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Abstract: The investigation scrutinizes the circulation of the large-scaled fluxes of ultrarelativistic
electrons near the neutron stars. This work focuses on the effects that occur during the adjustment of
the strong electromagnetic field near the X-ray pulsars. Particularly, this study analyzes the resonant
high-energy spontaneous bremsstrahlung of ultrarelativistic electrons in the pulsed fields of a nucleus
and X-ray pulsar. Specific attention is given to the pulsed character of the field model. Under the
resonant conditions the intermediate virtual electron within the electromagnetic field transforms into a
real particle. As a result, the initial second-order process with accordance to the fine structure constant
effectively splits into two first-order effects: the stimulated Compton process and the field-assisted
scattering of an electron on a nucleus. In this research we obtain the resonant differential cross-sections
with registration of frequency and radiation angle of a hard gamma-quantum. To summarize,
the resonant differential cross-section of the effect within the external pulsed electromagnetic field of
X-ray pulsar significantly exceeds the corresponding cross-section without an external field.

Keywords: ultrarelativistic electrons; bremsstrahlung; neutron stars; astrophysics; virtual particles

1. Introduction

Previous astronomical investigations explored the emissions of ultrarelativistic electrons in the
cosmic rays [1,2] from neutron stars and magnetars. The actual paper scrutinizes the spectrum
of the X-ray pulsars through the study of the processes that occur between the radiated particles
(bremsstrahlung of ultrarelativistic electrons with considerable energies Ei ∼ 102 MeV ÷ 102 GeV on
a nucleus) during the adjustment of the external X-ray field with intensity F0 ∼ 1013 ÷ 1014 V/cm.
Earlier researches derived [3–7] that the high-order quantum electrodynamics (QED) processes with
respect to the fine structure constant in the external field may develop as the resonant or non-resonant
processes. In addition, the low-order resonances that appear are the Oleinik resonances [8,9]. Under the
conditions of Oleinik resonance an intermediate virtual electron in the wave field emerges to the mass
shell. As a result, the initial second-order process with respect to the fine structure constant in the wave
field effectively splits into two first-order processes: the external X-ray field-stimulated Compton effect
and the X-ray field-assisted Mott process. For such arrangement, the resonant kinematics determine
both the frequency of the spontaneous photon, which significantly depends on the reaction channel,
and the corresponding angles of emission of the spontaneous photon in correlation to the momenta of
the initial or final electrons. It is important to underline, that the probability of the resonant channel
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development exceeds the probability for the same phenomenon accounted in the absence of the
external field [10,11] by several orders of magnitude.

It should be noted that in the considered problem of the electron on a nucleus bremsstrahlung in
the field of a plane wave there are two characteristic parameters. The classical relativistic-invariant
parameter [12–16]:

η0 =
eF0λ̄

mc2 . (1)

that is numerically equal to the ratio of the work of the field at a wavelength to the rest energy of the
electron (e and m are the charge and mass of an electron, F0 and λ̄ = c/ω are the electric field strength
and the wavelength, ω is the frequency of a wave, and c is the light velocity in vacuum). Within the
diapason of the X-ray frequencies (ω ∼ 1÷ 102 keV) the classical parameter is η0 ∼ 1 for the fields up
till the magnitude of F0 . 1015 V/cm. The actual investigation considers the moderately weak X-ray
fields in the studied bremsstrahlung effect:

η0 � 1. (2)

The second parameter is the quantum Bunkin–Fedorov parameter [13–18]:

γ0 = η0
mvic
h̄ω

. (3)

where vi is the velocity of the initial electrons.
Modern laser radiation sources may propose an approximation of the near X-ray pulsar

conditions [19–22].
Described experimental and theoretical researches of the processes of QED within the strong

external fields of magnetars and X-ray pulsars delineate an intensively developing area that
can be applied in investigations of physics of neutron stars [8–11,13–18,23–58]). Thus, articles,
essays [1,2,18,29–31] and reviews [12–15,26–28,59,60] accumulate main results.

Several works have investigated the strong field approximations. Thus, in [41] the authors
scrutinize the spontaneous bremsstrahlung emission in a highly intense laser field. In this regime
the interaction with the laser field has to be treated nonperturbatively by using the relativistic
formalism including Dirac–Wolkow propagators, while the interaction with the Coulomb field and
the bremsstrahlung radiation can be treated in first-order perturbation theory. Additionally, in the
paper [42] the authors numerically evaluate the cross sections for spontaneous bremsstrahlung
emission in a laser field for both circular and linear laser polarization, in a regime where the classical
ponderomotive energies for the considered laser intensities are considerably larger than the rest mass
of the electron.

The process of the spontaneous bremsstrahlung of ultrarelativistic electrons in the fields of a
nucleus and plane monochromatic wave was previously studied in the articles [53,61]. In contrast to the
earlier works, the authors scrutinize the process of the spontaneous bremsstrahlung of ultrarelativistic
electrons with radiation of the high-energy gamma-quanta within the field of a nucleus and the pulsed
electromagnetic field of the X-ray pulsar.

The calculations in articles comprehend the relativistic units system: h̄ = c = 1.

2. The Process Amplitude

In order to simulate the conditions of the external field from the neutron star the study utilizes
the following form of the 4-potential plane-wave electromagnetic momentum that propagates along
the z axis:

A(φ) = A0·g(
ϕ

ωτ
)·(ex cos ϕ + δey sin ϕ),

ϕ = kx = ω(t− z).
(4)
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where A0 = F0/ω, k = (ω, k) is the wave 4-vector; δ is the polarization ellipticity parameter of a
wave; ex = (0, ex), ey = (0, ey) are the wave polarization 4-vectors, and e2

x,y = −1, (ex,yk) = k2 = 0.
The function g(ϕ/ωτ) is the envelope function of the potential and at the center of the momentum
g(0) = 1, when g(0)→ 0 the envelope function exponentially decreases with the condition: |ϕ| � ωτ.
Finally, τ is the duration of the X-ray field pulse.

The represented problem is usually studied in the field of intensities of moderately strong fields
with the following conditions:

ωτ � 1. (5)

The fields that correlate to the condition (5) are referred as quasimonochromatic. The actual
study considers the ultrarelativistic electrons and weak quasimonochromatic fields (5)—the indicated
conditions delineate that the electrons do not deviate from the initial direction of propagation as a result
of the pomderomotive effect in the external field. For the represented arrangement the investigation
neglects the spatial inhomogeneity of the beam in the transverse direction from the examination [11,21].

The paper analyzes the spontaneous bremsstrahlung of electrons on a nucleus in the pulsed
electromagnetic field in the Born approximation of the electrons with nucleus field interaction
(Ze2/vi � 1, Z is the charge of a nucleus). Consequently, two Feynman diagrams illustrate the
delineated process near the neutron star (see Figure 1).

Figure 1. The Feynman diagrams of the resonant bremsstrahlung of ultrarelativistic electrons on
a nucleus with hard gamma-quanta radiation in the presence of a pulsed field of the X-ray pulsar.
(a) Diagram A corresponds to the channel A. (b) Diagram B corresponds to the channel B. The double
incoming and outgoing lines correspond to the Wolkow functions of an electron in the initial and
final states, the inner double line corresponds to the Green function of an electron within a pulsed
electromagnetic field (4). The waved lines correlate to the 4-momenta of the hard gamma-quanta and
the dashed lines illustrate the “pseudo-photon” of a nucleus recoil.

The following expression delineates the amplitude of the process:

S f i = −ie2
∫

d4x1d4x2ψ f (x2|A)·[γ̃0 A0(|x2|)G(x2x1|A)Â′(x1, k′)+

+Â′(x2, k′)G(x2x1|A)γ̃0 A0(|x1|)]ψi(x1|A).
(6)

where ψi(x1|A) and ψ f (x2|A) are the wave functions of electron in the initial and final states in the
field of a plane electromagnetic wave (Wolkow functions), and G(x2x1|A) is the Green function of an
intermediate electron within the field of a pulsed electromagnetic wave (4). The magnitudes with a
hat imply the scalar product of the corresponding 4-vector on the Dirac gamma-matrix: γ̃µ = (γ̃0, γ̃̃γ̃γ),
µ = 0, 1, 2, 3. For example: Â′ = A′µγ̃µ = A′0γ̃0 − A′γ̃A′γ̃A′γ̃. In the expression (6) A0(|xn|) is the Coulomb
potential of a nucleus and A′µ(xn, k′) is the 4-potential of a spontaneous photon, that have the structures:

A0(|xn|) =
Ze
|xn|

. (7)

A′µ(xn, k′) =

√
2π

ω′
ε∗µeik′xn , n = 1, 2. (8)
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where, ε∗µ and k′ = (ω′, k′) are the 4-vector of polarization and the 4-momentum of a spontaneous
gamma-quantum, (k′xn) = (ω′tn−k′xn). The constructed model utilizes circular polarization (δ2 = 1)
and the main parameter value at the peak of the pulse is (2). For the energy of the gamma-quantum of
100 keV the actual magnitude of the characteristic parameter is:

ω = 102keV ⇒ F (
V
cm

) ≈ 2.592× 1015 × η0 ⇒ η0 ∼ 10−2. (9)

Furthermore, the study implements computational methods (see, for example [18]) and derives
the amplitude of the resonant bremsstrahlung within the field of a weak plane quasimonochromatic (4)
electromagnetic wave (10):

S f i =
∞

∑
l=−∞

S(l). (10)

Here, S(l) is the partial amplitude with the radiation (absorption) of |l| gamma-quanta.

S(l) = −i
2τ2ωZe3√π√

2ω′E f Ei

(u f B(l)ui)

[q2 + q0(q0 − 2qz)]
. (11)

where
B(l) = Bi(l) + B f (l). (12)

q = p f − pi + k′ + lk. (13)

The q = (q0, q) is the transmitted 4-momentum, Bi(l) and B f (l) are the amplitudes for the channels
A and B.

Bi(l) =
∞

∑
r=−∞

∫ ∞

−∞
dφ1

∫ ∞

−∞
dφ2 e(iq0τφ2) ·M0

(l+r)(p f , qi, φ2)G(qi, φ1 − φ2)[ε
∗
µFµ

(−r)(qi, pi, φ1)]. (14)

B f (l) =
∞

∑
r=−∞

∫ ∞

−∞
dφ1

∫ ∞

−∞
dφ2 e(iq0τφ1) · [ε∗µFµ

(−r)(p f , q f , φ2)]G(q f , φ2 − φ1)M0
(l+r)(q f , pi, φ1). (15)

G(qi, φ1 − φ2) =
∫ ∞

−∞
dξ[

(q̂i + m) + ξ k̂
(q2

i −m2) + 2ξ(kqi)
] · ei(ωτξ)(φ1−φ2). (16)

qi = pi − k′ + rk, q f = p f + k′ − rk. (17)

The term G(q f , φ2 − φ1) in the expression (15) is derived from the ratio (16) with substitution:
qi → q f , φ1 ↔ φ2. In addition, φn = ϕn/ωτ(n = 1, 2), qi, and q f are the 4-momenta of the intermediate
electrons for channels A and B (see Figure 1).
where:

M0
(l+r)(p′, p, φn) = γ̃0L(l+r)(p′, p, φn). (18)

Fµ

(−r)(p′, p, φn) = γ̃µL(−r)(p′, p, φn) + bµ

p′p(−)(φn)L(−r−1) + bµ

p′p(+)
(φn)L(−r+1), n = 1, 2. (19)

Here, magnitudes bµ

p′p(±) from (18) and (19) and the special functions Ln′(p′, p, φn):

bµ

p′p(±)(φn) = η(φn)[
m

4(kp′)
ê± k̂γ̃µ +

m
4(kp)

γ̃µ k̂ê±]. (20)

Ln′ ≡ Ln′(p′, p, φn) = e−isχp′ p Jn′ [γp′p(φn)]. (21)
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where Jn′ are the Bessel functions of an integer index, parameter γp′p, and 4-vectors e± are equal to:

γp′p(φn) = η(φn)m
√
−Q2

p′p, Qp′p =
p′

(kp′)
− p

(kp)
. (22)

e± = ex ± iδey. (23)

The derived amplitude (10), (12)–(14) is valid for the circular polarization of the weak
quasimonochromatic laser wave (4) and (9).

The additional conditions for the constructed model delineate that the ultrarelativistic electron
and spontaneous gamma-quantum propagate along the direction of the momentum of the initial
electron [53].

Ei, f � m. (24)

θ′i, f = ∠(k′, pi, f )� 1, θi f = ∠(pi, p f )� 1. (25)

θ′ = ∠(k′, k) ∼ 1, θi, f = ∠(k, pi, f ) ∼ 1 (θ′ ≈ θi, f ). (26)

3. The Poles of the Resonant Bremsstrahlung Amplitude

As a result of the approximate fulfillment of the energy-momentum conservation law,
the intermediate electron emerges close to the mass surface.

Therefore, the research uses the subsequent resonant conditions [18] for the channels A and B
(see Figure 2):

βi =
q2

i −m2

4(kqi)
ωτ, β f =

q2
f −m2

4(kq f )
ωτ, |β j| . 1⇒ |q2

j −m2| .
4(kqj)

ωτ
, j = i, f . (27)

Figure 2. Resonant bremsstrahlung of ultrarelativistic electrons in the fields of a nucleus and X-ray
pulsar. (a) Diagram A corresponds to the channel A. (b) Diagram B corresponds to the channel B.

The resonant parameters βi, f (27) have the following form within the external field:

βi =
r[εr − (1 + εr + δ′2i )x′]

2εr(1− x′)
(ωτ). (28)

β f =
r{x′[1 + (1− x′)2δ′2f ]− εr(1− x′)}

2εr(1− x′)
(ωτ). (29)

where

δ′i =
Eiθ
′
i

m
, δ′f =

Eiθ
′
f

m
, x′ =

ω′

Ei
. (30)

εr = rε1, ε1 =
Ei
E1

, E1 =
m2

4ω sin2(θi/2)
. (31)

where r = 1, 2, 3, . . . is the number of resonance (the amount of X-ray photons of a wave that electron
absorbs), εr is the characteristic parameter of a process that is equal to the ratio of the initial electron
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energy to the characteristic energy Er = E1/r. The characteristic energy is defined by: the rest energy
of an electron, the angle between the momenta of the initial electron and propagating wave, and by
the superposition of the energies of absorbed photons.

In this article the authors consider the cases when ε1 ∼ 1 and ε1 � 1.
The resonant conditions (27) for the channels A and B change in correlation to the Equations (28)

and (29):
r

2εr(1− x′)
|εr − (1 + εr + δ′2i )x′| . 1

(ωτ)
� 1. (32)

r
2εr(1− x′)

|x′[1 + εr + (1− x′)2δ′2f ]− εr| .
1

(ωτ)
� 1. (33)

Subsequently, the research obtains the resonant frequencies for the channels A and B. Thus, for the
channel A:

x′i(r)(δ
′2
i ) ≈

εi

1 + εr + δ′2i
, x′i(r) =

ω′i(r)
Ei

. (34)

Parameter εr determines the resonant frequency with a single-value dependency on the angle
of the emission of a hard gamma-quantum in accordance to the momentum of the initial electron.
The resonant frequency has a maximum peak when gamma-quantum propagates along the momentum
of the initial electron (δ′2i = 0):

x′i(r)(0) = x′max
(r) =

εr

1 + εr
. (35)

For the channel B, the research obtains a cubic equation:

δ′2f x′3f (r) − 2δ′2f x′2f (r) + (1 + δ′2f + εr)x′f (r) − εr ≈ 0, x′f (r) =
ω′f (r)

Ei
. (36)

The channel B resonant frequency is defined by the angle of the hard gamma-quantum radiation
in accordance to the momentum of the final electron.

The paper considers only the case when δ′2f 6= 0 as that condition may be a subject for a whole
other research.

Therefore, for the channel B, the resonant frequency function depends on the parameter εr and
has two distinctive areas of dependency: 0 < εr ≤ 8 and εr > 8. Additionally, the parameter δ′2f value

designates 3 intervals of function: 0 < δ′2f < δ′2−(r), δ′2−(r) < δ′2f < δ′2+(r), and δ′2f > δ′2+(r) in which the

research obtains principally different results. All these areas of parameters εr and δ′2f magnitudes may
be represented in the following two solutions. For the first diapason:

0 < δ′2f ≤ δ′2f max = 3(1 + εr), i f 0 < εr ≤ 8. (37)

It is important to notice that lines 1′ and 2′ of the Figure 3 and line 1 on the Figure 5b and lines 1
and 2 on the Figure 6 are limited as they correspond to the parameter value within the interval (37).
The resonant frequency of the spontaneous hard gamma-quantum within the first interval (37) is
equal to:

x′f (r) =
2
3
+ (α+(r) + α−(r)). (38)

where

α±(r) = [−
b(r)
2
±

√
Q(r)]

1/3, Q(r) = (
a(r)
3

)3 + (
b(r)
2

)2. (39)

a(r) =
1

3δ′2f
[3(1 + εr)− δ′2f ], b(r) =

1
27δ′2f

[2(9 + δ′2f )− 9εr]. (40)

within the second diapason:
δ′2−(r) < δ′2f < δ′2+(r). (41)
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where the limiting magnitudes for the interval are equal to:

δ′2±(r) = 3(1 + εr) +
1
8
(εr − 8)[(εi + 4)±

√
εr(εr − 8)], εr > 8. (42)

Thus, within diapason (41) the resonant frequency of a hard gamma-quantum obtains three
various possible values as solutions of the cubic Equation (36):

x′f (r)1 =
2
3
+ d′(r) cos(

ϕ′(r)
3

),

x′f (r)2 =
2
3
+ d′(r) cos(

ϕ′(r)
3

+
2π

3
),

x′f (r)3 =
2
3
+ d′(r) cos(

ϕ′(r)
3

+
4π

3
).

(43)

where

d′(r) =
2

3δ′f

√
δ′2f − 3(1 + εr), cos ϕ′(r) =

δ′f [9εr − 2(9 + δ′2f )]

2[δ′2f − 3(1 + εr)]3/2
, 0 ≤ ϕ′(r) ≤ π. (44)

The third interval δ′2f > δ′2+(r) is similar to the first diapason and the resonance frequency has a
single-value dependency with the emission angle of a spontaneous photon: decreasing from value
x′f (r)+ to small values x′f (r) � 1. Here, the resonant frequency x′f (r)+ is obtained by substituting the

value δ′2f = δ′2+(r) into solutions (38)–(40).
It is important to underline the difference between the resonant and non-resonant options

of the reaction development. In the non-resonant conditions the resonant frequency of a hard
gamma-quantum and the final electron energy are independent. Additionally, the energies of hard
gamma-quanta do not depend on its radiation angles. In contrast, the resonant conditions implement
absolutely different limitations. Under the resonant conditions the particle emission spectrum depends
on the angles of hard gamma-quanta radiation with accordance to the initial or final electrons momenta.

Furthermore, the research states that the channels A and B do not interfere due to the fact that the
resonant frequency is dependent on the correlation between angle of hard gamma-quantum emission
to the initial electron momentum for the channel A and final electron momentum for the channel B.

For the illustrative representation of the results, see Figure 3 and the caption for it.
Additionally, the research scrutinizes the case when the initial electron energy is considerably

bigger than the characteristic energy E1 (31):

ε1 � 1→ Ei � E1. (45)

Thus, for such arrangement the frequencies of spontaneous gamma-quanta for the channels A
and B are defined with the following equation:

x′j(r)(δ
′2
j ) ≈ 1−

1 + δ′2j
εr

, j = i, f (δ′2j � εr � 1). (46)

In this equation, the term with δ′2j and εr has a small magnitude. Therefore, when the energy
of the initial electrons significantly exceeds the characteristic energy of the process, the energy of
spontaneous gamma-quanta for channels A and B is close to the energy of electrons. The research
accounts these corrections in the final derivations of the differential cross-sections.
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Figure 3. The hard gamma-quantum resonant frequency dependency on the emission angle.
The dashed lines demonstrate the first three resonant frequencies for the channel A (34) (j = i),
the solid lines designate the first three resonant frequencies for the channel B (38) and (43) (j = f ).
For the lines 1′ and 2′, the emission angles of a spontaneous photon are limited by the maximal
magnitude (37). The line 3′ has a specific radiation diapason (41) with three solutions of the resonant
frequency (43). The characteristic parameter ε1 = 3 (the characteristic energy is E1 = 100 MeV,
the initial electron energy is Ei = 300 MeV).

4. Results

4.1. The Cross-Section of the Resonant Bremsstrahlung Process

The next step in the investigation is to derive and analyze the cross-section of the considered
effect. In order to do this, the authors simplify the amplitude (10)–(14) with attention of the resonant
kinematics (24)–(26). Consequently, the amplitudes M0

(l+r) and Fµ

(−r) from (13) and (14):

M0
(l+r)(p′, p, φj) ≈ γ̃0L0(p′, p, φn) ≈ γ̃0 (l = −r). (47)

Fµ

(−r)(p′, p, φn) = γ̃µL(−r)(p′, p, φn) + L(−r+1)(p′, p, φn)η(φ1)[
m

4(kp′)
ê+ k̂γ̃µ +

m
4(kp)

γ̃µ k̂ê+]. (48)

The computations are valid for a certain type of the potential envelope function:

g(φn) = e−(2φn)2
, n = 1, 2. (49)

Therefore, the authors expand Bessel functions (47) and (48) into series form and then make
integration on the dφ1 and dφ2 for the channels A and B. The amplitude of the cross-section of the
resonant bremsstrahlung effect:

S f i = S(−r) =
π2τ2ωZe3√

2ω′E f Ei

(u f B′(−r)ui)

[q2 + q0(q0 − 2qz)]
. (50)

Here,
B′(−r) = B′i(r) + B′f (r). (51)
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B′i(r) and B′f (r) are the channels A and B resonant amplitudes.

B′i(r) = Ui(r) · [γ̃0(q̂i + m)(ε∗µzµ

i(r))]. (52)

B′f (r) = U f (r) · [(ε∗νzν
f (r))(q̂ f + m)γ̃0]. (53)

Uj(r) =
ηr

0√
r(kqj)

e−
β2

j
4r Vr(q0, β j). (54)

Vr(q0, β j) =
∫ ∞

−∞
dφ ei(q0τ+2β j)φer f (2

√
rφ +

iβ j

2
√

r
), j = i, f . (55)

where r is the number of the resonance. It is important to note that in the expressions (52) and (53)
there is no summation on the argument r because there is no interference between the resonances.

The equations zµ

i(r) and zν
f (r) are:

zµ

i(r) = γ̃µcr
i + cr−1

i [
m

4(kqi)
ê+ k̂γ̃µ +

m
4(kpi)

γ̃µ k̂ê+]. (56)

zν
f (r) = γ̃νcr

f + cr−1
f [

m
4(kp f )

ê+ k̂γ̃ν +
m

4(kq f )
γ̃ν k̂ê+]. (57)

Here,

cr
i =

(−1)r

r!
γr

i eirχqi pi , cr
f =

(−1)r

r!
γr

f eirχp f q f . (58)

γj = r

√
uj

ujr
· (1−

uj

ujr
), j = i, f . (59)

The ui, uir, u f , u f r (59) are the relativistic-invariant parameters.

ui =
(kk′)
(kqi)

, uir = 2r
(kpi)

m2 , u f =
(kk′)
(kp f )

, u f r = 2r
(kq f )

m2 . (60)

The next aim of the research is to derive the probability of the process:

dwj(r) =
π4τ4ω2(Ze3)2

2ω′E f Ei

|(u f B′j(r)ui)|2

[q2 + q0(q0 − 2qz)]2
·

d3 p f d3k′

T(2π)6 , j = i, f . (61)

where T is a comparatively considerable time period of observation (T & τ). Thus, the channel A
cross-section:

dσi(r) =
πτ(ωτ)2

16(2π)3 (
τ

T
)

m2|qi|
r(kqi)2 e−

β2
i

2r dW ′i(r)(qi, pi) ·
2Z2r2

e m2[m2 + E f qi0 + p f qi]

|qi|E f [q2 + q0(q0 − 2qz)]2
|Vr(q0, βi)|2d3 p f . (62)

q = p f − qi. (63)

where dW ′i(r)(qi, pi) is the probability per time unit of hard gamma-quantum emission with k′

4-momentum by an electron with pi 4-momentum due to absorption of r X-ray photons [12].

dW ′i(r)(qi, pi) =
α

ω′|pi|
η2r

0 (
rr

r!
)2[

ui
uir

(1− ui
uir

)](r−1) · {2 +
u2

i
(1 + ui)

− 4ui
uir

(1− ui
uir

)}d3k′. (64)
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Subsequently, with integration of the Equation (62) on the final electron energy, the cross-sections
of the resonant bremsstrahlung effect obtain the following form:

dσi(r) = dσ(0)(p f , qi) ·Ψres
i(r) · dW ′i(r)(qi, pi). (65)

dσf (r) = dW ′f (r)(p f , q f ) ·Ψres
f (r) · dσ(0)(q f , pi). (66)

where Ψres
i(r) and Ψres

f (r) are the resonant functions:

Ψres
i(r) =

m2|qi|
64π2

(ωτ)2Pres
(r) (βi)

r(kqi)2 ,

Ψres
f (r) =

m2|p f |
64π2

(ωτ)2Pres
(r) (β f )

r(kq f )2 .

(67)

Parameter β j (27) determines the resonance profile function Pres
(r) (β j):

Pres
(r) (β j) = e(−

β2
j

2r )
1

2ρ

∫ ρ

−ρ
|er f (2

√
rφ +

iβ j

2
√

r
)|2dφ, j = i, f ; ρ = T/τ. (68)

if β j � 1 function Pres
(r) (β j) takes the form:

Pres
(r) (β j � 1) ≈

a(r)Γ2
j(r)

[(δ′2j − δ′2j(r))
2 + Γ2

j(r)]
≈ Pres

max(r) = a(r), j = i, f . (69)

Here, the functions of the transit width are as follows:

Γi(r) =
2εrc(r)(1− x′i(r))

(ωτ)x′f (r)
, Γ f (r) =

2εrc(r)
(ωτ)x′f (r)(1− x′f (r))

. (70)

It is important to note that in the constructed model the transit width significantly exceeds the
radiation width:

Γj(r) � Υj (71)

where Υj are the functions of the resonance radiation width [53]:

Υi =
1
4

αη2K1(
1− x′i

x′i
), Υ f =

1
4

αη2 K1

x′f (1− x′f )
. (72)

K1 = (1− 4
ε1
− 8

ε2
1
) ln(1 + ε1) +

1
2
+

8
ε1
− 1

2(1 + ε1)2 . (73)

Thus, with reconsideration of the (70)–(72), it is possible to obtain the required upper limit of the
laser pulse duration:

ωτ � 103η−2
0 (74)

The Figure 4 delineates the Pres
(r) (β j) function (68) for the first, second, and third resonances.

The resonances appear with the resonant parameter magnitudes of: |βi, f | . 1 and with |βi, f | � 1 the
function of resonance profile Pres

(r) (β j) decreases exponentially.
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Figure 4. The resonance profile function Pres
(r) (68) dependency on the parameter βi, f , (11) with ρ = 3.

The curves 1, 2, 3 outline the resonances. The dashed line is the Gauss function.

4.2. Additional Scrutiny of the Differential Cross-Section of the Resonant Bremsstrahlung Effect

For the following development of the investigation, the authors apply the resonant kinematic
conditions (24)–(26) to the calculation of the differential cross-section (68) of the process:

dσj(r) = αr2
e Z2η2r

0

r(ωτ)2(1− x′j(r))

8πd2
j(r)

·
Kj(r)

ε2
r

Pres
(r) (β j) · x′j(r)dx′j(r)dδ′2i dδ′2f dϕ′−, j = i, f . (75)

where ϕ′− is the angle between planes (k′, pi) and (k′, p f ). Additionally:

Kj(r) = (
rr

r!
)2[

x′j(r)
εr(1− x′j(r))

· (1−
x′j(r)

εr(1− x′j(r))
)](r−1)×

×{2 +
x′2j(r)

(1− x′j(r))
−

4x′j(r)
εr(1− x′j(r))

(1−
x′j(r)

εr(1− x′j(r))
)}.

(76)

dj(r) = d0(x′j(r)) + (
m

2Ei
)2[g2

0(x′j(r)) +
εr

sin2(θi/2)
(εr + g0(x′j(r)))]. (77)

Here:

d0(x′j(r)) = δ̃′2f + δ2
i − 2δi δ̃

′
f cos(ϕ−), g0(x′j(r)) = (1 + δ2

i )−
(1 + δ̃′2f )

(1− x′j(r))
. (78)

δ̃′f = (1− x′j(r))δ
′
f . (79)

In order to compare the resonant bremsstrahlung in the field of an X-ray pulsar and the regular
bremsstrahlung of particles in the absence of the external electromagnetic field, the research utilizes
the cross-section without an external field dσ∗ in the following form [53,56]:

dσ∗ =
2
π

Z2αr2
e (1− x′)3 [D0(x′) + (m/Ei)

2D1(x′)]
[d0(x′) + (m/2Ei)2g2

0(x′)]2
· dx′

x′
dδ′2i dδ′2f dϕ′−. (80)
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where:

D0(x′) =
δ′2i

(1 + δ′2i )2
+

δ̃′2f

(1 + δ̃′2f )
2
+

x′2

2(1− x′)
·

·
(δ′2i + δ̃′2f )

(1 + δ′2i )(1 + δ̃′2f )
− [(1− x′) +

1
(1− x′)

] ·
δ′i δ̃
′
f

(1 + δ′2i )(1 + δ̃′2f )
cos ϕ−.

(81)

D1(x′) = bi(x′) +
b f (x′)

(1− x′)2 . (82)

bi(x′) =
δ′2i

12(1 + δ′2i )3
ξi. (83)

ξi = [(1− x′) +
1

(1− x′)
](9 + 4δ′2i + 3δ′4i )− 2(1− δ′2i )(3− δ′2i )− x′2

(1− x′)
(9 + 2δ′2i + δ′4i ). (84)

It is possible to obtain b f (x′) from (83) and (84) by substitution δ′2i → δ̃′2f .
Furthermore, the authors make integration on the azimuthal angle ϕ− of resonant

cross-section (75) and cross-section without the electromagnetic X-ray pulsar field (80):

dσj(r) = αr2
e Z2η2r

0

r(ωτ)2(δ̃′2f + δ′2i )(1− x′j(r))

4G3/2
j(r) · ε2

r
· Kj(r)P

res
(r) (β j) · dx′j(r)dδ′2i dδ′2f . (85)

Here,

Gj(r) = (δ̃′2f − δ′2i )2 +
1
2
(

m
Ei
)2(δ̃′2f + δ′2i )[g2

0(x′j(r)) +
εr

sin2(θi/2)
(εr + g0(x′j(r)))]. (86)

The cross-section in the absence of the external field:

dσ∗ = 4Z2αr2
e
(1− x′)3

G3/2
0

(δ′2i + δ̃′2f ) · D2(x′) · dx′

x′
dδ′2i dδ′2f . (87)

G(0) is obtained from Gj(r) (86) when εr = 0. Additionally:

D2(x′) = D′0(x′) + (m/Ei)
2D′1(x′). (88)

D′0(x′) =
δ′2i

(1 + δ′2i )2
+

δ̃′2f

(1 + δ̃′2f )
2
+

x′2

2(1− x′)
·

·
(δ′2i + δ̃′2f )

(1 + δ′2i )(1 + δ̃′2f )
− [(1− x′) +

1
(1− x′)

] ·
2δ′2i δ̃′2f

(1 + δ′2i )(1 + δ̃′2f )(δ
′2
i + δ̃′2f )

.

(89)

D′1(x′) = D1(x′) + [(1− x′) +
1

(1− x′)
] ·

g2
0(x′)δ′2i δ̃′2f

2(1 + δ′2i )(1 + δ̃′2f )(δ
′2
i + δ̃′2f )

2
. (90)

Finally, the investigation derives the ratio of the maximal resonant differential cross-section in
the presence of the X-ray pulsar dσmax

j(r) ≈ σj(r)(|β j| � 1) (85) to the cross-section without the external
field (87):

Rmax
j(r) =

dσmax
j(r)

dσ∗
= ra(r)(

ηr
0ωτ

4εr
)2(

x′j(r)
1− x′j(r)

)2 ·
Kj(r)

D2(x′j(r))
[

G0

Gj(r)
]3/2, j = i, f . (91)

The obtained Equation (91) defines the difference between the resonant differential cross-section
and the non-resonant cross-section in the absence of the field from the neutron star for the channels
A and B. The functions Rmax

j(r) depend on the emission angles of the final electron and hard



Universe 2020, 6, 143 13 of 19

gamma-quantum (parameters δ′2i and δ′2f ) and the frequency of the hard gamma-quantum within the
diapason from ω′i(r) to [ω′i(r) + dω′i(r)] (for the channel A) and from ω′f (r) to [ω′f (r) + dω′f (r)] (for the
channel B).

The dependency of the function Rmax
j(r) (91) on δ′2j for channels A and B is illustrated on the

Figure 5 for the fixed magnitude of hard gamma-quantum frequency. It is possible to observe that
the magnitudes D0(x′) → 0, d0(x′) → 0 and the cross-sections obtain sharp maximums. Moreover,
when the number of resonance (the amount of hard gamma-quanta that electron absorbs) increases the
peak values decrease.

Figure 5. (a) Dependency of Rmax
i(r) function on parameter δ′2f for the fixed value of the hard

gamma-quantum frequency. (b) Dependency of Rmax
f (r) function on parameter δ′2i for the fixed value of

the hard gamma-quantum frequency. The figure consists of 1, 2, and 3 resonances from expression
(91). The magnitude of the characteristic parameter—ε1 = 3, the characteristic energy—E1 = 100 MeV,
the energy of the initial electron—Ei = 300 MeV.

Therefore, to summarize the investigation the authors make integration of the resonant
cross-section (85) on the parameters δ′2f (channel A) and δ′2i (channel B).

dσ′i(r) = (αr2
e Z2)grFi(r)dx′i(r)dδ′2i . (92)

dσ′f (r) = (αr2
e Z2)grFf (r)dx′f (r)dδ′2f . (93)

Here,

gr = (
E1

rm
)2(ηr

0ωτ)2. (94)

Fi(r) =
r
ε2

r

x′i(r)
(1− x′i(r))

Ki(r)P
res
(r) (βi). (95)

Ff (r) =
r
ε2

r
x′f (r)(1− x′f (r))K f (r)P

res
(r) (β f ). (96)
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where functions Fi(r) (95) and Ff (r) (96) define the values of the cross-sections (92) and (93).
Furthermore, for the resonant parameter magnitudes of |βi| � 1 and |β f | � 1 (28) and (29) the
Fj(r) functions reach maximums:

dσ′max
i(r) = αr2

e Z2Φmax
i(r) dx′i(r)dδ′2i ,

dσ′max
f (r) = αr2

e Z2Φmax
f (r)dx′f (r)dδ′2f .

(97)

Φmax
i(r) = grFmax

i(r) , Φmax
f (r) = grFmax

f (r) . (98)

Fmax
i(r) =

ra(r)
ε2

r

x′i(r)
(1− x′i(r))

Ki(r),

Fmax
f (r) =

ra(r)
ε2

r
x′f (r)(1− x′f (r))K f (r).

(99)

For the conditions of the considerable initial electron energies (45), the researchers make further
calculations with the obtained functions (99):

Fmax
i(r) ≈ ra(r)(

rr

r!
)2 δ

′2(r−1)
i

(1 + δ′2i )2r , Fmax
f (r) ∼

1
ε2

r
� 1. (100)

This equation indicates that for the considerable initial electron energies, the channel B is
suppressed in contrast to the channel A.

The functions Fmax
j(r) , j = i, f (99) are delineated in Figure 6. The analysis of the Figures 6a,b

illustrates that the channel A function Fmax
i(r) exceeds the channel B function Fmax

f (r) by several orders of
magnitude. In other words, the level of the hard gamma-quanta emission in the channel A exceeds the
radiation in the channel B. Thus, the resonant differential cross-section of the channel A may attain
Φmax

i(1) ∼ 1010 with η0 = 0.01 in the 1 resonance. The resonant cross-section decreases in accordance to

the intensity as ∼ η2r
0 . For the case ε1 � 1 the function Fmax

i(r) (100) is delineated on the Figure 7 that is
qualitatively similar to the Figure 6 with ε1 ∼ 1.

Figure 6. (a) Dependency of Fmax
i(r) (99) function on parameter δ′2i and (b) dependency of

Fmax
f (r) (99) function on parameter δ′2f for the 1, 2, and 3 resonances. The magnitude of the

characteristic parameter—ε1 = 3, the characteristic energy—E1 = 100 MeV, the energy of the initial
electron—Ei = 300 MeV.
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Figure 7. The dependency of the Fmax
i(r) (100) functions on the parameter δ′2i for the arrangement when

the initial electron energies are considerable (45) (ε1 = 103). The curves 1, 2, 3 outline the resonances.

Additionally, Table 1 gives an overview of various magnitudes of differential cross-sections
(Φmax

j(r) ) and resonant frequencies for both channels A and B for intensities of a wave for the 1, 2,

and 3 resonances when E1 = 100 MeV, Ei = 300 MeV, (ωτ) = 105, η0 = 10−2 (F0 ∼ 1013 V/cm).
Table 1 outlines that the biggest frequency magnitudes for the high-numbered resonances position
away from the first resonance radiation interval, on the other hand, the values of the high resonances
cross-sections are still considerable and represent a certain scientific interest.

Table 2 represents the results for the frequencies and maximal probabilities of radiation
of spontaneous gamma-quantum when the energies of the initial electrons have magnitude of
Ei = 100 GeV. In addition, it is important to underline that within such conditions the channel
B is essentially suppressed in correlation to the channel A. Table 2 indicates that the anomalous
emission of high-energy gamma-quanta is observable.

Table 1. The magnitudes of the differential cross-sections (Φmax
j(r) ) (98) and resonant frequencies

δ′2j , j = i, f (30) for channels A and B for the r = 1, 2, and 3 resonances when E1 = 100 MeV,

Ei = 300 MeV, (ωτ) = 105, η0 = 10−2 (F0 ∼ 1013 V/cm).

E1 = 100 MeV, Ei = 300 MeV

r Channel δ′2
j ω′

j(r), MeV Φmax
j(r) (η0 = 0.01)

1
A δ′2i ≥ 0 ω′i(1) ≤ 225 Φmax

i(1) ≈ 4.92 · 1010

B 0 ≤ δ′2f ≤ 12 155 ≤ ω′f (1) ≤ 225 Φmax
f (1) ≈ 3.08 · 109

2
A δ′2i(2)∗ ≈ 0.314 ω′i(2) ≈ 216.9 Φmax

i(2) ≈ 8.39 · 105

B δ′2f (2)∗ = 14.317 ω′f (2) ≈ 209.5 Φmax
f (2) ≈ 3.2 · 104

3
A δ′2i(3)∗ ≈ 0.49 ω′i(3) ≈ 216.9 Φmax

i(3) ≈ 56.32

B δ′2f (3)∗ = 29.362 ω′f (3) ≈ 209.5 Φmax
f (3) ≈ 1.34
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Table 2. The magnitudes of the differential cross-section (Φmax
j(r) , j = i) (98) and resonant frequency

δ′2j , j = i (30) for channel A for the r = 1, 2, and 3 resonances when the energies of the initial electrons
have magnitude of Ei = 100 GeV (in such conditions channel B is essentially suppressed in comparison
to the channel A). The data indicates that the anomalous emission of high-energy gamma-quanta is
observable.

E1 = 100 MeV, Ei = 100 GeV

r Channel δ′2
j ω′

j(r), GeV Φmax
j(r) (η0 = 0.01)

1 A δ′2i ≥ 0 ω′i(1) ≤ 99.90 Φmax
i(1) ≈ 3.47 · 1010

2 A δ′2i(2)∗ ≈ 0.314 ω′i(2) ≈ 99.93 Φmax
i(2) ≈ 7.64 · 105

3 A δ′2i(3)∗ ≈ 0.49 ω′i(3) ≈ 99.95 Φmax
i(3) ≈ 54.16

5. Conclusions

This paper scrutinized the effect of resonant bremsstrahlung of ultrarelativistic electrons on a
nucleus with radiation of a hard gamma-quantum as a part of the processes that occur during the
circulation of the large-scaled particle fluxes near the neutron stars. It is important to underline
that the constructed theoretical model of the phenomenon simulates the pulsed character of the
external field. The obtained results of the investigation may provide an opportunity for the deeper
study of the spectrum of X-ray pulsars and magnetars. To summarize, the research systematizes the
following statements:

1. Under the resonant conditions, the resonant second-order bremsstrahlung process transforms
into two first-order processes with respect to the fine structure constant: the external pulsed
field-stimulated Compton-effect with simultaneous absorption of r gamma-quanta and neutron
star field-assisted scattering of an ultrarelativistic electron on a nucleus.

2. The paper analyzed the resonant bremsstrahlung of ultrarelativistic electrons and implemented
various characteristic parameters in order to describe the process, for example, the article applied
the effects characteristic energy (31) that has a magnitude of E1 ∼ 100 MeV. The study focused
on the ultrarelativistic electrons that propagate within a narrow angle cone along the waves
propagation from the X-ray pulsar.

3. The resonant frequency of a hard gamma-quantum significantly varies depending on the channel
of interaction. Thus, for the channel B the radiation spectrum realizes a specific area of effect with
three distinctive roots for resonant frequency magnitude. Additionally, it is important to note
that the resonant frequency of a hard gamma-quantum obtains its maximum when the particle is
being scattered at zero angle and propagates along the initial and final electrons.

4. The higher resonances (with a bigger resonance number value r = 2, 3, . . . ) designate distinctive
maximum peaks and provide a significant impact on the cross-section distribution, however the
first resonance (with characteristic resonant number r = 1) still contributes a major impact.

5. The computational calculations (Tables 1 and 2) that were carried out on the basis of the
constructed theoretical model propose that for the intensity of the neutron star wave of
F0 ∼ 1013 V/cm and the energies of the initial electrons of Ei = 300 MeV and Ei = 100 GeV, the
hard gamma-quanta attain considerable values and the magnitude of the resonant cross-section
of the bremsstrahlung effect obtains degree from ∼ 1010 for the 1 resonance of channel A to ∼ 10
(in the αZ2r2

e units) for the 3 resonance of channel B.

Finally, the obtained results provide the explanation of the anomalous radiation of the 100 GeV
gamma-quanta near the neutron stars, magnetars and X-ray pulsars.
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