finds the non-trivial components of the energy-momentum tensor of the the
spinor field

T1
1 = mS + λF, (11a)

T0
0 = T2

2 = T3
3 = −λ (2KFK − F) , (11b)

T0
2 = − ı

4
eβ−α−γ

(
γ′ − β′

)
A3, (11c)

T0
3 = − ı

4
eµ−α−γ

(
γ′ − µ′

)
A2, (11d)

T2
3 = − ı

4
eµ−β−α

(
β′ − µ′

)
A0, (11e)

with Aη = ψ̄γ̄5γ̄ηψ being the pseudovector. It can be noticed that T0
0 + T1

1 = mS + 2λ (F− KFK) and
T0

0 − T1
1 = − (mS + 2KFK) might be positive or negative under certain conditions.

From (8) we find the following system of equations for the bilinear spinor forms:

S′ + τ′S− 2eαGA1 = 0, (12a)

P′ + τ′P + 2eα (m +D) A1 = 0, (12b)

A1′ + τ′A1 + 2eα (m +D) P− 2eαGS = 0. (12c)

Equation (12) yields the following relation

S2 + P2 −
(

A1
)2

= C0e−2τ , C0 = Const. (13)

In case of K = I, i.e., G = 0 from (12a) we find

S = Cse−τ ⇒ K = C2
s e−2τ . (14)

If K = J, then in case of a massless spinor field from (12b) we find

P = Cpe−τ ⇒ K = C2
pe−2τ . (15)

Let us consider the case when K = I + J. In this case b1 = b2 = 1. Then on account of expression
for D and G from (12a,b) for the massless spinor field we find

S′ + τ′S− 4eαλFK A1P = 0, (16a)

P′ + τ′P + 4eαλFK A1S = 0, (16b)

which yields
K = I + J = S2 + P2 = C2

1e−2τ . (17)

Finally in case when K = I − J, i.e., b1 = −b2 = 1 from (12a,b) for the massless spinor field
we obtain

S′ + τ′S + 4eαλFK A1P = 0, (18a)

P′ + τ′P + 4eαλFK A1S = 0, (18b)

which leads to
K = I − J = S2 − P2 = C2

2e−2τ . (19)

The Einstein tensor corresponding to the metric (5) possesses only diagonal components. So let
us first consider the diagonal equations of Einstein system
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e−2α
[
γ′β′ + β′µ′ + µ′γ′

]
= mS + λF, (20a)

e−2α
[
γ′′ + µ′′ + γ′2 + µ′2 + γ′µ′ − α′γ′ − α′µ′

]
= λ (F− 2KFK) , (20b)

e−2α
[
γ′′ + β′′ + γ′2 + β′2 + γ′β′ − α′γ′ − α′β′

]
= λ (F− 2KFK) , (20c)

e−2α
[

β′′ + µ′′ + β′2 + µ′2 + β′µ′ − α′β′ − α′µ′
]
= λ (F− 2KFK) . (20d)

Subtraction of (20d) from (20b) yields

γ′′ − β′′ +
(
γ′ − β′

) (
τ′ − α′

)
= 0, (21)

with the solution
β′ = γ′ − C1e(α−τ), (22)

Analogically, subtracting (20d) from (20c) one finds

µ′ = γ′ − C2e(α−τ), (23)

In view of (9), (22) and (23) one finds

γ′ =
1
3

[
τ′ + (C1 + C2) e(α−τ)

]
. (24)

Thus, γ, β and µ can be found in terms of α and τ. Let us find the equation for τ.
Summation of (20b–d) and 3 times (20a) gives

e−2α
[
τ′′ + τ′2 − α′τ′

]
=

3κ

2
[mS + 2λ (F− KFK)] . (25)

Recall that for non-diagonal components of the EMT of the spinor field we have non-trivial
expressions, whereas the non-diagonal components of the Einstein tensor in this case are trivial.
Equating these expressions to zero from (11c–e) we obtain the following constrains(

γ′ − β′
)

A3 = 0, (26a)(
γ′ − µ′

)
A2 = 0, (26b)(

β′ − µ′
)

A0 = 0. (26c)

The foregoing expressions give rise to three possibilities:

A3 = A2 = A0 = 0 and γ′ 6= β′ 6= µ′ ⇒ C1 6= C2 6= 0 (27a)

A2 = A0 = 0 and γ′ − β′ = 0⇒ C1 = 0, (27b)

A3, A2, A0 are nontrivial and γ′ = β′ = µ′ ⇒ C1 = C2 = 0. (27c)

It should be noted that in a Bianchi type-I space–time there occur similar possibilities [16].
In that case under the assumption (27a) the spinor field becomes massless and linear [16]. In a static
cylindrically symmetric space–time that is not necessarily the case.

Unfortunately, right now we cannot exactly solve the equation for defining either τ or α. So we
have to assume some coordinate conditions. There might be a few. In what follows, we consider the
case with K = I, as in this case it is possible to consider massive spinor. Further we set S = K0e−τ and
K = K2

0e−2τ .
Case 1: Let us first consider the harmonic radial coordinate u such that the following relation

holds for the metric functions [24]:
α = γ + β + µ. (28)
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In view of (9) Equation (25) takes the form

τ′′ =
3κ

2
e2α [mS + 2λ (F− KFK)] . (29)

Let us consider the case when F is a power law function of K, i.e., F = Kn+1. Inserting S = K0e−τ

and K = K2
0e−2τ into (25) on account of α = τ we find

τ′′ =
3κ

2
mK0eτ − 3κλnK2(n+1)

0 e−2nτ , (30)

with the first integral

τ′ =
√

3κmK0eτ + 3κλK2(n+1)
0 e−2nτ + C3, C3 = const. (31)

So the solution can be given in quadrature∫ dτ√
3κmK0eτ + 3κλK2(n+1)

0 e−2nτ + C3

= u + u0, u0 = const. (32)

Let us consider some simple cases those allow exact solution.
Fisrt we study the Heisenberg–Ivanenko type nonlinearity when F(K) = K. It can be obtained by

setting n = 0 in (31). In this case (31) takes the form

τ′ =
√

3κmK0eτ + C4, C4 = C3 + 3κλK2
0, (33)

which finally gives

eτ = eα =
C4

2κmK0 sinh2 (−√C4u/2 + C5
) , C5 = const. (34)

For a general power law type nonlinearity we study the massless spinor field. Setting m = 0
in (31) we have

τ′ =
√

3κK2(n+1)
0 e−2nτ + C3, (35)

with the solution

eτ = eα =

√3κK2(n+1)
0
C3

sinh
(

n
√

C3 u + C6

)1/n

, C6 = const. (36)

For a more general solution to the Einstein equations with massive and nonlinear spinor field as
source we rewrite it in the form of Cauchy:

τ′ = η, (37a)

η′ =
3κ

2
e2τ [mS + 2 (F− KFK)] , (37b)

γ′ =
1
3
[η + (C1 + C2)] , (37c)

β′ =
1
3
(η − 2C1 + C2) , (37d)

µ′ =
1
3
(η + C1 − 2C2) . (37e)
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This system can be solved numerically. In Figures 1 and 2, we have plotted the metric functions
γ(u), α(u), β(u), µ(u) for different types of nonlinearities, namely, n = 0 (Heisenberg–Ivanenko case)
and n = 4. For simplisity, we set the following values for other parameters C1 = 1, C2 = 2 and m = 1.
The initial values were taken to be τ(0) = 0.3, γ(0) = 0.03, β(0) = 0.2, µ(0) = 0.07 and ν(0) = 0.2.
As we see from the graphics, with the increase of the value of n the difference between the metric
functions increases.

Figure 1. Plot of metric functions for Heisenberg–Ivanenko type nonlinearity for harmonic
radial coordinate.

Figure 2. Plot of metric functions for a massive nonlinear spinor field with power on nonlinearity
n = 4 for harmonic radial coordinate.

Case 2: Let us consider the quasiblogal coordinate α = −γ [25]. In this case for τ we have

τ′′ + τ′2 + γ′τ′ =
3κ

2
e−2γ [mS + 2 (F− KFK)] , (38)
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whereas inserting (22) and (23) into (20a) for γ we find

3γ′2 − 2 (C1 + C2) e−(γ+τ) γ′ + C1C2e−2(γ+τ) = e−2γ (mS + λF) . (39)

Let us rewrite (38) and (39) in the Cauchy form

τ′ = η, (40a)

η′ = −η2 − η

3
(C1 + C2) e−(γ+τ) ∓ D

6
η +

3κ

2
e−2γ [mS + 2 (F− KFK)] , (40b)

γ′ =
1
3
(C1 + C2) e−(γ+τ) ± D

6
, (40c)

β′ =
1
3
(−2C1 + C2) e−(γ+τ) ± D

6
, (40d)

µ′ =
1
3
(C1 − 2C2) e−(γ+τ) ± D

6
, (40e)

where D = 2
√
(C1 + C2)

2 e−2(γ+τ) − 3
(
C1C2e−2(γ+τ) − e−2γ (mS + λF)

)
. As one sees,

the above-going system is valid if and only if D ≥ 0. The Equation (40c) is found from (39),
which is a quadratic equation with respect to γ′.

In the Figures 3 and 4, we have plotted the metric functions for the same values as in previous
cases, i.e., we set C1 = 1, C2 = 2 and m = 1 and the initial values were taken to be τ(0) = 0.3,
γ(0) = 0.03, β(0) = 0.2, µ(0) = 0.07 and ν(0) = 0.2. Here we have consider the cases with n = 0
and n = 4. Moreover, like the previous cases we see with the increase of n the difference between the
metric functions increases.

Figure 3. Plot of metric functions for Heisenberg–Ivanenko typenonlinearity with n = 0 for
quasiglobal coordinate.
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Figure 4. Plot of metric functions for a nonlinear spinor field with power on nonlinearity n = 4 with
nonzero mass.

3. Conclusions

We studied a system of nonlinear spinor field minimally coupled to a static cylindrically symmetric
space–time. It is found that the energy-momentum tensor (EMT) of the spinor field has nontrivial
non-diagonal components. The presence of non-diagonal components of the EMT imposes three-way
restrictions on the space–time geometry and/or on the components of the spinor field. It should be
noted that such situation occurs in Bianchi type-I cosmological model as well, but while in BI model
under a specific type of restriction the spinor field becomes massless and linear, this is not the case in
this model. Moreover, while in a static spherically symmetric space–time the presence of non-trivial
non-diagonal components of EMT of the spinor field has no effect on the space–time geometry, in static
cylindrically symmetric space–time it influences both the space–time geometry and the components of
the spinor field. In the present model we have T0

0 = T2
2 which in our view may play crucial role in

the formation of configurations like wormhole. It should be noted that the expressions (T0
0 + T1

1 ) and
(T0

0 − T1
1 ) can be both positive and negative, depending on the type of nonlinearity. In our view this

fact may provide some very interesting results which we plan to study in our upcoming papers.
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