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Abstract: This paper addresses the fate of extended space-time symmetries, in particular conformal
symmetry and supersymmetry, in two-dimensional Rindler space-time appropriate to a uniformly
accelerated non-inertial frame in flat 1+1-dimensional space-time. Generically, in addition to a
conformal co-ordinate transformation, the transformation of fields from Minkowski to Rindler space
is accompanied by local conformal and Lorentz transformations of the components, which also affect
the Bogoliubov transformations between the associated Fock spaces. I construct these transformations
for massless scalars and spinors, as well as for the ghost and super-ghost fields necessary in theories
with local conformal and supersymmetries, as arising from coupling to two-dimensional (2-D) gravity
or supergravity. Cancellation of the anomalies in Minkowski and in Rindler space requires theories
with the well-known critical spectrum of particles that arise in string theory in the limit of infinite
strings, and it is relevant for the equivalence of Minkowski and Rindler frame theories.
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1. Introduction

Conformal field theories have become an important tool in our theories of nature, both in
the context of particle physics and quantum gravity and in the context of condensed matter [1–3].
Conformal field theories in two dimensions are especially relevant in string theory [4], the AdS3-CFT
correspondence and condensed matter [5,6], and as a model for quantum field theories also in
higher dimensions.

Effectively conformal field theories in two space-time dimensions can be formulated as theories
of massless fields in a Minkowski background. This is the point of view used for practical purposes in
the present paper. In fact, our focus is on the description of these theories in a non-standard frame:
that of a uniformly accelerated observer [7]. The interest in this frame stems from the non-inertial
effects that manifest themselves in the presence of a horizon and finite-temperature behaviour:
the Unruh effect [8–11], a counterpart of the Hawking effect in black-hole space-times [12,13] and in
cosmology [14]. More generally, it has been found that free field theories in Rindler space describe the
near-horizon behaviour of quantum field theories in the presence of black holes, which is particularly
relevant in the context of AdS-CFT correspondence [15]. Extensive reviews of field theories in Rindler
space can be found in refs. [16,17].

In two space-time dimensions, local conformal transformations can be used to cast the line element
in the form

ds2 = ρ2(x) ηµνdxµdxν, (1)

where ηµν is the flat Minkowski metric and ρ2(x) is the conformal factor, which is constrained by the
topology. In the present paper, we restrict ourselves to inertial observers in infinite flat Minkowski
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space for which ρ2(x) = 1, and to accelerated observers in the associated Rindler space, a subset of
Minkowski space consisting of two branches: the right and left Rindler wedges R and L, defined by

R : x > 0 and − x < t < x;

L : x < 0 and x < t < −x.
(2)

Each wedge is parametrized by a conformally flat metric in terms of co-ordinates (τ, ξ) that are
associated with an accelerated observer:

R : x =
1
a

eaξ cosh aτ, t =
1
a

eaξ sinh aτ,

L : x = −1
a

e−aξ cosh aτ, t =
1
a

e−aξ sinh aτ.

(3)

In this parametrization, the line element is of the form (1) with conformal factor ρ = e±aξ :

R : ds2 = e2aξ
(
−dτ2 + dξ2) ,

L : ds2 = e−2aξ
(
−dτ2 + dξ2) .

(4)

The parameter a in the co-ordinate transformation represents the proper accelaration in the
Minkowski frame of a body with Rindler co-ordinate ξ = 0 at the moment it crosses the x-axis. It can
be absorbed in a further rescaling of the Rindler co-ordinates (τ, ξ) by 1/a and a shift of ξ by ξ0 = ln a;
as a result the line element reduces to (4) with a = 1. This is our standard choice in the following. In all
of this paper, units are chosen, such that c = h̄ = 1.

2. Massless Fields in 2-D Minkowski Space

To fix conventions and for later reference, in this section we briefly review free field theories
of massless scalar fields (bosons) and massless spinor fields (fermions) in two-dimensional (2-D)
Minkowski space. The theory of a real, free scalar field ϕ(x) is defined by the action

Sb =
1
2

∫
M

d2x
[
(∂t ϕ)2 − (∂x ϕ)2

]
. (5)

The solutions of the associated Klein-Gordon equation(
∂2

t − ∂2
x

)
ϕ = 0, (6)

are superpositions of left- and right-moving fields

ϕ(t, x) = ϕ+(t + x) + ϕ−(t− x). (7)

For definiteness in the following we concentrate on left-moving fields ϕ+. Its conjugate field
momentum is π+ = ∂t ϕ+, and the time-evolution of all functionals of the field is governed by
the hamiltonian

Hb =
1
2

∫ ∞

−∞
dx
[
π2
+ + (∂x ϕ)2

]
, (8)

using the equal-time commutation relation

[ϕ+(t, x), π+(t, y)] = iδ(x− y). (9)
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In a plane-wave basis, the field is expanded as

ϕ+(t + x) =
∫ ∞

0

dk
2π
√

2k

(
ake−ik(t+x) + a∗k eik(t+x)

)
, (10)

the domain of momenta k for left-moving fields being [0, ∞). The plane-wave mode operators are
defined inversely by

ak =
i√
2k

∫ ∞

−∞
dx eik(t+x) ↔

∂ t ϕ+, a∗k = − i√
2k

∫ ∞

−∞
dx e−ik(t+x) ↔

∂ t ϕ+. (11)

The commutation relation (9) is equivalent to[
ak, a∗q

]
= 2πδ(k− q), (12)

and the hamiltonian after normal-ordering is

: Hb :=
∫ ∞

0

dk
2π

ka∗k ak. (13)

Finally the ground state of the field is the bosonic Minkowski vacuum |0〉b:

∀k : ak|0〉b = 0. (14)

Next, we discuss spinor fields, using the conventions collected in Appendix A. A general Dirac
spinor is a complex two-component object; however, 2-D Minkowski space-time allows Majorana–Weyl
spinors that are real single-component objects representing left- or right-moving solutions of the
massless Dirac equation. Indeed, in the Majorana representation making use of the charge conjugation
operator C the Dirac action takes the diagonal form

S f =
i
2

∫
M

d2x λTC∂/ λ, C∂/ =

(
∂t − ∂x 0

0 ∂t + ∂x

)
. (15)

and for a 2-component Majorana spinor

λ = Cλ̄T =

[
λ+

λ−

]
,

the associated Dirac equation splits into independent equations

(∂t − ∂x) λ+ = 0, (∂t + ∂x) λ− = 0, (16)

representing separate left- and right moving fields. Again, for definiteness, we concentrate on
left-moving fields λ+(t + x). The time-evolution of functionals of this field is governed by
the hamiltonian

H f =
i
2

∫ ∞

−∞
dx λ+∂xλ+, (17)

and the equal-time anticommutation relation

{λ+(t, x), λ+(t, y)} = δ(x− y). (18)

Defining the plane-wave expansion by

λ+(t + x) =
∫ ∞

0

dk
2π

(
αke−ik(t+x) + α∗k eik(t+x)

)
, (19)
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with inverse

αk =
i

2k

∫ ∞

−∞
dx eik(t+x) ↔

∂ t λ+, α∗k = − i
2k

∫ ∞

−∞
dx e−ik(t+x) ↔

∂ t λ+, (20)

the anti-commutation relations translate to{
αk, α∗q

}
= 2πδ(k− q). (21)

After normal-ordering, the hamiltonian (17) becomes

: H f :=
∫ ∞

0

dk
2π

kα∗k αk, (22)

with ground state the fermionic Minkowski vacuum |0〉 f :

∀k : αk|0〉 f = 0. (23)

The theory of a combined massless scalar and spinor possesses supersymmetry. The
combined hamiltonian

H = : Hb : + : H f :=
∫ ∞

0

dk
2π

k (a∗k ak + α∗k αk) , (24)

allows a square root

Q =
∫ ∞

0

dk
2π

√
k (a∗k αk + α∗k ak) , (25)

such that Q2 = H and [Q, H] = 0. The supersymmetry transformations of the mode operators have
the standard form

[ak, Q] =
√

k αk,
[
a∗k , Q

]
= −
√

k α∗k ,

{αk, Q} =
√

k ak,
{

α∗k , Q
}
=
√

k a∗k .
(26)

The common Minkowski vacuum |0〉M = |0〉b ⊗ |0〉 f is supersymmetric:

Q|0〉M = 0. (27)

It is straightforward to generalize the contructions to theories of a larger number of bosons and
fermions. With equal numbers of N bosons and N fermions there are, in general, N! supersymmetries,
associating every boson with each of the fermions, as at this point the various boson and fermion fields
are indistinguishable and related by an O(N)⊗O(N) symmetry.

3. Massless Fields in 2-D Rindler Space

Two-dimensional Rindler space is the space-time described by the metric (1), with the conformal
factor specified for the left and right wedges by (4). It is therefore obvious that in Rindler space√

−g gµν = ηµν.

Moreover the scalar field in the Rindler frame is related to the original Minkowski field by the
co-ordinate transformation (3): ϕR(τ, ξ) = ϕ[t(τ, ξ), x(τ, ξ)]. It follows that the action for scalar fields
in Rindler space is formally identical to that in Minkowski space:

SRb =
1
2

∫
R

dτdξ
[
(∂τ ϕR)

2 −
(
∂ξ ϕR

)2
]

. (28)

which holds both in the right and left wedge of Rindler space, independent of the different conformal
factors ρ = e±aξ . Concentrating again on the left-moving solutions of the associated Klein–Gordon
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equation and following the same procedures, as described for bosons in Section 2, we can represent
them in terms of the plane-wave expansion

ϕR+(τ + ξ) =
∫ ∞

0

dκ

2π
√

2κ

(
bκe−iκ(τ+ξ) + b∗κ eiκ(τ+ξ)

)
, (29)

where
bκ =

i√
2κ

∫ ∞

−∞
dξ eiκ(τ+ξ)

↔
∂ τ ϕR+, b∗κ = − i√

2κ

∫ ∞

−∞
dξ e−iκ(τ+ξ)

↔
∂ τ ϕR+. (30)

Free-field dynamics is generated by introducing the hamiltonian

HRb =
∫ ∞

0

dκ

4π
κ (b∗κ bκ + bκb∗κ ) , (31)

together with the commutation relation

[bκ , b∗σ] = 2πδ(κ − σ). (32)

Standard procedure would replace HRb by its normal-ordered form, but normal ordering is now
ambiguous as the result is different in terms of the mode operators (bκ , b∗κ ) or in terms the original
mode operators (ak, a∗k ). Indeed, the Rindler vacuum |0〉Rb defined by

bκ |0〉Rb = 0, (33)

is not the same as the bosonic vacuum |0〉b in the original Minkowski space, as discussed below.
Translating the free fermion theory to Rindler space is somewhat more involved. Starting from

the Dirac–Majorana action on a general space-time manifoldM

SM f =
i
2

∫
M

d2x
√
−g λTCD/λ, D/ = γae µ

a

(
∂µ −

1
2

ω ab
µ σab

)
, (34)

where e µ
a is the inverse 2-bein, ω ab

µ the associated spin connection and σab the generators of 2-D Lorentz
transformations in tangent spinor space; as explained in Appendix A, we find that in a conformally
flat space-time (1) the Dirac operator in the Majorana representation takes the form

√
−g CD/ =

√
ρ

(
∂τ − ∂ξ 0

0 ∂τ + ∂ξ

)
√

ρ. (35)

In addition, the transformation from Minkowski to Rindler co-ordinates also requires a
τ-dependent Lorentz transformation of the spinor fields; this is also explained in Appendix A.
The upshot is that, upon redefining the spinor fields in the R- and L-wedge of Rindler space by

R : ψ±(τ, ξ) = e±a(τ±ξ)/2λ±[t(τ, ξ), x(τ, ξ)],

L : ψ±(τ, ξ) = e∓a(τ±ξ)/2λ±[t(τ, ξ), x(τ, ξ)],
(36)

the Dirac-Majorana action in a conformally flat space-time, like Rindler space, reduces to

SR f =
i
2

∫
R

dτdξ
[
ψ+
(
∂τ − ∂ξ

)
ψ+ + ψ−

(
∂τ + ∂ξ

)
ψ−
]

. (37)
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The spinor fields ψ± have the same formal properties in Rindler space as the spinor fields λ± in
Minkowski space; concentrating on the left-moving field, we introduce the plane-wave expansion

ψ+(τ + ξ) =
∫ ∞

0

dκ

2π

(
βκe−iκ(τ+ξ) + β∗κeiκ(τ+ξ)

)
, (38)

where
βκ =

i
2κ

∫ ∞

−∞
dx eiκ(τ+ξ)

↔
∂ τ ψ+, β∗κ = − i

2κ

∫ ∞

−∞
dx e−iκ(τ+ξ)

↔
∂ τ ψ+. (39)

In terms of mode operators the dynamics is defined by the hamiltonian

HR f =
∫ ∞

0

dκ

4π
κ (β∗κ βκ − βκ β∗κ) , (40)

and the anti-commutator
{βκ , β∗σ} = 2πδ(κ − σ). (41)

Again, in the pure-fermion theory we renounce normal ordering in view of its ambiguity. However,
in the special case of a supersymmetric theory with equal numbers of bosons and fermions the
normal-ordering contributions of bosons and fermions cancel, and therefore normal ordering becomes
unambiguous. In that case, we can take the full hamiltonian to be

HR = HRb + HR f =
∫ ∞

0

dκ

2π
κ (b∗κ bκ + β∗κ βκ) . (42)

Clearly it is unique, owing to the existence of the supercharge

QR =
∫ ∞

0

dκ

2π

√
κ (b∗κ βκ + β∗κbκ) , (43)

with the algebraic properties
Q2

R = HR, [QR, HR] = 0. (44)

4. Relating Rindler and Minkowski Fields

In the Rindler wedges, the field theories of Sections 2 and 3 are related by the co-ordinate
transformation (3); they describe the same physics in different frames: with respect to an inertial
observer using the Minkowski metric, or with respect to an accelerated observer using the conformally
flat metrics (4). Therefore, also the Hilbert spaces and the observables in the two descriptions
are related; the relation actually is provided by a Bogoliubov transformation between the mode
operators [8,13,16–19].

For the scalar fields, the relation is established starting from (30) and inserting for ϕR+ its
Minkowski space expression, Equation (10). Choosing units to fix a = 1 in the following and
introducing the Minkowski light-cone co-ordinate

z = t + x = eτ+ξ , (45)

the Rindler mode operators in the R-wedge are expressed in terms of the Minkowski ones by

bRκ =
1

2π
√

2κ

∫ ∞

0

dk√
2k

∫ ∞

0

dz
z

ziκ
[
(κ + kz)ake−ikz + (κ − kz)a∗k eikz

]
,

b∗Rκ = − 1
2π
√

2κ

∫ ∞

0

dk√
2k

∫ ∞

0

dz
z

z−iκ
[
(κ − kz)ake−ikz + (κ + kz)a∗k eikz

]
.

(46)
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By appropriate choice of contour, the integrals over z can be performed in the complex plane;
this leads to

bRκ = − i
2π
√

κ
Γ(1 + iκ)

∫ ∞

0
dk k−

1
2−iκ

(
akeπκ/2 + a∗k e−πκ/2

)
,

b∗Rκ =
i

2π
√

κ
Γ(1− iκ)

∫ ∞

0
dk k−

1
2+iκ

(
ake−πκ/2 + a∗k eπκ/2

)
.

(47)

A similar calculation for the L-wedge, in which z = −(t + x) = e−(τ+ξ) gives

bLκ =
i

2π
√

κ
Γ(1− iκ)

∫ ∞

0
dk k−

1
2+iκ

(
akeπκ/2 + a∗k e−πκ/2

)
,

b∗Lκ = − i
2π
√

κ
Γ(1 + iκ)

∫ ∞

0
dk k−

1
2−iκ

(
ake−πκ/2 + a∗k eπκ/2

)
.

(48)

Applying these operators to the bosonic Minkowski vacuum one establishes that

eπκ/2bRκ |0〉b = e−πκ/2b∗Lκ |0〉b = − i
2π
√

κ
Γ(1 + iκ)

∫ ∞

0
dk k−

1
2−iκa∗k |0〉b,

e−πκ/2b∗Rκ |0〉b = eπκ/2bLκ |0〉b =
i

2π
√

κ
Γ(1− iκ)

∫ ∞

0
dk k−

1
2+iκa∗k |0〉b.

(49)

It follows that the Minkowski vacuum contains Rindler excitations, and that annihilation of an
excitation in the right Rindler wedge has the same effect modulo a factor e−πκ as creation of one in the
left Rindler wedge, and vice versa.

In order to relate the excitations of the fermion field in Minkowski and Rindler space, we proceed
along similar lines, but with some slight modifications to keep track of the conformal and local Lorentz
transformations relating the fields in the different observer frames. The starting point is provided by
the Equation (39), in which we replace the Rindler spinor field ψ+ by its Minkowski counterpart (36).
In the R-wedge of Rindler space, using the light-cone variable (45), we get

βRκ =
i

4πκ

∫ ∞

0
dk
∫ ∞

0

dz
z

z
1
2+iκ

[(
1
2
− iκ − ikz

)
αke−ikz

+

(
1
2
− iκ + ikz

)
α∗k eikz

]
,

β∗Rκ = − i
4πκ

∫ ∞

0
dk
∫ ∞

0

dz
z

z
1
2−iκ

[(
1
2
+ iκ − ikz

)
αke−ikz

+

(
1
2
+ iκ + ikz

)
α∗k eikz

]
.

(50)

Performing the integrations over z in the compex plane this yields

βRκ = e−iπ/4Γ
(

1
2
+ iκ

) ∫ ∞

0

dk
2π

k−
1
2−iκ

(
αkeπκ/2 + iα∗k e−πκ/2

)
,

β∗Rκ = e−iπ/4Γ
(

1
2
− iκ

) ∫ ∞

0

dk
2π

k−
1
2+iκ

(
αke−πκ/2 + iα∗k eπκ/2

)
.

(51)
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Similarly in the L-wedge of Rindler space we obtain after the appropriate modifications

βLκ = eiπ/4Γ
(

1
2
− iκ

) ∫ ∞

0

dk
2π

k−
1
2+iκ

(
αkeπκ/2 − iα∗k e−πκ/2

)
,

β∗Lκ = eiπ/4Γ
(

1
2
+ iκ

) ∫ ∞

0

dk
2π

k−
1
2−iκ

(
αke−πκ/2 − iα∗k eπκ/2

)
.

(52)

From this, we derive the following relations for the action on the fermionic Minkowski vacuum:

eπκ/2βRκ |0〉 f = −ie−πκ/2β∗Lκ |0〉 f = eiπ/4Γ
(

1
2
+ iκ

) ∫ ∞

0

dk
2π

k−
1
2−iκα∗k |0〉 f ,

e−πκ/2β∗Rκ |0〉 f = ieπκ/2βLκ |0〉 f = eiπ/4Γ
(

1
2
− iκ

) ∫ ∞

0

dk
2π

k−
1
2+iκα∗k |0〉 f .

(53)

Again, the fermionic Minkowski vacuum contains fermionic Rindler excitations, with creation of
one in the R-wedge being accompanied by annihilation of a similar one in the L-wedge, and vice versa.

As concerns correlation functions, in free field theories the only non-trivial correlators are
two-point functions. In Minkowski space the elementary ones are

b〈0|aka∗q |0〉b = f 〈0|αkα∗q |0〉 f = 2πδ(k− q). (54)

Using the results (49) and (53) in a recursive way [17], one establishes that the correlators of the
Rindler fields in the Minkowski vacuum are

b〈0|bRκb∗Rσ|0〉b =
2πδ(κ − σ)

1− e−2πκ
, f 〈0|βRκ β∗Rσ|0〉 f =

2πδ(κ − σ)

1 + e−2πκ
, (55)

with identical results for the correlators in the L-wedge. These relations imply the
complementary identities

b〈0|b∗RκbRσ|0〉b =
2πδ(κ − σ)

e2πκ − 1
, f 〈0|β∗Rκ βRσ|0〉 f =

2πδ(κ − σ)

e2πκ + 1
, (56)

stating that the occupation numbers of Rindler excitations in the Minkowski vacuum are of
thermal Bose–Einstein and Fermi-Dirac type, corresponding to a state with temperature T = 1/2π;
upon restoring the acceleration parameter by rescaling of the Rindler co-ordinates and momenta the
temperature of Minkowski space observed in a Rindler frame with proper acceleration a is T = a/2π.
Details of the derivation are presented in Appendix B.

5. Supersymmetry

As we have seen, the supersymmetric theory has a unique Rindler hamiltonian (42), which is
the square of the supercharge (43). In view of the results (56), it is easily seen to have a divergent
Minkowski vacuum expectation value. It follows automatically that the Rindler supercharge does not
annihilate the Minkowski vacuum: Rindler supersymmetry is broken by finite temperature effects in
the Minkowski vacuum. In contrast, Minkowski supersymmetry generated by the supercharge (25)
does annihilate the Minkowski vacuum, as stated by (27).

One way to deal with this situation it is to regularize the Rindler supercharge using a symmetric
regulator function g(κ, σ) = g(σ, κ) and define

QRg =
∫ ∞

0

dκ

2π

∫ ∞

0

dσ

2π
g(κ, σ) (b∗κ βσ + β∗σbκ) . (57)
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A straightforward calculation shows that

Q2
Rg =

∫ ∞

0

dκ

2π

∫ ∞

0

dσ

2π
g2(κ, σ) (b∗κ bσ + β∗κ βσ) ≡ HRg, (58)

where
g2(κ, σ) =

∫ ∞

0

dη

2π
g(κ, η)g(η, σ). (59)

This properly regularizes the Rindler supercharge and hamiltonian if g is taken from a class of
functions having a limit

g(κ, σ)→
√

κ δ(κ − σ), g2(κ, σ)→ κ δ(κ − σ). (60)

With such a regulator, one easily finds that

M〈0|Q2
Rg|0〉M = M〈0|HRg|0〉M

=
∫ ∞

0

dκ

2π
g2(κ, κ)

(
1

e2πκ − 1
+

1
e2πκ + 1

)
=
∫ ∞

0

dκ

2π

g2(κ, κ)

2 sinh 2πκ
,

(61)

which is a positive number for any acceptable regulator g(κ, σ).

6. Conformal Symmetries

In addition to the hamiltonian and the supercharge, which are conserved for the theories in the
Minkowski frame, one can construct an infinite set of conformal charges annihilating the vacuum state
which define a continuum generalization of the Virasoro and super-Virasoro algebra.

The charges, which can be decomposed in contributions from bosons and from fermions,
are labeled by the momentum variable k; for k ≥ 0 they annihilate the Minkowski vacuum,
being defined for a single boson and fermion field by

Lb
k =

∫ ∞

0

dq
2π

√
q(k + q) a∗q ak+q +

∫ k

0

dq
4π

√
q(k− q) aqak−q,

L f
k =

∫ ∞

0

dq
2π

(
q +

k
2

)
α∗q αk+q −

∫ k

0

dq
4π

q αqαk−q,

(62)

whilst those labeled by a negative momentum −k are the hermitean conjugates L−k = L∗k . Introducing
the general notation a−k = a∗k , α−k = α∗k , it is possible to write these expressions in a short-hand
notation using normal ordering:

Lb
k =

∫ ∞

−∞

dq
4π

√
|q(q− k)| : aqak−q : , L f

k =
∫ ∞

−∞

dq
4π

(
−q +

k
2

)
: αqαk−q : . (63)

However, apart from the fact that the natural domain of the momentum labels k, q is [0, ∞),
the normal ordering in Rindler space is ambiguous due to the mixing of creation an annhihilation
operators by the Bogoliubov tranformations, as pointed out before. This is especially relevant, as we
intend to compute correlation functions of Rindler operators in the Minkowski vacuum. Therefore, we
prefer to write out the explicit expansions (62) rather than using the normal-ordered ones.

The operators (62) satisfy the commutation relations of the Virasoro algebra with a central charge:[
Lb

k, Lb
l

]
= (k− l)Lb

k+l +
1

12
k3 δ(k + l),

[
L f

k , L f
l

]
= (k− l)L f

k+l +
1
24

k3 δ(k + l).

(64)
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The expressions for the central charges are easily verified by the standard procedure of evaluating
the vacuum expectation value of the commutator

1
2 b〈0|

[
Lb

k, Lb
l

]
|0〉b = f 〈0|

[
L f

k , L f
l

]
|0〉 f =

1
24

k3 δ(k + l).

In supersymmetric Minkowski-frame theories, the Virasoro algebra can be extended by
supercharges Gk, defined for a single boson plus fermion field and for k ≥ 0 by

Gk =
∫ ∞

0

dq
2π

(√
q a∗q αk+q +

√
k + q α∗q ak+q

)
+
∫ k

0

dq
2π

√
q aqαk−q; (65)

again for negative index G−k = G∗k . In a theory with a single boson and fermion the complete set of
(anti-)commutation relations with

Lk = Lb
k + L f

k ,

is found to have the standard super-Virasoro form

[Lk, Ll ] = (k− l) Lk+l +
1
8

k3δ(k + l),

[Lk, Gl ] =

(
k
2
− l
)

Gk+l ,

{Gk, Gl} = 2Lk+l +
1
2

k2δ(k + l).

(66)

Note that L0 = H is the hamiltonian (24) and G0 = Q is the supercharge (25). They define a
closed anomaly-free subalgebra of the super-Virasoro algebra (66). Also note that their vacuum
expectations vanish:

∀k ≥ 0 : Lk|0〉M = 0 ⇒ M〈0|Lk|0〉M = M〈0|L−k|0〉M = 0,

Gk|0〉M = 0 ⇒ M〈0|Gk|0〉M = M〈0|G−k|0〉M = 0.
(67)

The same construction also works in the Rindler frame, where in the R-wedge of Rindler space

Lb
Rκ ≡

∫ ∞

0

dσ

2π

√
σ(κ + σ) b∗RσbR κ+σ +

∫ κ

0

dσ

4π

√
σ(κ − σ) bRσbR κ−σ,

L f
Rκ =

∫ ∞

0

dσ

2π

(
σ +

κ

2

)
β∗RσβR κ+σ −

∫ κ

0

dσ

4π
σ βRσβR κ−σ,

GRκ =
∫ ∞

0

dσ

2π

(√
σ b∗RσβR κ+σ +

√
κ + σ β∗RσbR κ+σ

)
+
∫ κ

0

dσ

2π

√
σ bRσβR κ−σ,

(68)

with analogous definitions in the L-wedge. The essential difference with the Minkowski charges, is that
the Rindler operators (68) admit a non-vanishing expectation value in the Minkowski frame:

M〈0|Lb
Rκ |0〉M = δ(κ)

∫ ∞

0
dσ

σ

e2πσ − 1
=

1
24

δ(κ),

M〈0|L
f
Rκ |0〉M = δ(κ)

∫ ∞

0
dσ

σ

e2πσ + 1
=

1
48

δ(κ),

(69)

whilst in the superconformal case

M〈0|GRκ |0〉M = 0.
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Although one could remove these vacuum expectation values by shifting the ground-state
energy, this would introduce an extra contribution to the central charge, which is generally not
desirable. The singular nature of the expectation value of the hamiltonian H = L0, in practice, requires
regularization, as we discussed in Section 5.

7. Ghosts and Local Conformal Symmetry

As is well-known, the line element in any topologically trivial 2-D space-time can be cast in
the form (1) by appropriate co-ordinate transformations. As 2-D gravity is conformally invariant,
but non-dynamical, one can therefore interpret the boson and fermion field theories discussed above
as the gauge-fixed version of a gravitational theory with local conformal symmetry. This is the key
to a consistent quantum-theory of strings and superstrings [4]. Local conformal symmetry turns the
generators of the Virasoro algebra into operators imposing first-class constraints:

∀k > 0 : Lk|phys〉 = 0. (70)

These conditions are consistent only if the anomaly vanishes, but the anomaly now includes
a contribution from the Faddeev–Popov ghosts introduced by quantization of the gravitational
background as well [20].

In the sector of left-moving fields the dynamics of the anti-commuting gravity ghosts (C, D)

follows from the action
Sg = i

∫
M

d2x D (∂t − ∂x)C. (71)

Following standard procedures, one derives the hamiltonian

Hg = i
∫ ∞

−∞
dx D∂xC, (72)

supplemented by the equal-time anti-commutation relations

{C(t, x), D(t, y)} = δ(x− y). (73)

From the mode expansions

C(t, x) =
∫ ∞

0

dk
2π

(
cke−ik(t+x) + c∗k eik(t+x)

)
,

D(t, x) =
∫ ∞

0

dk
2π

(
dke−ik(t+x) + d∗k eik(t+x)

)
,

(74)

we derive the anti-commutators of the mode operators:{
ck, d∗q

}
= 2πδ(k− q),

{
dk, c∗q

}
= 2πδ(k− q). (75)

The corresponding Virasoro generators for k ≥ 0 are

Lg
k =

∫ ∞

0

dq
2π

[
(q− k) c∗q dk+q + (q + 2k) d∗q ck+q

]
−
∫ k

0

dq
2π

(q + k) cqdk−q, (76)

with Lg
−k = Lg ∗

k . The ghost Virasoro algebra then becomes

[
Lg

k , Lg
l

]
= (k− l) Lg

k+l −
13
6

k3δ(k + l). (77)
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For a theory with Nb massless scalars and N f massless chiral Majorana fermions the full first-class
contraints then are

∀k > 0 : Lk|phys〉 = 0, Lk =
Nb

∑
i=1

Lbi
k +

N f

∑
j=1

L f j
k + Lg

k , (78)

with the algebra

[Lk, Ll ] = (k− l) Lk+l +
(2Nb + N f − 52)

24
k3δ(k + l). (79)

Thus, the central charge vanishes provided

2Nb + N f = 52. (80)

The analysis in the right-moving sector proceeds entirely analogously.
In the case of a supersymmetric theory of massless scalars and femions the local conformal

symmetry can be extended to local superconformal symmetry. Such a theory is effectively a gauge-fixed
2-D supergravity theory and requires an additional set of commuting supersymmetry ghosts (S, U)

with action
Ssg =

∫
M

d2x U (∂t − ∂x) S. (81)

The associated hamiltonian and equal-time commutation relations are

Hsg =
∫ ∞

−∞
dx U∂xS, [S(t, x), U(t, y)] = iδ(x− y). (82)

In this case, we take the plane-wave expansions to be

S(t, x) =
∫ ∞

0

dk
2π

(
ske−ik(t+x) + s∗k eik(t+x)

)
,

U(t, x) = −i
∫ ∞

0

dk
2π

(
uke−ik(t+x) − u∗k eik(t+x)

)
,

(83)

which results in mode commutation relations[
sk, u∗q

]
= 2π δ(k− q),

[
uk, s∗q

]
= 2π δ(k− q). (84)

The super-Virasoro operators of the full set of ghosts (C, D) and superghosts (S, U) then is defined
by (76) and for k ≥ 0:

Lsg
k =

∫ ∞

0

dq
2π

[(
q− k

2

)
s∗q uk+q +

(
q +

3k
2

)
u∗q sk+q

]

−
∫ k

0

dq
2π

(
q +

k
2

)
squk−q,

Gsg
k =

∫ ∞

0

dq
2π

[
s∗q bk+q + b∗q sk+q + (q + 3k)u∗q ck+q + (q− 2k)c∗q uk+q

]

+
∫ k

0

dq
2π

[
sqbk−q − (q + 2k) cquk−q

]
,

(85)
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with Lsg
−k = Lsg ∗

k and Gsg
−k = Gsg ∗

k . The complete super-Virasoro algebra of the ghosts is given
by (77) and [

Lsg
k , Lsg

l

]
= (k− l) Lsg

k+l +
11
12

k3δ(k + l),

{
Gsg

k , Gsg
l

}
= 2

(
Lg

k+l + Lsg
k+l

)
− 5k2δ(k + l).

(86)

With these results a 2-D supersymmetric theory of N massless scalars and fermions has local
superconformal symmetry if

∀k > 0 : Lk|phys〉 = Gk|phys〉 = 0, (87)

where

Lk =
N

∑
i=1

(
Lbi

k + L f i
k

)
+ Lg

k + Lsg
k , Gk =

N

∑
i=1

Gi
k + Gsg

k , (88)

with the algebra

[Lk, Ll ] = (k− l) Lk+l +
(N − 10)

8
k3δ(k + l),

[Lk, Gl ] =

(
k
2
− l
)

Gk+l ,

{Gk, Gl} = 2Lk+l +
(N − 10)

2
k2δ(k + l).

(89)

Thus all of the superconformal anomalies vanish for N = 10. Of course, all results derived here
are in agreement with corresponding string and superstring theories in the limit of infinite strings.

8. Conformal and Superconformal Ghosts in Rindler Space

The local conformal and superconformal symmetries arising in a gauge-fixed 2-D gravity or
supergravity theory with scalar and spinor matter can be extended to the Rindler frame. It requires
solving the ghost and superghost field equations in Rindler space, and finding the appropriate
Bogoliubov tranformations.

Consider a theory in an arbitrary 2-D space-time with reparametrization and locally
Lorentz-invariant action

S[F, G] =
∫

d2x e Fa1...an+1 e µ
an+1 DµGa1...an . (90)

Here, (F, G) is a system of commuting or anti-commuting local Lorentz tensors or (chiral)
spinor-tensors of rank (n, n + 1), e µ

a is the inverse 2-bein field as explained in Appendix A; Dµ

is the Lorentz-covariant derivative with spin connection ω a
µ b defined in (A7) and e = det e a

µ =
√−g.

Consider only purely left- or right-handed components associated with purely self-dual or
anti-self-dual tensors:

Ga1...an = ± εa1bGb
a2...an = ... = ± εanbG b

a1...an−1
, (91)

and similarly for Fa1...an+1 . Fixing the Minkowski gauge, the action (90) can be decomposed into
actions of the type (71) or (81) for single pairs of components (F(n+1)

M , G(n)
M ) with gauge-fixed action

(considering left-movers for definiteness)

S(n)
M =

∫
M

d2x F(n+1)
M (∂t − ∂x) G(n)

M . (92)
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When transforming the action from the Minkowski to the Rindler frame by the transformations
(3) with a = 1 and following the same arguments, as described for spinor components in Appendix A,
we obtain a Rindler-frame action in the R-wedge of Rindler space

S(n)
R =

∫
R

dτdξ
[

F(n+1)
R

(
∂τ − ∂ξ

)
G(n)

R

]
, (93)

where the field components have been transformed from the Minkowski to the Rindler frame by an
extension of (36):

F(n+1)
R (τ, ξ) = e(n+1)(τ+ξ)F(n+1)

M [t(τ, ξ), x(τ, ξ)],

G n
R (τ, ξ) = e−n(τ+ξ)G n

M[t(τ, ξ), x(τ, ξ)].
(94)

Actually, n can be integer or half-integer, depending on whether (F, G) are tensors or
spinor-tensors. The aim is now to connect the Rindler plane-wave expansions in the R-wedge

F(n+1)
R =

∫ ∞

0

dκ

2π

(
fRκe−iκ(τ+ξ) + f ∗Rκeiκ(τ+ξ)

)

G(n)
R =

∫ ∞

0

dκ

2π

(
gRκe−iκ(τ+ξ) + g∗Rκeiκ(τ+ξ)

)
,

(95)

with the Minkowski ones

F(n+1)
M =

∫ ∞

0

dk
2π

(
fke−ik(t+x) + f ∗κ eiκ(t+x)

)

G(n)
M =

∫ ∞

0

dk
2π

(
gke−k(t+x) + g∗κ eik(t+x)

)
.

(96)

Inverting the Equation (95) while using the light-cone variable z defined in (45):

fRκ =
i

2κ

∫ ∞

−∞
dξ eiκ(τ+ξ)

↔
∂ τ F(n+1)

R (τ, ξ)

=
i

2κ

∫ ∞

0

dz
z

z−n−1+iκ (−iκ + n + 1 + z∂z) F(n+1)
M (z).

gRκ =
i

2κ

∫ ∞

−∞
dξ eiκ(τ+ξ)

↔
∂ τ G(n)

R (τ, ξ)

=
i

2κ

∫ ∞

0

dz
z

zn+iκ (−iκ − n + z∂z) G(n)
M (z),

(97)

Substitutions of the Minkowski-frame plane-wave solutions yields

fRκ = i(n+1)Γ(n + 1 + iκ)
∫ ∞

0

dk
2π

k−n−1−iκ
(
(−1)n+1eπκ/2 fk + e−πκ/2 f ∗k

)
,

gRκ = inΓ(−n + iκ)
∫ ∞

0

dk
2π

kn−iκ
(

eπκ/2gk + (−1)ne−πκ/2g∗k
)

,

(98)
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with conjugates

f ∗Rκ = i(n+1)Γ(n + 1− iκ)
∫ ∞

0

dk
2π

k−n−1+iκ
(
(−1)n+1e−πκ/2 fk + eπκ/2 f ∗k

)
,

g∗Rκ = inΓ(−n− iκ)
∫ ∞

0

dk
2π

kn+iκ
(

e−πκ/2gk + (−1)neπκ/2g∗k
)

.

(99)

In the L-wedge of Rindler space, one finds by analogous calculations for the left-moving fields

fLκ = i(n+1)Γ(n + 1− iκ)
∫ ∞

0

dk
2π

k−n−1+iκ
(

eπκ/2 fk + (−1)n+1e−πκ/2 f ∗k
)

,

gLκ = inΓ(−n− iκ)
∫ ∞

0

dk
2π

kn+iκ
(
(−1)neπκ/2gk + e−πκ/2g∗k

)
.

(100)

and conjugates

f ∗Lκ = i(n+1)Γ(n + 1 + iκ)
∫ ∞

0

dk
2π

k−n−1−iκ
(

e−πκ/2 fk + (−1)n+1eπκ/2 f ∗k
)

,

g∗Lκ = inΓ(−n + iκ)
∫ ∞

0

dk
2π

kn−iκ
(
(−1)ne−πκ/2gk + eπκ/2g∗k

)
.

(101)

Upon application to the Minkowski vacuum, it follows that

eπκ/2 fRκ |0〉M = (−1)n+1e−πκ/2 f ∗Lκ |0〉M, e−πκ/2 f ∗Rκ |0〉M = (−1)n+1eπκ/2 fLκ |0〉M,

(−1)neπκ/2gRκ |0〉M = e−πκ/2g∗Lκ |0〉M, (−1)ne−πκ/2g∗Rκ |0〉M = eπκ/2gLκ |0〉M.
(102)

Applying these results to the ghost system (71), which fits the system with n = 1 [4,20,21], and
obeying the anti-commutation rules

{cRκ , d∗Rσ} = {cLκ , d∗Lσ} = {dRκ , c∗Rσ} = {dLκ , c∗Lσ} = 2πδ(κ − σ), (103)

we can compute the two-point correlations of the Rindler ghosts in the Minkowski vacuum:

M〈0|bRσc∗Rκ |0〉M = M〈0|cRσb∗Rκ |0〉M =
2πδ(κ − σ)

1− e−2πκ
,

M〈0|c∗RκbRσ|0〉M = M〈0|b∗RκcRσ|0〉M = −2πδ(κ − σ)

e2πκ − 1
.

(104)

Note that these results are independent of the value of n, but do reflect the ghost statistics leading to
the minus sign in the last expression.

Finally, we turn to the commuting superghosts (S, U). The analysis proceeds parallel to the ghost
system (C, D), except that the appropriate value Lorentz and conformal weight is n = 1/2 [4,22] and
the anti-commutation rules are replaced by commutation rules. The relevant results are

eπκ/2uRκ |0〉M = (−1)n+1e−πκ/2u∗Lκ |0〉M, e−πκ/2u∗Rκ |0〉M = (−1)n+1eπκ/2uLκ |0〉M,

(−1)neπκ/2sRκ |0〉M = e−πκ/2s∗Lκ |0〉M, (−1)ne−πκ/2s∗Rκ |0〉M = eπκ/2sLκ |0〉M,
(105)

supplemented by the commutation rules

[sRκ , u∗Rσ] = [sLκ , u∗Lσ] = [uRκ , s∗Rσ] = [uLκ , s∗Lσ] = 2πδ(κ − σ). (106)
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From these equations, one derives the Minkowski two-point functions for the superghosts:

M〈0|uRσs∗Rκ |0〉M = M〈0|sRσu∗Rκ |0〉M =
2πδ(κ − σ)

1 + e−2πκ
,

M〈0|s∗RκuRσ|0〉M = M〈0|u∗RκsRσ|0〉M = −2πδ(κ − σ)

e2πκ + 1
.

(107)

9. Local Conformal Invariance in Rindler Space

With the results (104) and (107), we can now compute the Minkowski expectation values of
the (super-)Virasoro operators, including the ghost contributions required for local conformal and
superconformal invariance. First, the results (68) are supplemented for κ ≥ 0 by

Lg
Rκ =

∫ ∞

0

dσ

2π
[(σ− κ) c∗σdκ+σ + (σ + 2κ) d∗σcκ+σ]−

∫ κ

0

dσ

2π
(σ + κ) cσdκ−σ,

Lsg
Rκ =

∫ ∞

0

dσ

2π

[(
σ− κ

2

)
s∗σuκ+σ +

(
σ +

3κ

2

)
u∗σsκ+σ

]

−
∫ κ

0

dσ

2π

(
σ +

κ

2

)
sσuκ−σ,

Gsg
Rκ =

∫ ∞

0

dσ

2π
[s∗σbκ+σ + b∗σsκ+σ + (σ + 3κ)u∗σcκ+σ + (σ− 2κ)c∗σuκ+σ]

+
∫ κ

0

dσ

2π
[sσbκ−σ − (σ + 2κ) cσuκ−σ] ,

(108)

with (Lg
R)−κ = Lg ∗

Rκ , (Lsg
R )−κ = Lsg ∗

Rκ and (Gsg
R )−κ = Gsg ∗

Rκ . Together with the operators (68) for each
scalar and spinor field, they define the same algebra (89) in Rindler space. Thus, the first-class
constraints requiring the cancellation of the anomalies are also satisfied for 2Nb + N f = 52 bosons and
fermions coupled to 2-D conformal gravity and Nb = N f = 10 bosons and fermions coupled to 2-D
conformal supergravity.

As in the case of global conformal invariance, the Minkowski expectation values of the conformal
charges are modified due to finite temperature effects. With the help of Equations (105) and (107),
the results (69) are now extended by

M〈0|L
g
Rκ |0〉M = − 1

12
δ(κ), M〈0|L

sg
Rκ |0〉M = − 1

24
δ(κ). (109)

For the full Virasoro charges, simultaneously requiring the cancellation of the anomalies:

M〈0|
(

NbLb
Rκ + N f L f

Rκ + Lg
Rκ

)
|0〉M = δ(κ),

M〈0|
(

NbLb
Rκ + N f L f

Rκ + Lg
Rκ + Lsg

Rκ

)
|0〉M =

1
2

δ(κ).

(110)

These expectation values, restricted to κ = 0, do not contradict the first-class constraints, at the
same time showing that the full hamiltonian in Rindler space has a non-vanishing Minkowski
expectation value as a result of finite-temperature correlations (104) and (107). As discussed before,
a regularization procedure is required in order to deal with the δ-function singularity of the expectation
values in applications.
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10. Conclusions

Two-dimensional conformal field theories can be formulated in an inertial frame with a Minkowski
metric, or in a uniformly accelerated frame with a local conformal Rindler metric defined by ρ = e±aξ ;
here, the sign differentiates between the right and left wedge of Rindler space. Thus, in each wedge
one obtains two different descriptions of the same theory. The switch between the frames not only
changes the co-ordinates, but Fock-space quantization can proceed parallel in both frames, provided
an appropriate conformal transformation is applied to the field components as well. The Fock spaces
in the two frames are related by Bogoliubov transformations of the mode operators, effectively giving
rise to finite-temperature correlations of the Rindler modes for states build on the Minkowski vacuum,
which is the true ground state of the theory. The temperature is proportional to the acceleration,
an effect well-known from the original work of Unruh, Davies, Wald, Fulling, and others for accelerated
frames in Minkowski space, and the work of Hawking in the context of black hole space-times.

The switch to the Rindler frame not only creates an effective finite-temperature description,
but changes the construction and action of symmetry operators, like conformal and supersymmetry
charges on the ground state. The naive conformal and supersymmetries in the Rindler frame are broken
by finite-temperature effects in the Minkowski vacuum, but the underlying Minkowski symmetries
are still present, even though hidden by the Bogoliubov transformations.

An additional, different issue is the breaking of conformal and supersymmetries by anomalies,
extensively studied in the context of string theory. In the field-theory view taken here, they break the
local conformal and supersymmetry arising from coupling conformal matter to conformally invariant
gravity or supergravity. Thus, consistent coupling to gravity or supergravity is only possible in
the case of specific critical theories with a strongly limited spectrum of boson and fermion matter
fields, reflecting the critical dimensions of quantum string theories. This is also relevant as the
Minkowski-frame and Rindler-frame formulations of massless QFT’s are related by a conformal
transformation; if this transformation is jeopardized by the conformal anomaly in theories with a
non-critical spectrum, it may require compensating Wess–Zumino type dynamics [23], e.g., involving
a Liouville field.

The analysis that is presented here is strictly for massless free fields in two-dimensional space-time.
To deal with two-dimensional conformal fields theories with non-trivial interactions is an interesting
next step to the work presented here, as is the extension to higher-dimensional field theories.
Results establishing the Unruh effect in more general field theories, mostly scalar fields, can be
found in the literature, see [17] and references therein. However, the precise procedure and effects of
conformal and supersymmetry transformations involving fields of non-zero spin in those cases remain
to be established.
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Appendix A. 2-D Spinor Conventions

In this appendix and in the main body of the paper we denote by greek indices µ, ν, ... vector
en tensor components in an arbitrary space-time manifold with metric gµν; latin indices a, b, ... refer
to vector and tensor components in a tangent Minkowski space with mertric ηab. The Majorana
representation of the Dirac algebra in 2-dimensional Minkowski space is defined in terms of the 2× 2
Pauli matrices as follows:

γ0 = iσ2, γ1 = σ1, γ3 = γ0γ1 = σ3. (A1)
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In 2-dimensional Minkowski space a Dirac spinor is a 2-component object transforming under Lorentz
transformations with parameter ωab = ωεab as

λ′ = eωabσab/2λ = eωγ3/2λ, σab =
1
4
[γa, γb] = −

1
2

εabγ3. (A2)

Dirac-conjugate spinors are defined by λ̄ = λ†γ0. The charge-conjugation operator is C = −CT = γ0

with the defining property
CγaC−1 = −γa T . (A3)

A self-conjugate Majorana spinor λ = λc = Cλ̄T = λ∗ is therefore a spinor with real components:

λ = λc =

[
λ+

λ−

]
, λ∗± = λ±. (A4)

The subscripts ± define the eigenvalues under the chiral operator γ3. Evidently

λ̄ = λTC. (A5)

In a general 2-D space-time the spinors are defined as representations of the local Lorentz group,
transforming like (A2) with a space-time dependent parameter ω(x). At the same time a spinor
transforms like a scalar under diffeomorphisms: λ′(x′) = λ(x). To construct the Dirac-operator one
uses the 2-bein fields ea

µ(x) such that the metric is factorized as

gµν = e a
µe b

ν ηab. (A6)

In terms of the 2-bein fields and their inverse components e µ
a the spin connection, acting as the gauge

field for local Lorentz transformations, is defined by an extension of the metric postulate

∇µe a
ν = ∂µe a

ν − Γ λ
µν e a

λ = ω a
µ beb

ν, (A7)

implying that

ω ab
µ = −ω ba

µ =
1
2

[
eνa
(

∂νe b
µ − ∂µe b

ν

)
− eνb

(
∂νe a

µ − ∂µe a
ν

)
+ eλaeνbeµc (∂λe c

ν − ∂νe c
λ )
]

.

(A8)

In terms of these objects the full space-time and Lorentz covariant derivative of a spinor field is

Dµλ =

(
∂µ −

1
2

ω ab
µ σab

)
λ, (A9)

the Dirac operator being defined by D/ = γae µ
a Dµ.

Next turn to the special class of conformally flat metrics (1). For these metrics (in a hybrid notation)

e a
µ = ρ δa

µ, e µ
a =

1
ρ

δ
µ
a . (A10)

It follows that the components of the spin connection are

ω ab
µ =

(
δb

µηaν − δa
µηbν

)
∂ν ln ρ. (A11)
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Specifically in 2-D space-time with conformally flat co-ordinates (τ, ξ):

ω 01
τ = −ω 10

τ = −∂ξ ln ρ, ω 01
ξ = −ω 10

ξ = −∂τ ln ρ. (A12)

Combining this result with (A9) and (A2), while noting that√
−g = det ea

µ = ρ2,

one derives the result (35):

√
−g CD/ =

√
ρ

(
∂τ − ∂ξ 0

0 ∂τ + ∂ξ

)
√

ρ.

But this is not yet the final result; starting form the Minkowski 2-bein e a
Mµ = δa

µ, the Rindler 2-bein is
obtained by

e a
Rµ =

∂xλ
M

∂xµ
R

e b
Mλ Ω a

b , (A13)

where in the R-wedge of Rindler space

∂xλ
M

∂xµ
R

= eaξ

(
cosh aτ sinh aτ

sinh aτ cosh aτ

)

is the Jacobian of the transformation from Minkowski to Rindler co-ordinates, and Ω a
b is a local

Lorentz transformation. Clearly the Jacobian is not diagonal, but this can be restored by taking the
local Lorentz transformation

Ω =

(
cosh aτ − sinh aτ

− sinh aτ cosh aτ

)
.

This puts the 2-bein back to the diagonal form e a
Rµ = eaξ δa

µ. For the L-wedge a similar procedure can
be followed. As a result, the use of a diagonal vierbein in Rindler space must be accompanied by a
corresponding local Lorentz transformation on spinor fields; in the present case this takes the form

λ′ = eaτγ3/2λ. (A14)

This explains why in the R- and L-wedges of Rindler space the redefinition (36) of the spinor fields by

R : ψ±(τ, ξ) = e±a(τ±ξ)/2λ±[t(τ, ξ), x(τ, ξ)],

L : ψ±(τ, ξ) = e∓a(τ±ξ)/2λ±[t(τ, ξ), x(τ, ξ)],

reduces the Rindler Dirac-Majorana action formally to the Minkowski one.

Appendix B. Thermal Correlations in Rindler Space

The computation of the two-point correlation functions of the Rindler fields in the Minkowski
vacuum start from Equations (49) and (53):

bRκ |0〉b = e−πκb∗Lκ |0〉b, b∗Rκ |0〉b = eπκbLκ |0〉b,

βRκ |0〉 f = −ie−πκ β∗Lκ |0〉 f , β∗Rκ |0〉 f = ieπκ βLκ |0〉 f ,
(A15)
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and their conjugates:

b〈0|b∗Rκ = e−πκ
b〈0|bLκ , b〈0|bRκ = eπκ

b〈0|b∗Lκ ,

f 〈0|β∗Rκ = ie−πκ
f 〈0|βLκ , f 〈0|βRκ = −ieπκ

f 〈0|β∗Lκ .
(A16)

The following chain of commutation relations and substitutions leads to the desired result:

b〈0|bRκb∗Rσ|0〉b = 2πδ(κ − σ) + b〈0|b∗RσbRκ |0〉b

= 2πδ(κ − σ) + e−π(κ+σ)
b〈0|bLσb∗Lκ |0〉b

= 2πδ(κ − σ)
(
1 + e−2πκ

)
+ e−π(κ+σ)

b〈0|b∗LκbLσ|0〉b

= 2πδ(κ − σ)
(
1 + e−2πκ

)
+ e−2π(κ+σ)

b〈0|bRκb∗Rσ|0〉b.

(A17)

The solution of this equation is (55) and implies (56):

b〈0|bRκb∗Rσ|0〉b = 2πδ(κ − σ) + b〈0|b∗RσbRκ |0〉b =
2πδ(κ − σ)

1− e−2πκ
,

b〈0|b∗RσbRκ |0〉b =
2πδ(κ − σ)

e2πκ − 1
.

(A18)

The derivation of the fermion two-point function proceeds entirely parallel, using anti-commutation
relations instead of commutation relations, which results in a change of sign in the denominator.

The relations (A15), (A16) also imply a direct relation between the common Rindler vacuum state
|0〉R = |0〉RR ⊗ |0〉RL:

bRκ |0〉RR = βRκ |0〉RR = 0, bLκ |0〉RL = βLκ |0〉RL = 0, (A19)

and the Minkowski vacuum:

|0〉M = exp
[∫ ∞

0

dκ

2π
e−πκ (b∗Rκb∗Lκ − iβ∗Rκ β∗Lκ)

]
|0〉R. (A20)
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