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Abstract: It was conjectured by Maldacena, Shenker and Stanford that the classical chaos can be
diagnosed in thermal quantum systems by using an out-of-time-order correlation function. The Artin
dynamical system defined on the fundamental region of the modular group SL(2,Z) represents a
well defined example of a highly chaotic dynamical system in its classical regime. We investigated
the influence of the classical chaotic behaviour on the quantum–mechanical properties of the Artin
system calculating the corresponding out-of-time-order thermal quantum–mechanical correlation
functions. We demonstrated that the two- and four-point correlation functions of the Liouiville-like
operators decay exponentially with temperature dependent exponents and that the square of the
commutator of the Liouiville-like operators separated in time grows exponentially.

Keywords: artin billiard; chaotic dynamical systems; anosov systems; kolmogorov systems; modular
invariance; non-holomorphic automorphic functions; quantum and classical correlation functions

1. Introduction

The hyperbolic Anosov C-systems have exponential instability of their trajectories and as such
represent the most natural chaotic dynamical systems [1]. Of special interest are C-systems that are
defined on closed surfaces of the Lobachevsky plane of constant negative curvature1. An example
of such a system has been introduced in a brilliant article published in 1924 by the mathematician
Emil Artin [6]. The dynamical system is defined on the fundamental region of the Lobachevsky plane
which is obtained by the identification of points congruent with respect to the modular group SL(2, Z),
a discrete subgroup of the Lobachevsky plane isometries [7–9]. The fundamental region F in this
case is a hyperbolic triangle in Figure 1. The geodesic trajectories are bounded to propagate on the
fundamental hyperbolic triangle. The geodesic flow in this fundamental region represents a highly
chaotic dynamical system with exponential instability of its trajectories, has mixing of all orders,
Lebesgue spectrum and non-zero Kolmogorov entropy [1–5,10–28].

In the classical regime the correlation functions are defined as an integral over a pair of
functions/observables A and B in which the first one is stationary and the second one evolves with
the geodesic flow gt:

Dt(A, B) =
∫
M

A(g)B(ggt)dµ(g). (1)

1 The definition of the Anosov C-systems can be found in his excellent work [1]. In order to provide this definition one should
use such mathematical concepts as tangent vector bundle, derivative mapping, contracting and expanding linear spaces and
others. The properties of the C-systems [1], of the Kolmogorov entropy [2–4] and the description of their periodic trajectories
can be found in the recent review article [5].
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Earlier investigation of the classical correlation functions of the geodesic flows was performed
in [17–20,29] by using different approaches including Fourier series for the SL(2, R) group,
zeta functions for the geodesic flows, relating the poles of the Fourier transform of the correlation
functions to the spectrum of an associated Ruelle operator, the methods of unitary representation theory,
spectral properties of the corresponding Laplacian and other approaches. In recent articles [30,31]
the authors demonstrated exponential decay of the correlation functions with time on the classical
phase space. The result was derived using differential geometry, the group-theoretical methods of
Gelfand and Fomin, the time evolution equations, and the properties of automorphic functions on F .
The exponential decay rate was expressed in terms of the entropy h(F ) of the system:

|Dt(A, B)| ≤ M e−K h |t| , (2)

where M and K are constants depending on the smoothness of the functions. In the classical regime
the exponential divergence of the geodesic trajectories results in the universal exponential decay of its classical
correlation functions [30,31].
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Figure 1. The non-compact fundamental region F of a finite area is represented by the hyperbolic
triangle ABD. The vertex D is at infinity of the y axis and corresponds to a cusp. The edges of the
triangle are the arc AB, the rays AD and BD. The points on the edges AD and BD and the points of
the arcs AC with CB should be identified by the transformations w = z + 1 and w = −1/z in order to
form a closed non-compact surface F̄ by “gluing” the opposite edges of the modular triangle together.
The hyperbolic triangle OAB can be considered equally well as the fundamental region. The modular
transformations of the fundamental region F create a regular tessellation of the whole Lobachevsky
plane by congruent hyperbolic triangles. The trajectory K is geodesic passing through the point (x, y)
of F in the ~v direction.

In the present article, we are interested to study the quantum–mechanical correlation functions
of highly chaotic Artin system. The interest in studying the quantum–mechanical behaviour of
highly chaotic systems is rooted in the fact that the fundamental interactions, electroweek and strong
interactions are described by the Yang–Mills gauge theory which is highly chaotic in its classical
regime [21,22,27,32–35]. In recent years the quantum–mechanical properties of highly chaotic systems
were widely discussed in series of publications [26,27,33,34,36]. The investigation was initiated
by the analysis of black holes evaporation thermodynamics [26,27,36]. Therefore, there is a great
interest in the quantisation of the highly chaotic dynamical systems and investigation of their
quantum–mechanical properties. It is important to learn how and to what extent the classical chaos
influences the quantum–mechanical behaviour. Our main focus in this article is to study the behaviour
of the quantum–mechanical correlation functions of the Artin system because on the one hand it
is highly chaotic and on the other hand it has a deep mathematical origin. It was conjectured by
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Maldacena, Shenker and Stanford [26] that the classical chaos influences the thermal properties of the
corresponding quantum–mechanical system and can be traced by investigation of out-of-time-order
correlation functions, as well as of the square of the commutator of the operators separated in time.

In order to investigate the behaviour of the correlation functions in the quantum–mechanical
regime it is necessary to know the spectrum of the system and the corresponding wave functions.
In the case of the modular group the energy spectrum has a continuous part, which originates from
the asymptotically free motion inside an infinitely long vertical “y-channel” extended in the vertical
direction of the fundamental region, as well as infinitely many discrete energy states corresponding
to bounded motion at the “bottom” of the fundamental triangle. The spectral problem has a deep
number-theoretical origin and was partially solved in a series of pioneering articles [37–40]. It was only
partially solved because the discrete spectrum and the corresponding wave functions are not known
analytically. The general properties of the discrete spectrum have been derived using the Selberg trace
formula [39–44]. Numerical calculations of the discrete energy levels were performed for many energy
states [45–47].

In the next section we shall describe the geometry of Lobachevsky hyperbolic plane and of the
fundamental region which corresponds to the modular group SL(2, Z), the geodesic flow on that
region and the quantisation of the system. The derivation of the Maass wave functions [37] for the
continuous spectrum will be reviewed in detail. We shall use the Poincaré representation for the Maass
non-holomorphic automorphic wave functions. We introduce a natural physical variable ỹ for the
distance in the vertical direction2 on the fundamental triangle

∫
dx=0 ds =

∫
dy/y = ln y = ỹ and the

corresponding momentum py in order to represent the Maass wave functions (54) in a physically
insightful manner

ψpy(x, ỹ) = e−ipy ỹ +
θ( 1

2 + ipy)

θ( 1
2 − ipy)

eipy ỹ +
4

θ( 1
2 − ipy)

∞

∑
l=1

τipy(l)Kipy(2πleỹ) cos(2πlx), (3)

where the functions θ(s), τiu(l) and Kiu(y) will be defined precisely in Section 3 and are given by the
Formulas (48), (44) and (41). Indeed, the first two terms describe the incoming and outgoing plane
waves. The plane wave e−ipy ỹ incoming from infinity of the y axis in Figure 2 (the vertex D) elastically
scatters on the boundary ACB of the fundamental triangle F shown in Figure 1. The reflection
amplitude is a pure phase and is given by the expression in front of the outgoing plane wave eipy ỹ:

θ( 1
2 + ipy)

θ( 1
2 − ipy)

= exp [i ϕ(py)]. (4)

The rest of the wave function describes the standing waves cos(2πlx) in the x direction between
boundaries x = ±1/2 with the amplitudes Kipy(2πly), which are exponentially decreasing with index
l Figure 2. The continuous energy spectrum is given by the formula

E = p2
y +

1
4

. (5)

The wave functions of the discrete spectrum have the following form [37–40,45–47]:

ψn(z) =
∞

∑
l=1

cl(n)Kiun(2πleỹ)

{
cos(2πlx)
sin(2πlx)

, (6)

where the spectrum En = 1
4 + u2

n and the coefficients cl(n) are not known analytically, but were
computed numerically for many values of n [45–47].

2 Physical distances are obtained by integration of the metric (12) along the trajectories.
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Figure 2. The incoming and outgoing plane waves (3). The plane wave e−ipỹ incoming from infinity of
the y axis (the vertex D) elastically scatters on the boundary ACB of the fundamental triangle ABD
which defines the fundamental region F (see also Figure 1). The reflection amplitude is a pure phase
and is given by the expression in front of the outgoing plane wave eipỹ. The rest of the wave function
describes the standing waves in the x direction between boundaries x = ±1/2 with the amplitudes,
which are exponentially decreasing.

Having in hand the explicit expression of the wave function one can analyze a
quantum–mechanical behaviour of the correlation functions defined in [26,48]:

D2(β, t) = 〈A(t)B(0)e−βH〉, D4(β, t) = 〈A(t)B(0)A(t)B(0)e−βH〉 (7)

C(β, t) = −〈[A(t), B(0)]2e−βH〉 , (8)

where in our case the operators A and B are chosen to be of the Liouiville type:

A(N) = e−2Nỹ, N = 1, 2, ..... (9)

Analyzing the basic matrix elements of the Liouiville-like operators (9) we shall demonstrate that
all two- and four-point correlation functions (7) decay exponentially with time:

D2(β, t) ∼ exp
(
− t

t2(β)

)
and D4(β, t) ∼ exp

(
− t

t4(β)

)
, (10)

with exponents t2(β) and t4(β) that depend on temperature. These exponents define the dissipation
time and reflect the fact that with increasing temperature the correlation functions will universally
decay. Their behaviour is shown in Figures 3 and 4.
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Figure 3. The exponential decay of the two-point correlation function D2(β, t) as a function of time
at temperature β = 1. The points are fitted by the curve K2(β) exp (−t/t2(β)). The exponent t2(β)

has a well defined high and low temperature limits. The limiting values in dimensionless units are
t2(0) ≈ 0.276 and t2(∞) ≈ 0.749. The temperature dependence of K2(β) is shown at the far right.
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Figure 4. The exponential decay of the correlation function D4(β, t) as a function of time at
β = 1. The rest of the functions D′4(β, t),D′′4 (β, t),D′′′4 (β, t) demonstrate a similar exponential decay
∼ exp (− t

t4(β)
). The temperature dependence of the exponent t4(β) have a well defined high and low

temperature limits and is shown at far right. The corresponding limiting values of the function t4(β) in
dimensionless units are t4(0) = 0.112 and t4(∞) = 0.163. The behaviour of the exponent t2(β) of the
two-point correlation function is shown in Figure 3.

Alternatively to the exponential decay of the correlation functions (7), the square of the
commutator of the Liouiville-like operators separated in time (8) grows exponentially Figure 5.
This growth is reminiscent to the local exponential divergence of trajectories in the Artin system
when it is considered in the classical regime [30,31]. At short time scales the exponential growth of the
commutator (8) shown in Figure 5 has the following form:

C(β, t) ∼ exp
(

2π

χ(β)
t
)

, (11)

where the behaviour of the exponent χ(β) is presented in Figure 5. The temperature dependence of
the exponent χ(β) is smooth and there are no signs of any kind of phase transitions.
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Figure 5. Time evolution of the correlation function C(β, t) (84) at temperature β = 1. For the short
time intervals the function C(β, t) exponentially increases with time. This behaviour is reminiscent to
the exponential divergence of the classical trajectories in hyperbolic dynamical systems. As one can see,
the exponent χ(β) which defines the behaviour of the correlation function of the operators separated
in time in the commutator (84), (85) slowly decreases with β. The temperature dependence of 1/χ(β)

relative to the maximum growth 1/β is shown by blue dots at the far right figure.

In our calculation of the quantum–mechanical correlation functions we shall use a perturbative
expansion in which the high-mode Bessel function in (54) and (59) will be considered as perturbations.
We found that our calculations are stable with respect to these perturbations and do not influence the
final results. The reason is that in the integration region of the matrix elements (62) the high-mode
Bessel functions are exponentially small.
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2. Quantisation of Artin System

Let us start with Poincare model of the Lobachevsky plane, i.e., the upper half of the complex
plane: H = {z ∈ C, =z > 0} supplied with the metric (we set z = x + iy)

dl2 =
dx2 + dy2

y2 , (12)

which has Ricci scalar R = −2. Isometries of this space are given by SL(2,R) transformations.
The SL(2,R) matrix (a, b, c, d are real and ad− bc = 1)

g =

(
a b
c d

)

acts on a point z by linear fractional substitutions:

z→ az + b
cz + d

. (13)

Note also that g and −g give the same transformation, hence the effective group is SL(2,R)/Z2.
We’ll be interested in the space of orbits of a discrete subgroup G ⊂ SL(2,R) in H. Our main example
will be the modular group G = SL(2,Z). A nice choice of the fundamental region F of SL(2,Z)
is displayed in Figure 1. The fundamental region F of the modular group consists of those points
between the lines x = − 1

2 and x = + 1
2 that lie outside the unit circle in Figure 1. The modular

triangle F has two equal angles α = β = π
3 and the third one at D equal to zero, γ = 0, thus

α + β + γ = 2π/3 < π. The area of the fundamental region is finite and equal to π
3 and has the

topology of sphere due to “gluing” the opposite edges of the triangle. The invariant area element
on the Lobachevsky plane is proportional to the square root of the determinant of the metric (12):

dµ(z) = dxdy
y2 , thus Area(F ) =

∫ 1
2
− 1

2
dx
∫ ∞√

1−x2
dy
y2 = π

3 .

Consider geodesic flow on F , which is conveniently described by the least action principle δS = 0,
where (cf. (12)):

S =
∫

Ldt =
∫ √

ẋ2 + ẏ2

y
dt . (14)

By varying the action, we get the equations of motion

d
dt

ẋ
y
√

ẋ2 + ẏ2
= 0,

d
dt

ẏ
y
√

ẋ2 + ẏ2
+

√
ẋ2 + ẏ2

y2 = 0. (15)

Notice the invariance of the action and of the equations of motion under time reparametrizations
t → t(τ). Presence of a local (“gauge”) symmetry indicates that we have a constrained dynamical
system. One particularly convenient choice of gauge fixing specifying the time parameter t proportional
to the proper time, is archived by imposing the condition

ẋ2 + ẏ2

y2 = 2H , (16)

where H is a constant. In this gauge the Equation (15) will take the following form [49]:

d
dt

(
ẋ
y2 ) = 0,

d
dt

(
ẏ
y2 ) +

2H
y

= 0. (17)
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Defining the canonical momenta px, py conjugate to the coordinates x, y as

px =
ẋ
y2 , py =

ẏ
y2 , (18)

we shall get the geodesic Equation (17) in the Hamiltonian form:

ṗx = 0, ṗy = −2H
y

. (19)

Indeed, after defining the Hamiltonian as

H =
1
2

y2(p2
x + p2

y) (20)

the corresponding equations will take the following form:

ẋ =
∂H
∂px

= y2 px, ẏ =
∂H
∂py

= y2 py

ṗx = −∂H
∂x

= 0, ṗy = −∂H
∂y

= −y(p2
x + p2

y) = −
2H

y
(21)

and coincide with (18) and (19). The advantage of the gauge (16) is that the Hamiltonian (20) coincides
with the constraint. Now it is fairly standard to quantize this Hamiltonian system. We simply replace
in (20)

px = −i
∂

∂x
, py = −i

∂

∂y

and consider the (time independent) Schrödinger equation

Hψ = Eψ.

The resulting equation explicitly reads:

−y2(∂2
x + ∂2

y)ψ = Eψ. (22)

On the left hand side one recognises the Laplace operator (with an extra minus sign) in Poincare
metric (12). It is easy to see that the Hamiltonian is a positive semi-definite Hermitian operator. Indeed,
for any quadratically integrable function ψ(x, y) that fulfills the periodic boundary condition (26)

−
∫

ψ∗(x, y) y2(∂2
x + ∂2

y)ψ(x, y)
dxdy

y2 =
∫
(|∂xψ(x, y)|2 + |∂yψ(x, y)|2)dxdy ≥ 0. (23)

It is convenient to introduce parametrization of the energy E = s(1 − s) and to rewrite this
equation as

−y2(∂2
x + ∂2

y) ψ(x, y) = s(1− s) ψ(x, y). (24)

As far as E is real and semi-positive and parametrisation is symmetric with respect to s↔ 1− s it
follows that the parameter s should be chosen within the range

s ∈ [1/2, 1] or s = 1/2 + iu, u ∈ [0, ∞]. (25)

One should impose the “periodic” boundary condition on the wave function with respect to the
modular group
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ψ

(
az + b
cz + d

)
= ψ(z),

(
a b
c d

)
∈ SL(2, Z) (26)

in order to have the wave function which is properly defined on the fundamental region F̄ shown
in Figure 1. Taking into account that the transformation T : z→ z + 1 belongs to SL(2, Z), one has to
impose the periodicity condition ψ(z) = ψ(z + 1). Thus we have a Fourier expansion

ψ(x, y) =
∞

∑
n=−∞

fn(y) exp(2πinx). (27)

Inserting this into Equation (24), for the Fourier component fn(y) we get

d2 fn(y)
dy2 + (s(1− s)− 4π2n2) fn(y) = 0 . (28)

For the case n 6= 0 the solution which exponentially decays at large y reads

fn(y) =
√

yKs− 1
2
(2πn|y|), (29)

and for n = 0 one simply gets

f0(y) = c0ys + c
′
0y1−s. (30)

Thus the solution can be represented in the following form:

ψ(x, y) = c0ys + c
′
0y1−s +

√
y

∞

∑
n=−∞

n 6=0

cnKs− 1
2
(2πn|y|) exp(2πinx), (31)

where the coefficients c0, c
′
0, cn should be defined so that the wave function fulfills the boundary

conditions (26). Thus one should impose also the invariance with respect to the second generator of
the modular group SL(2, Z), that is, with respect to the transformation S : z→ −1/z :

ψ(z) = ψ(−1/z). (32)

This functional equation defines the coefficients c0, c
′
0, cn. We found that it is much easier to

resolve it by using the full group of SL(2, Z) transformations acting on a particular solution (30) in
order to derive the eigenfunctions obtained by Maass [37]. The wave function generated in this way
will be invariant with respect to the SL(2, Z) transformations. We shall follow this approach in the
next section.

3. Continuous Spectrum and the Reflection Amplitude

As we just mentioned above in order to get SL(2, Z) invariant solutions, one should define the
coefficients c0, c

′
0 and cn in (31). Another option is to start from a particular solution and perform

summation over all nonequivalent shifts of the argument by the elements of SL(2, Z), that is, by using
the Poincaré series representation [7,8]. We will demonstrate this strategy by using the simplest
solution (30), (31) with c0 = 1, c

′
0 = 0:

ψ(z) = ys = (=z)s .

Let us denote by Γ∞ the subgroup of Γ = SL(2, Z), generating shifts z→ z + n, n ∈ Z. Explicitly
the elements of Γ∞ are given by 2× 2 matrices:
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gn =

(
1 n
0 1

)
. (33)

Since ys is already invariant with respect to Γ∞, we should perform summation over the conjugacy
classes Γ∞\Γ. Let us define these conjugacy classes. If two SL(2, Z) matrices(

a b
c d

)
and

(
a′ b′

c′ d′

)

belong to the same class, then by definition for some n ∈ Z(
a′ b′

c′ d′

)
=

(
1 n
0 1

)(
a b
c d

)

so that c′ = c, d′ = d, a′ − a = nc and b′ − b = nd. Since ad− bc = 1, it follows that a and c do not
have a common devisor. In fact, the opposite is also true. Given a pair of mutually prime integers (c, d)
it is always possible to find a pair of integers (a, b) such that ad− bc = 1. For any other pair (a′, b′)
satisfying the same condition a′d− b′c = 1, the relations a′ − a = nc and b′ − b = nd are satisfied for
some integer n. Thus we established a bijection between the set of mutually prime pairs (c, d) with
(c, d) 6= (0, 0) and the set of conjugacy classes Γ∞\Γ. The fact that the integers (c, d) are mutually
prime integers means that their greatest common divisor (gcd) is equal to one: gcd(c, d) = 1. As a
result, it is defined by the classical Poincaré series representation [7,8] and for the sum of our interest
we get3

ψs(z) ≡
1
2 ∑

γ∈Γ∞\Γ
(=(γz))s =

1
2 ∑

(c,d)∈Z2
gcd(c,d)=1

ys

((cx + d)2 + c2y2)s , (34)

where, as explained above, the sum on the r.h.s. is taken over all mutually prime pairs (c, d). The series
(34) is convergent when < s > 1. We used also the simple relation

=γz ≡ = az + b
cz + d

=
y

(cx + d)2 + c2y2 .

To simplify further the sum let us multiply both sides of the Equation (34) by [37]

∞

∑
n=1

1
n2s ≡ ζ(2s)

so that we shall get

ζ(2s)ψs(z) =
1
2

∞

∑
n=1

∑
(c,d)∈Z2

gcd(c,d)=1

ys

((ncx + nd)2 + (nc)2y2)s . (35)

It is easy to be convinced now that the set of all pairs (nc, nd) with n a positive integer and (c, d)
mutually prime coincides with the set of all pairs of integers (m, k) which are not simultaneously zero.

3 The factor 1/2 below is introduced for removing the double degeneracy due to the fact that SL(2, Z) elements ±γ both act
on z in the same way.
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Indeed, given a pair (m, k) we can factor out the greatest common divisor n and represent it as (nc, nd)
with mutually prime (c, d). Thus we arrive at the Eisenstein series representation of the wave function:

ζ(2s)ψs(z) =
1
2 ∑

(m,k)∈Z2
(m,k) 6=(0,0)

ys

((mx + k)2 + m2y2)s . (36)

Since the r.h.s. of this equation is periodic in x with period 1, we can expand it in Fourier series.
Our next goal is to find the coefficients of this expansion:

cl(y) =
1
2 ∑

(m,k)∈Z2
(m,k) 6=(0,0)

∫ 1

0

yse−2πilxdx
((mx + k)2 + m2y2)s . (37)

First let us handle the term with m = 0:

1
2 ∑

k∈Z
k 6=0

∫ 1

0

yse−2πilxdx
k2s = δl,0ζ(2s)ys. (38)

For the sum over non-zero m’s let us note that we may drop the factor 1/2 and sum over m ≥ 1.
Indeed, the sum over negative m’s can be reverted to a sum over positive ones through redefinition
k → −k. For fixed positive m it is instructive to represent k as k = nm + s thus splitting the initial
sum over k ∈ Z into double sum over r = 0, 1, . . . , m− 1 and n ∈ Z. In this way after few simple
manipulations we get

∞

∑
m=1

m−1

∑
r=0

∑
n∈Z

∫ 1

0

yse−2πilxdx
((m(x + n) + r)2 + m2y2)s =

∞

∑
m=1

m−1

∑
r=0

∫ ∞

−∞

yse−2πilxdx
((mx + r)2 + m2y2)s

=
∞

∑
m=1

m−1

∑
r=0

m−2sy1−se
2πilr

m

∫ ∞

−∞

cos(2π|l|yx)dx
(x2 + 1)s . (39)

The last integral is expressed in terms of modified Bessel K function:

∫ ∞

−∞

cos(2π|l|yx)dx
(x2 + 1)s =


2πs

Γ(s) |ly|
s− 1

2 Ks− 1
2
(2π|l|y), i f l 6= 0

√
πΓ(s− 1

2 )
Γ(s) , if l = 0.

(40)

A useful alternative representation of modified Bessel K function which makes its properties more
transparent is given by

Kiu(y) =
1
2

∫ ∞

−∞
e−y cosh teiutdt. (41)

This expression allows analytical continuation of the wave function from the region < s > 1 in (34)
into the whole complex plane s because the Bessel Ks(y) functions are well defined for any s. Besides,
an easy examination shows that the finite sum is:

m−1

∑
r=0

e
2πilr

m =

{
m if m divides l
0 otherwise

. (42)

To summarise, for the Fourier coefficients (37) we shall get

cl(y) =
2πs

Γ(s)
τs− 1

2
(|l|)√yKs− 1

2
(2π|l|y), if l 6= 0, (43)
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where

τν(n) = ∑
a·b=n

( a
b

)ν
, (44)

while for l = 0:

c0(y) =
√

πΓ(s− 1
2 )ζ(2s− 1)

Γ(s)
y1−s. (45)

Thus we recovered the second solution y1−s in (31) and calculated the coefficient c
′
0 in front of it.

Thus the invariant solution (36) takes the following form:

ζ(2s)ψs(x, y) = ζ(2s)ys +

√
πΓ(s− 1

2 )ζ(2s− 1)
Γ(s)

y1−s +

+
√

y
4πs

Γ(s)

∞

∑
l=1

τs− 1
2
(l)Ks− 1

2
(2πly) cos(2πlx). (46)

Using Riemann’s reflection relation

ζ(s) =
πs− 1

2 Γ
(

1−s
2

)
Γ
( s

2
) ζ(1− s) (47)

and introducing the notation

θ(s) = π−sζ(2s)Γ(s) (48)

we arrive at the elegant final expression for the energy eigenfunctions obtained by Maas [37]:

θ(s)ψs(z) = θ(s)ys + θ(1− s) y1−s + 4
√

y
∞

∑
l=1

τs− 1
2
(l)Ks− 1

2
(2πly) cos(2πlx), (49)

This wave function is well defined in the complex s plane and has a simple pole at s = 1.
The physical continuous spectrum was defined in (25), where s = 1

2 + iu, u ∈ [0, ∞] so that

E = s(1− s) =
1
4
+ u2. (50)

The continuous spectrum wave functions ψs(x, y) are delta function normalisable [37–42].
The wave function (49) can be conveniently represented also in the form

ψ 1
2+iu(z) = y

1
2+iu +

θ( 1
2 − iu)

θ( 1
2 + iu)

y
1
2−iu +

4
√

y

θ( 1
2 + iu)

∞

∑
l=1

τiu(l)Kiu(2πly) cos(2πlx),

(51)

where

K−iu(y) = Kiu(y), τ−iu(l) = τiu(l) . (52)

The physical interpretation of the wave function becomes more transparent when we introduce
the new variables

ỹ = ln y, p = −u, E = p2 +
1
4

(53)
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as well as an alternative normalisation of the wave function:

ψp(x, ỹ) ≡ y−
1
2 ψ 1

2+iu(z) = (54)

= e−ipỹ +
θ( 1

2+ip)
θ( 1

2−ip)
e+ipỹ + 4

θ( 1
2−ip) ∑∞

l=1 τip(l)Kip(2πleỹ) cos(2πlx).

Indeed, the first two terms describe the incoming and outgoing plane waves. The plane wave
e−ipỹ incoming from infinity of the y axis in Figures 1 and 2 (the vertex D) elastically scatters on the
boundary ACB of the fundamental region F in Figure 1. The reflection amplitude is a pure phase and
is given by the expression in front of the outgoing plane wave eipỹ:

θ( 1
2 + ip)

θ( 1
2 − ip)

= exp [i ϕ(p)]. (55)

The rest of the wave function describes the standing waves cos(2πlx) in the x direction between
boundaries x = ±1/2 with the amplitudes Kip(2πly), which are exponentially decreasing with index l.

In addition to the continuous spectrum, the system (24) has a discrete spectrum [37–42].
The number of discrete states is infinite: E0 = 0 < E1 < E2 < .... → ∞, the spectrum is extended to
infinity—unbounded from above—and lacks any accumulation point except infinity. Let us denote the
wave functions of the discrete spectrum by ψn(z) so that the expansion into the full set of basis vectors
will take the form

f (x, ỹ) = ∑
n≥0

an ψn(x, ỹ) +
1

2π

∫ ∞

0
ap ψp(x, ỹ)dp (56)

and the Parseval identity will be

|| f (z)||2 = ∑n≥0 |an|2 + 1
2π

∫ ∞
0 |ap|2dp, (57)

and

∑n≥0 ψn(x, ỹ)ψ∗n(x1, ỹ1) +
1

2π

∫ ∞
0 ψp(x, ỹ)ψ−p(x1, ỹ1)dp = δ(2)(z− z1).

(58)

The wave functions of the discrete spectrum have the following form [37–40,45–47]:

ψn(z) =
∞

∑
l=1

cl(n)
√

y Kiun(2πly)

{
cos(2πlx)
sin(2πlx)

, (59)

where the spectrum En = 1
4 + u2

n and the coefficients cl(n) are not known analytically, but were
computed numerically for many values of n [45–47]. Having explicit expressions of the wave functions
one can analyze the quantum–mechanical behaviour of the correlation functions, which we shall
investigate in the next sections.

4. Correlation Functions

First let us calculate the two-point correlation function:

D2(β, t) = 〈A(t)B(0)e−βH〉 = ∑
n
〈n|eiHt A(0)e−iHtB(0)e−βH |n〉 =

= ∑
n,m

ei(En−Em)t−βEn〈n|A(0)|m〉〈m|B(0)|n〉. (60)

The energy eigenvalues (50) are parametrised by n → 1
2 + iu, En = 1

4 + u2 and m → 1
2 + iv,

Em = 1
4 + v2, thus
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D2(β, t) =
∫ +∞

0

∫ +∞

0
du dv ei(u2−v2)t−β( 1

4+u2)∫
F

ψ 1
2−iu(z) A ψ 1

2+iv(z) dµ(z)
∫
F

ψ 1
2−iv(w) B ψ 1

2+iu(w) dµ(w) ,

(61)

where the complex conjugate function is ψ∗1
2+iu

(z) = ψ 1
2−iu(z). Defining the basic matrix element as

Auv =
∫
F

ψ 1
2−iu(z) A ψ 1

2+iv(z) dµ(z) =
∫ 1/2

−1/2
dx
∫ ∞
√

1−x2

dy
y2 ψ 1

2−iu(z) A ψ 1
2+iv(z) (62)

for the two-point correlation function we shall get

D2(β, t) =
∫ +∞

−∞
ei(u2−v2)t−β( 1

4+u2)Auv Bvu dudv . (63)

In terms of the new variables (53) the basic matrix element (62) will take the form

Apq =
∫ 1/2

−1/2
dx
∫ ∞

1
2 log(1−x2)

dy ψ∗p(x, y) (e−
1
2 y A e

1
2 y)ψq(x, y) . (64)

The matrix elements (62) and (64) play a fundamental role in the investigation of the correlation
functions because all correlations can be expressed through it. One should also choose appropriate
observables A and B. The operator y−2 seems very appropriate for two reasons. Firstly, the convergence
of the integrals over the fundamental region F will be well defined. Secondly, this operator is
reminiscent of the exponentiated Liouiville field since y−2 = e−2ỹ. Thus we are interested in calculating
the matrix element (64) for the observables in the form of the Liouiville-like operators4 :

A(N) = e−2Ny. (65)

We shall get

Apq(N) =
∫ 1/2

−1/2
dx
∫ ∞

1
2 log(1−x2)

dy ψ∗p(x, y) e−2Ny ψq(x, y) , N = 1, 2, ... (66)

To calculate the above matrix elements we shall use a perturbative expansion in which the
part of the wave function (54) containing the Bessel functions and the contribution of the discrete
spectrum (59) will be considered as perturbation. As we shall demonstrate below, these terms of the
perturbative expansion are small and do not influence our results. The reason behind this fact is that
in the integration region =z� 1 of the matrix element (62) the Bessel function decays exponentially,
as one can be convinced by inspecting (41). Therefore, the contribution of these high modes is small
(analogues to the so called mini-superspace approximation in the Liouville theory). Thus we shall
consider the perturbative expansion over high frequency modes l = 1, 2, ... in (54) and (59). In the first
approximation of the wave function (54) for the matrix element we shall get

Apq(N) =
∫ 1/2

−1/2
dx

(
(1− x2)−N+

p−q
2i

2N + i(p− q)
+

(1− x2)−N+
p+q
2i e−iϕ(q)

2N + i(p + q)

+
(1− x2)−N− p+q

2i eiϕ(p)

2N − i(p + q)
+

(1− x2)−N− p−q
2i ei(ϕ(p)−ϕ(q))

2N − i(p− q)

)
, (67)

4 Another interesting observable is A(N) = cos(2πNx), N = 1, 2, .... As a consequence of the chaotic nature of the system it
is expected that the behaviour of the correlation functions will have a universal character.
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where we used (55). Integration over x can be performed exactly with the result for the basic matrix
element of the following form:

Apq(N) =
2F1

(
1
2 , N + i p−q

2 ; 3
2 ; 1

4

)
2N + i(p− q)

+
2F1

(
1
2 , N + i p+q

2 ; 3
2 ; 1

4

)
2N + i(p + q)

e−iϕ(q) +

+
2F1

(
1
2 , N − i p+q

2 ; 3
2 ; 1

4

)
2N − i(p + q)

eiϕ(p) +
2F1

(
1
2 , N − i p−q

2 ; 3
2 ; 1

4

)
2N + i(p− q)

ei(ϕ(p)−ϕ(q)), (68)

where the reflation phase ϕ(p) was defined in (55). Thus for the two-point correlation function we
shall get

D2(β, t) =
∫ +∞

−∞
ei(p2−q2)t−β( 1

4+p2)Apq(N) Aqp(M) dpdq . (69)

The correlation function is between two Liouiville-like fields in the power N and M respectively.
This expression is very convenient for analytical and numerical analyses. It is expected that the
two-point correlation function should decay exponentially [26], therefore we fitted the points by
the curve

D2(β, t) ∼ K2(β) e
− t

t2(β) . (70)

The t2(β) is the dissipation time and defines one of the characteristic time scales in the
quantum–mechanical system5. The exponential decay of the two-point correlation function with
time and the dependence of the exponent t2(β) and of the prefactor K2(β) as a function of temperature
are presented in Figure 3. As one can see, at high and low temperatures the dissipation time tends
to the fixed values. These limiting values we have calculated by using the expressions (71) and (72).
At large β→ ∞ the main contribution came from the zero momentum region p = 0:

D2(∞, t) =
∫ +∞

−∞
e−iq2t A0q(N) Aq0(M) dq ∼ K2(∞) e

− t
t2(∞) , (71)

and at β→ 0 from the region p = q:

D2(0, t) =
∫ +∞

−∞
ei(p2−q2)t Apq(N) Aqp(M) dpdq ∼ K2(0) e

− t
t2(0) . (72)

The corresponding limiting values in dimensionless units are shown on the l.h.s. of Figure 3.

Four-Point Correlation Function

It was conjectured by Maldacena, Shenker and Stanford [26] that the classical chaos can be
diagnosed in thermal quantum systems by using an out-of-time-order correlation functions as well
as by the square of the commutator of the operators which are separated in time. The out-of-time
four-point correlation function of interest was defined in [26,48] as follows:

D4(β, t) = 〈A(t)B(0)A(t)B(0)e−βH〉 = (73)

= ∑
n,m,l,r

ei(En−Em+El−Er)t−βEn〈n|A(0)|m〉〈m|B(0)|l〉〈l|A(0)|r〉〈r|B(0)|n〉.

5 We would like to thank Gabriel Poghosyan for numerical calculation of the two-point correlation function presented in
Figure 3.
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The other important observable which we shall consider here is the square of the commutator of
the Liouiville-like operators separated in time [26]

C(β, t) = 〈[A(t), B(0)]2e−βH〉 . (74)

The energy eigenvalues we shall parametrise as n → 1
2 + iu, m → 1

2 + iv, l → 1
2 + il and

r → 1
2 + ir, thus from (73) we shall get

D4(β, t) =
∫ +∞

−∞
ei(u2−v2+l2−r2)t−β( 1

4+u2) Auv Bvl Alr Bru dudvdldr . (75)

In terms of the variables (53) the four-point correlation function (75) will take the following form:

D4(β, t) =
∫ +∞

−∞
ei(p2−q2+l2−r2)t−β( 1

4+p2) Apq(N) Aql(M) Alr(N) Arp(M) dpdqdldr.

(76)

In order to compute the square of the commutator (74), one should also consider the following
four-point correlation function:

D′4(β, t) = 〈A(t)B(0)B(0)A(t)e−βH〉 = (77)

= ∑
n,m,l,r

ei(−Em+Er)t−βEn〈n|A(0)|m〉〈m|B(0)|l〉〈l|B(0)|r〉〈r|A(0)|n〉,

D′′4 (β, t) = 〈B(0)A(t)A(t)B(0)e−βH〉 = (78)

= ∑
n,m,l,r

ei(Em−Er)t−βEn〈n|B(0)|m〉〈m|A(0)|l〉〈l|A(0)|r〉〈r|B(0)|n〉,

D′′′4 (β, t) = 〈B(0)A(t)B(0)A(t)e−βH >= (79)

= ∑
n,m,l,r

ei(−En+Em−El+Er)t−βEn〈n|B(0)|m〉〈m|A(0)|l〉〈l|B(0)|r〉〈r|A(0)|n〉.

As it was suggested in [26], the most important correlation function indicating the traces of the
classical chaotic dynamics in quantum regime is (74)

C(β, t) = −D4(β, t) +D′4(β, t) +D′′4 (β, t)−D′′′4 (β, t), (80)

where in the case of the Artin system these correlation functions in the momentum space representation
have the form:

D′4(β, t) +D′′4 (β, t) = (81)

2
∫ +∞
−∞ e−β( 1

4+p2) cos (q2 − r2)t Apq(N) Aql(M) Alr(N) Arp(M) dpdqdldr,

and

D4(β, t) +D′′′4 (β, t) = (82)

2
∫ +∞
−∞ e−β( 1

4+p2) cos (p2 − q2 + l2 − r2)t Apq(N) Aql(M) Alr(N) Arp(M) dpdqdldr.

Figure 4 shows the behaviour of the four-point correlations as a function of temperature and time.
All of the four-point correlation functions decay exponentially:
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D4(β, t) ∼ K4(β) e
− t

t4(β) . (83)

Now we can turn to the investigation of the commutator (74), (80) which can be represented in
the following form:

C(β, t) = 2
∫ +∞

−∞
e−β( 1

4+p2){cos (q2 − r2)t− cos (p2 − q2 + l2 − r2)t}

Apq(N) Aql(M) Alr(N) Arp(M) dpdqdldr,

=
∫ +∞

−∞
e−β( 1

4+p2) sin
1
2
(p2 + l2 − 2r2)t · sin

1
2
(p2 + l2 − 2q2)t

Apq(N) Aql(M) Alr(N) Arp(M) dpdqdldr, (84)

where we used (81) and (82). Due to the sinus functions the C(β, t) vanishes at t = 0 and is proportional
to t2 at the very short time scale: (p2 + l2)t� 1, r2t� 1, q2t� 1, p2 � 1/β. Generally the commutator
[A(0), A(t)] between operators at different moments of time is not vanishing because the operator
A(0) and the time dependent operator A(t) = eiHt A(0)e−iHt do not coincide, for example in the case
of a simple oscillator, where [x(0), x(t)] = ih̄

mω sin(ωt). For larger time intervals the value of the matrix
elements Apq (66) plays a crucial role and essentially influences the behaviour of the C(β, t).

In contrast to the exponential decay of the correlation functions the square of the commutator
of the operators e−Ny(t) separated in time grows exponentially, Figure 5. This growth is reminiscent
to the local exponential divergence of trajectories in the Artin system when it is considered in the
classical [30,31] and in quasi-classical limits. In the quasi-classical limit the commutator C(β, t)
changes proportionally to the square of trajectory deviation 〈( δy(t)

δy(0) )
2〉 which grows exponentially

[30,31]. The growth of the commutator has been parameterised in the following form:

C(β, t) ∼ C(β) e
2π

χ(β)
t, C(β, t)max/C(β, t)Artin ∼ R(β) e(

1
β−

1
χ(β)

)2πt, (85)

where the behaviour of the exponent χ(β) and ratio with respect to the maximal growth exponent is
presented in Figure 5. This beautifully confirms the fact that the correlation function C(β, t) indeed
grows exponentially with time, as it takes place in its classical counterpart. As one can see, the exponent
χ(β) defining the behaviour of the commutator C(β, t) in (84) and (85) slowly decreases with β.

5. Discussion

In order to check if the results are sensitive to the truncation of the high modes of the Maass
wave function (49), as well as to the contribution of the discrete energy levels (59), we included the
corresponding terms into the integration of the basic matrix element Auv in (62). The first discrete
energy level is at u1 ≈ 9.53 and has the wave function given in (59) [46]. The value of the corresponding
matrix element (62) at u = v = u1 is of order 10−15. In comparison, the contribution from continuous
energy spectrum to the same matrix element is varying in the interval [0.01− 1]. We also included two
consecutive terms of the discrete sum of the Maass wave function (54) with l = 1, 2 in our calculation
of the basic matrix element Auv and found that the changes are of the same order. Thus we found that
their influence on the behaviour of the correlation functions is negligible mainly because the Bessel
function (41) is exponentially small in the fundamental region. The numerical values of the exponents
are changing in the range of a few percentage points and do not influence the results. In summary,
all two- and four-point correlation functions decay exponentially. The commutator C(β, t) in (84) and
(85) grows exponentially with an exponent that is almost constant, Figure 5.
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