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Abstract: One of the most important issues in an inflationary theory as standard or quintessential
inflation is the mechanism to reheat the universe after the end of the inflationary period in order to
match with the Hot Big Bang universe. In quintessential inflation two mechanisms are frequently
used, namely the reheating via gravitational particle production which is, as we will see, very efficient
when the phase transition from the end of inflation to a kinetic regime (all the energy of the inflaton
field is kinetic) is very abrupt, and the so-called instant preheating which is used for a very smooth
phase transition because in that case the gravitational particle production is very inefficient. In the
present work, a detailed study of these mechanisms is done, obtaining bounds for the reheating
temperature and the range of the parameters involved in each reheating mechanism in order that
the Gravitational Waves (GWs) produced at the beginning of kination do not disturb the Big Bang
Nucleosynthesis (BBN) success.
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1. Introduction

Soon after the discovery of the current cosmic acceleration at the end of the last century [1,2], a class
of pioneering cosmological models attempting to unify the early- and late- accelerating expansions
were introduced. By construction these models, named as quintessential inflation models [3–5], unlike the
standard quintessence ones (see [6] for a review of these models), only contain one classical scalar field,
also named inflaton as in standard inflation [7–10], and it is shown that they succeed in reproducing
these two accelerated epochs of the universe (also see [11–23] for other interesting quintessential
inflation models).

However, an important difference occurs with respect to the standard inflationary paradigm,
where the potential of the inflaton field has a local minimum and, thus, the inflaton field releases its
energy while it oscillates, which allows particle production [24–28]. In contrast, for the “non oscillating”
models, i.e., in quintessential inflation, where the inflaton field survives to be able to reproduce the
current cosmic acceleration, a fast phase transition from the end of inflation to the beginning of kination
(a regime where all the energy density of the inflaton field is kinetic) where the adiabatic regime is
broken is needed in order to reheat the universe. This creates enough particles, which after decays
and/or interactions with other fields, form a thermal relativistic plasma whose energy density will
eventually become dominant. The mechanism of particle creation can be obtained in different ways, but
the most used and the ones we will study in this work are the gravitational particle production [29–40]
and the instant preheating [41–44] (see also [45] for a detailed description of both mechanisms).
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Dealing with the mechanisms to reheat the universe, the question related to the bounds of
the reheating temperature arises. Some works already considered the constraints for reheating
in quintessential inflation models, both on instant preheating [46] and on gravitational particle
production [47]. A lower bound is obtained recalling that the radiation dominated era is prior to the
Big Bang Nucleosynthesis (BBN) epoch which occurs in the 1 MeV regime [48]. As a consequence,
the reheating temperature has to be greater than 1 MeV (see also [49] where the authors obtain
lower limits on the reheating temperature in the MeV regime assuming both radiative and hadronic
decays of relic particles only gravitationally interacting and taking into account effects of neutrino
self-interactions and oscillations in the neutrino thermalization calculations.) The upper bounds may
depend on the theory we are dealing with; for instance, many supergravity and superstring theories
contain particles such as the gravitino or a modulus field with only gravitational interactions and, thus,
the late time decay of these relic products may disturb the success of the standard BBN [50], but this
problem can be successfully removed if the reheating temperature is of the order of 109 GeV (see for
instance [51]). This is the reason we will restrict the reheating temperature to remain, more or less,
between 1 MeV and 109 GeV.

On the other hand, one has to take into account that a viable reheating mechanism has to deal with
the affectation of the Gravitational Waves (GWs) in the BBN success by satisfying the observational
bounds coming from the overproduction of the GWs [4] or related to the logarithmic spectrum of its
energy density [52]. As we will see throughout this work, the overproduction of GWs constrains very
much the value of the parameters involved in the different reheating mechanisms and also impose
hard bounds in the reheating temperature.

In addition, another issue related to quintessential inflation is the possibility to explain the present
abundance of dark matter. Effectively, assuming that dark matter is made of non-decaying superheavy
particles only coupled to gravity which are gravitationally created during the abrupt phase transition,
one can show that a certain range of mass values of the dark matter leads to a viable model overpassing
all the bounds coming from the overproduction of GWs [53,54].

The manuscript is organized as follows: In Section 2 we deduce the initial condition to apply the
WKB approximation and ensure that the vacuum fluctuation of a massive field coupled to gravity does
not affect the classical evolution of the inflaton field. Section 3 is devoted to the presentation of our
quintessential inflation model, inspired in the well-known Peebles-Vilenkin one [4], i.e., depending on
two parameters and containing an abrupt phase transition from the end of inflation to the beginning
of kination, and the subsequent study of its dynamical evolution. Next, in Section 4 we study both
reheating mechanisms in quintessential inflation, namely via gravitational particle production and
via instant preheating, obtaining bounds for the reheating temperature. In Section 5 we deal with the
constraints to preserve the BBN success coming from the logarithmic spectrum of GWs and also from
its overproduction during the phase transition from the end of inflation to the beginning of kination,
obtaining the range of values of the parameters involved in each reheating mechanism and also more
restrictive bounds for the reheating temperature. In Section 6 we consider the present abundance of
dark matter, assuming that it is composed by superheavy particles conformally coupled to gravity,
which are also produced during the abrupt phase transition from the end of inflation to the beginning
of kination, obtaining bounds for its mass. In Section 7 we consider another quintessential inflation
model with a more abrupt phase transition and we show the importance of this fact and the differences
with the previous model. Finally, in the conclusions we discuss the obtained results.

2. Initial Conditions for Inflation and the Application of the WKB Approximation

We want to know when one can apply the WKB solution in the early universe (see for instance [55,56]
in order to approximately find the modes of a field coupled to gravity. This is very important because it
allows us to compute analytically important quantities such as the vacuum polarization and the energy
density of the produced particles after an abrupt phase transition. To do all the analytic calculations we
will consider a potential such as the one used by Peebles and Vilenkin in [4] with a discontinuity in some
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derivative and, thus, we can obtain an analytic expression of the reheating temperature depending on
the parameters involved in the reheating mechanism (the mass of the produced particles, the decay rate,
the coupling constant between the quantum field which produces the particles, the inflaton field, ...).

Therefore, first at all it is well-known that at temperatures of the order of the Planck’s mass
quantum effects become very important and the classical picture of the universe is not possible.
However, at temperatures below Mpl , for example at GUT scales (i.e., when the temperature is of the
order of T ∼ 4× 10−3Mpl ∼ 1016 GeV), the beginning of the Hot Big Bang (HBB) scenario is possible.
For the flat FLRW universe the energy density of the universe, namely ρ, and the Hubble parameter
H are related through ρ = 3H2M2

pl , and, for a universe filled with radiation, the temperature of

the universe is related to the energy density via ρ = (π2/30)g∗T4, where the degrees of freedom for
the Standard Model are g∗ = 106.75 (see for instance [57]). Thus, one can conclude that a classical
picture of the universe would be possible when H ∼= 5× 10−5Mpl

∼= 1014 GeV. Now we consider
that inflation starts at this scale, i.e., we take the value of the Hubble parameter at the beginning of
inflation (denoted by Hbeg) as Hbeg = 5× 10−5Mpl , and we assume that a quantum χ-field coupled
to gravity and/or to the inflaton field, which will be the responsible to reheat the universe, is in the
vacuum at the beginning of inflation. If we choose the mass of the χ-field at least one order greater
than this value of the Hubble parameter (mχ ≥ Hbeg

∼= 5× 10−4Mpl
∼= 1015 GeV, which is a mass

of the same order as those of the vector mesons responsible for transforming quarks into leptons in
simple theories with SU(5) symmetry [58]), one can apply the WKB approximation to calculate the
re-normalized energy density of the vacuum. After subtracting the adiabatic modes up to order four,
we obtain an energy density of the order H6/m2

χ [59], which is subdominant compared to the energy
density of the background 3H2M2

pl and, thus, does not affect the classical evolution of the inflation
up to an abrupt phase transition where the adiabatic regime is broken, the χ-field stops being in the
vacuum and particles are copiously produced with an energy density which decays slower than the
one of the inflation, thus becoming eventually dominant.

The dynamical evolution of the vacuum modes could be understood as follows: the k-vacuum
mode during the adiabatic regime can be approximated by χ

(n)
k,WKB, where n is the order of the

WKB approximation, but, when the adiabatic regime breaks down during a period of time, the WKB
approximation cannot be used and only at the end of this period one can again use it. However, now the
vacuum mode is a combination of positive and negative frequency modes which can be approximated
by a linear combination of χ

(n)
k,WKB and its conjugate of the form αk,nχ

(n)
k,WKB + βk,n(χ

(n)
k,WKB)

∗, where α

and β are the so-called Bogoliubov coefficients, and it is the manifestation of the gravitational particle
production. Basically this is the viewpoint of particle creation in curved space-times [29–31],
where the β-Bogoliubov coefficient, which is calculated matching the modes before and after the
discontinuity for models with a discontinuity in some derivative of the potential as the one introduced
by Peebles-Vilenkin in [4]. This is the key ingredient to calculate the energy density of the produced
particles.

In fact, the energy density of the produced particles after the end of the phase transition evolves
as [60]

ρχ(τ) =
1

2π2a4(τ)

∫ ∞

0
ωk(τ)k2|βk|2dk, (1)

where ωk(τ) is the time dependent frequency of the k-mode, and when βk is known we have an
analytic expression of this energy density that allows us to calculate the reheating temperature and
deduce its bounds.
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3. The Peebles-Vilenkin Model

To deal with an analytically solvable problem, i.e., having an analytic expression of the
β-Bogoliubov coefficient, we consider a sudden phase transition where the third derivative of
the Hubble parameter is discontinuous, which happens for the following improved version of the
well-known Peebles-Vilenkin quintessential inflationary potential [4],

V(ϕ) =


λM4

pl

(
1− e

√
2
3

ϕ
Mpl

)2

+ λM4 for ϕ ≤ 0

λ M8

ϕ4+M4 for ϕ ≥ 0,

(2)

where λ is a dimensionless parameter and M is a very small mass compared with the Planck one.
Here, it is important to point out that the inflationary part of the original Peebles-Vilenkin

potential is a quartic potential and, thus, the theoretical values of the spectral index and the ratio of
tensor to scalar perturbations do not enter in the marginalized joint confidence contour in the plane
(ns, r) at 2σ CL [61] without the presence of the running [12]. This is the reason one has to change the
quartic part by a Starobinsky-type potential, whose spectral values do actually enter in this contour.

The value of the parameter λ is calculated as follows: we use the theoretical and observational
values of the power spectrum of the curvature fluctuation in a co-moving coordinate system when the

pivot scale leaves the Hubble radius [62], Pζ
∼= H2

∗
8π2 M2

plε∗
∼ 2× 10−9, where ε = − Ḣ

H2
∼=

M2
pl

2

(
Vϕ

V

)2
is

the main slow-roll parameter and the star “∗” means that the quantity is evaluated when the pivot
scale leaves the Hubble radius, obtaining

λ ∼ 9π2(1− ns)
2 × 10−9, (3)

where we have used that for our model one has ε∗ ∼= 3
16 (1− ns)2, where ns denotes the spectral index

and during inflation H2
∗ ∼= λ

3 M2
pl .

From the recent observations by Planck [61] the value of the spectral index is constrained to be
ns = 0.968± 0.006. Thus, taking its central value one gets λ ∼= 9× 10−11, which means that H∗ ∼=
5.48× 10−6Mpl . The tensor-to-scalar perturbation ration r for this model yields r = 16ε∗ ≈ 3(1− ns)2,
which leads for this range of values of ns to a small enough quantity (r ≤ 0.00581 at 2σ C.L.) which
agrees with the observational constraints.

On the other hand, note that for our toy model the second derivative of the potential is
discontinuous at ϕ = 0, nearly at the beginning of the kination phase (To simplify, we will assume
that kination starts when ϕ = 0 because, as is shown in Figure 1, the maximum value of the kinetic
energy is very close to ϕ = 0). In addition, using Raychaudhuri equation, one can see that the third
derivative of the Hubble rate is discontinuous at the beginning of kination, hence allowing particle
production because the adiabatic evolution is broken. For example, if one considers a massive χ-field

coupled to gravity, the fourth derivative of the frequency ωk(τ) =
√

k2 + a2(τ)m2
χ is discontinuous

for any k-mode.
In fact, this kind of potentials with discontinuities was studied by Starobinsky and others in [63,64],

who showed that the discontinuity of the effective potential could be obtained introducing a second
scalar field coupled to the inflaton that experiences a cosmological second order phase transition
(see for instance the introduction of Linde’s book [58] for some simple examples of first and second
order phase transitions), as is explained in Section 4 of [64] considering the standard toy model used
many times in the hybrid inflationary scenario [65].
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What is important is that we have to understand the breakdown of the adiabatic behavior, at least
for a more smooth potential, as follows:

1
ω5(τ)

d4ωk(τ)

dτ4 ≥ 1 (4)

in a region close to the beginning of kination with a characteristic time less than (H(t))−1 and, thus,
in this region the adiabatic regime is broken, allowing the production of particles. Unfortunately,
in this situation the analytic calculation of the energy density of the produced particles is not possible.
This is the reason we consider our toy model (2), where one can get an analytic expression of this
energy density (Please note that the second derivative of (2) is discontinuous, meaning that the third
derivative of the Hubble rate is discontinuous at the beginning of kination, i.e., the fourth derivative of
ωk(τ) is discontinuous at that moment and, thus, the non-adiabatic condition (4) is met).

Finally, numerical calculations (namely event-driven integration with an ode RK78 integrator) [53]
show that at the beginning of kination one has Hkin

∼= 1.44× 10−6Mpl and, thus, the energy density of
the background at the beginning of kination is given by ρϕ,kin

∼= 6.26× 10−12M4
pl .

-6 -4 -2 0 2 4 6

φ ( t )

MPl

1

2

3

4

106 φ

( t )

MPl
2

Figure 1. Evolution of the velocity of the scalar field, as a function of scalar field, obtained integrating
the equation conservation ϕ̈ + 3H ϕ̇ + Vϕ = 0, with initial conditions when the pivot scale leaves the
Hubble horizon, i.e., for ϕ∗ = −5.42Mpl and ϕ̇∗ = 0.

3.1. The Dynamics of the Model

To deal with the evolution of the system we need to consider the back-reaction of particle
production. Effectively, after particle production one has the so-called semi-classical Friedmann
equation H2 =

ρϕ+ρχ

3M2
pl

, where ρϕ stands for the energy density of produced particles and ρχ is the

energy density of produced particles. Then, when the inflaton dominates, i.e., during inflation,
kination and at late times, one has H2 =

ρϕ

3M2
pl

, but from the end of kination up to beginning of

quintessence one has H2 =
ρχ

3M2
pl

, i.e., the background is driven by the energy density of created

particles, meaning that during radiation one has H = 1
3t and in the matter-domination era H = 2

3t ,
which influences the evolution of the infation field, which is given by the conservation equation
ϕ̈ + 3H ϕ̇ + Vϕ = 0. Taking into account this fact, we start with the analytic analysis and after it we do
the numerics.

3.1.1. Analytic Results

We start with the initial conditions at the beginning of kination for our improved version of the
Peebles-Vilenkin model:

ϕkin = 0, ϕ̇kin = 3.54× 10−6M2
pl . (5)

During kination, the scale factor and the Hubble rate evolve as a ∝ t1/3 =⇒ H = 1
3t and, from the

Friedmann equation, the evolution in this phase will be
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ϕ̇2

2
=

M2
pl

3t2 =⇒ ϕ(t) =

√
2
3

Mpl ln (t/tkin) =

√
2
3

Mpl ln
(

Hkin
H(t)

)
. (6)

Here two different situations can occur: The superheavy χ-particles created during the phase
transition from the end of inflation to the beginning of kination could decay

1. After the end of kination.
2. Before the end of kination.

In the first case, at the end of kination one has

ϕend = −
√

2
3

Mpl ln
(√

2Θ
)

, ϕ̇end = 2
√

3Mpl HkinΘ, (7)

where we used the relation Hend =
√

2HkinΘ (see Section 4.2 for the deduction), being Θ ≡ ρχ,kin
ρϕ,kin

(the
ratio of the energy density of the χ-field to the one of the inflaton at the beginning of the kination
phase) the so-called heating efficiency [66].

During the period between tend and tR (tR denotes the reheating time, i.e., when the universe
starts to be radiation-dominated), in the case that the χ-particles were superheavy, the universe is
matter-dominated and, thus, the Hubble parameter becomes H = 2

3t . During this epoch, the gradient
of the potential could also be disregarded, hence the equation of the scalar field becomes ϕ̈ + 2

t ϕ̇ = 0
and, thus,

ϕ(t) = ϕend +

√
2
3

Mpl

(
1− tend

t

)
, (8)

where we used that ϕ̇(t) = −ϕ̇end

(
t

tend

)2
with ϕ̇end =

√
2
3

Mpl
tend

. Then, one gets

ϕR = ϕend +

√
2
3

Mpl

(
1− HR

2Hend

)
= ϕend +

√
2
3

Mpl

(
1− π

6

√
g∗
10

T2
R

Hkin MplΘ

)
, (9)

having employed that H2
R =

2ρϕ,R
3Mpl

with ρϕ,R = π2

30 g∗T4
R and we also have that

ϕ̇R =

√
3

4
Mpl H2

R
HkinΘ

. (10)

During the radiation period one can continue disregarding the potential and the dynamical
equation becomes ϕ̈ + 3

2t ϕ̇ = 0, whose solution is given by

ϕ(t) = ϕR + 2ϕ̇RtR

(
1−

√
tR
t

)
(11)

and, thus, since ϕ̇RtR = π
6

√
g∗
30

T2
R

HkinΘ (being TR the reheating temperature) at the matter-radiation
equality, one has

ϕeq = ϕR +
π

3

√
g∗
30

T2
R

HkinΘ

1−

√
4Heq

3HR

 = ϕR +
π

3

√
g∗
30

T2
R

HkinΘ

[
1−

2Teq√
3TR

(
geq

g∗

) 1
4
]

∼= ϕR +
π

3

√
g∗
30

T2
R

HkinΘ
∼= ϕR +

2T2
R

HkinΘ
, (12)
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where geq ∼= 3.36 are the degrees of freedom at the matter-radiation equality and Teq is the temperature
of the radiation at the matter-radiation equality, which is related to the energy density via the relation
ρeq = π2

15 geqT4
eq
∼= 8.8× 10−1eV4 and, thus, given by Teq ∼= 7.9× 10−10 GeV� TR. In the same way,

ϕ̇eq = ϕ̇R
tR
teq

√
tR
teq

=

(
16geq

9g∗

)3/4 (Teq

TR

)3
ϕ̇R ∼= 1.7

T3
eqTR

Mpl HkinΘ
. (13)

Remark 1. To obtain the value of ρeq, we chose as the value of the cosmic red-shift at the matter-radiation
equality zeq ≡ −1 + a0

aeq
= 3365, the value of the ratio of the energy density of the matter to the critical energy

density at the present time equal to Ωmatt,0 = 0.308 and the value of the Hubble rate at the present time equal to
H0 = 1.42× 10−33 eV. Then, since ρmatt,0 = 3H2

0 M3
plΩmatt,0, one finally gets

ρeq = 2ρmatt,0(1 + zeq)
3 = 8.8× 10−1 eV4. (14)

In the second case, i.e., when the decay of the χ-particles is before the end of kination,
which always happens when reheating is via instant preheating, the beginning of the radiation era
coincides with the end of kination. Thus,

ϕR =

√
2
3

Mpl ln
(

Hkin
HR

)
(15)

and, taking into account that HR =
√

2
3

√
ρR

Mpl
= π

3

√
g∗
5

T2
R

Mpl
, we get

ϕR =

√
2
3

Mpl ln

(
3
π

√
5
g∗

Hkin Mpl

T2
R

)
, ϕ̇R =

√
6Mpl HR = π

√
2g∗
15

T2
R. (16)

During the radiation era, disregarding once again the potential, we will have

ϕ(t) = ϕR + 2ϕ̇RtR

(
1−

√
tR
t

)
, (17)

but now ϕ̇RtR =
√

2
3 Mpl , meaning that

ϕeq = ϕR + 2

√
2
3

Mpl

1−

√
2Heq

3HR

 = ϕR + 2

√
2
3

Mpl

(
1−

√
2
3

(
geq

g∗

)1/4 Teq

TR

)
∼=

∼= ϕR + 2

√
2
3

Mpl (18)

given that Teq � TR, and

ϕ̇eq = ϕ̇R

(
tR
teq

)3/2
=

4π

9

√
geq

5

(
geq

g∗

)1/4 T3
eq

TR
. (19)
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After the matter-radiation equality the dynamical equations cannot be solved analytically and,
thus, one needs to use numerical methods to compute them. To do that we need to use a “time”
variable that we choose to be minus the number of e-folds up to the present epoch, namely N ≡
− ln(1 + z) = ln

(
a
a0

)
. Now, using the variable N, one can recast the energy density of radiation (the

energy density of the decay products of the χ-field which we continue denoting by ρχ) and matter
respectively as

ρχ(N) =
ρeq

2
e4(Neq−N), ρmatt(N) =

ρeq

2
e3(Neq−N), (20)

where Neq = − ln(1 + zeq) ∼= −8.121 is the value of N at the matter-radiation equality.
To obtain the dynamical system for our model, we introduce the following

dimensionless variables,

x =
ϕ

Mpl
, y =

ϕ̇

H0Mpl
, (21)

where once again H0 ∼= 1.42× 10−33 eV denotes the current value of the Hubble parameter. Now,
using the variable N = − ln(1 + z) defined above and also the conservation equation ϕ̈ + 3H ϕ̇ + Vϕ =

0, we will have the following non-autonomous dynamical system [67]:{
x′ = y

H̄ ,
y′ = −3y− V̄x

H̄ ,
(22)

where the prime represents the derivative with respect to N, H̄ = H
H0

and V̄ = V
H2

0 M2
pl

. Moreover,

the Friedmann equation now looks as

H̄(N) =
1√
3

√
y2

2
+ V̄(x) + ρ̄χ(N) + ρ̄matt(N) , (23)

where we introduced the following dimensionless energy densities ρ̄χ =
ρχ

H2
0 M2

pl
and ρ̄matt =

ρmatt
H2

0 M2
pl

.

Then, we have to integrate the dynamical system, starting at Neq = −8.121, with initial conditions
xeq and yeq, and the value of the parameter M̃ is obtained equaling at N = 0 Equation (23) to 1, i.e.,
imposing H̄(0) = 1.

For the first case (the decay after the end of kination), the initial conditions are obtained analytically
in Equations (12) and (13). Effectively, from Formula (35) in Section 4.2,

yeq ∼= 2.82× 10−35Θ−1 Trh
GeV

∼=
Trh

GeV

(
mX
Mpl

)4{
37 c.c.

0.11 n.c.,
(24)

where c.c. means that the χ-field is conformally coupled to gravity and n.c. non-conformally coupled.
Then, for viable reheating temperatures Trh ≤ 109 GeV and as we will see in Section 4.2 for mχ

∼= 1015

GeV, one has yeq � 1. In addition, for xeq, after a simple calculation,

xeq ∼=
√

2
3

(
1− ln(2

√
Θ)
)
+

(
2− π

6

√
g∗
15

)
T2

R
HkinΘMpl

, yeq ∼= 1.7
T3

eqTR

H0M2
pl HkinΘ

. (25)

Last, the initial conditions for the second case (the decay before the end of kination) are

xeq ∼=
√

2
3

(
2 + ln

(
3
π

√
5
g∗

Hkin Mpl

T2
R

))
, yeq ∼=

4π

9

√
geq

5

(
geq

g∗

)1/4 T3
eq

H0MplTR
. (26)
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3.1.2. Numerical Results

In all cases compatible with the constraints found in this manuscript, which are summarized in
Table 1 (see Conclusions), we obtained that M/Mpl

∼= 10−13, which coincides with the result obtained
in [4]. Please note that for this model, the energy scale of inflation V1/4(ϕ� −Mpl) ∼ λ1/4Mpl ∼ 1015

GeV is close to the GUT scale, while the energy scale for dark energy V1/4(ϕ ∼= 0) ∼ λ1/4M ∼ 102

GeV is near the electroweak scale.
Next we show in Figures 2 and 3 the reduced densities {ρ̄i}i=χ,m,ϕ, the density parameters

{Ωi}i=χ,m,ϕ and the effective Equation of State (EoS) parameter ωe f f for all of them, showing that at
the present time we f f

∼= −0.6 < −1/3, which proves the current cosmic acceleration, and at late time
we f f goes to −1, meaning that this model leads to an eternal acceleration. As clearly seen in the figures,
the results remain almost unchanged for the different considered cases, corresponding to different
values of the reheating temperature, given that for all of them the value of parameter M̃ yields almost
the same value, namely M̃ ∼ 1013 GeV ∼ 10−5Mpl .

Figure 2. Numerical results for the allowed reheating mechanisms for the potential in (2).
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Figure 3. Numerical results for the allowed reheating mechanisms for the potential in (106).

3.2. Compatibility of the Model with the Cosmological Perturbations

After having studied the dynamics of the model, in order to verify its compatibility with the
cosmological perturbations, we are going to compare the number of e-folds for our considered
potentials, namely N = 2

1−ns
, with the one obtained from [68]

k∗
a0H0

= e−N H∗
H0

aend
akin

akin
aR

aR
aM

aM
a0

= e−N H∗
H0

aend
akin

ρ−1/12
R ρ1/4

M

ρ1/6
kin

aM
a0

, (27)

where M symbolizes the beginning of the matter domination era. Analogously as in [17], it leads to

N ∼= 54.8 + ln
(

aend
aE

)
+

1
2

ln ε∗ −
1
3

ln

(
g1/4

R TRHkin

M2
pl

)
, (28)

where gR = 107, 90 and 11 respectively for TR ≥ 175 GeV, 175 GeV ≥ TR ≥ 200 MeV and
200 MeV ≥ TR ≥ 1 MeV; ln

(
aend
aE

)
=
∫ Hend

Hkin
H(t)dt, which was numerically calculated for both

considered potentials when we take the spectrum index to be the central value ns = 0.968, and
ε∗ =

3
16 (1− ns)2.
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Therefore, we obtain the value of the reheating temperature in function of ns for both potentials,
which is represented in Figure 4. We observe that all the important bounds for our model, namely the
BBN ones and the ones summarized in Table 1 (see conclusions) lay within the allowed values for the
spectral index, namely ns = 0.968± 0.006 [61].

Figure 4. Relation between the reheating temperature TR in function of the spectral index ns for the
potential in (2) (left) and the one in (106) (right), with the corresponding bounds for TR found in
this work.

4. Reheating in Quintessential Inflation

In this section, we will discuss the most common ways to reheat the universe: Reheating via
gravitational production of light or superheavy particles and instant preheating.

4.1. Gravitational Production of Light Particles

When the produced particles during the phase transition are very light, the energy density of the
relativistic plasma formed by these light particles is given by [4,36,56,60,69,70]

ρχ(τ) ∼= RH4
kin

(
akin
a(τ)

)4
, (29)

where R ∼ 10−2Ns, being Ns the number of scalar fields, which for the minimal GUT is 4
(the electro-weak Higgs doublet) [4]. Therefore, we will use that R ∼= 10−1.

Remark 2. Here it is important to recall that this formula is only obtained for toy models (see for
instance [36,70]) and we understand that it will also work for more realistic models in which the adiabatic
evolution is broken near the beginning of the kination phase.

Since as we immediately show the thermalization process of the plasma is an instantaneous
process, the universe will become reheated at the end of the kination epoch, i.e., when the energy
densities of the scalar field and that of the relativistic plasma were of the same order. This occurs

when
(

akin
aR

)2
= Θ, where we used, once again, the so-called heating efficiency defined in Section 3.1.1

as Θ ≡ ρχ,kin
ρϕ,kin

and the fact that the energy density of the produced particles decays as a−4 while the one

of the inflaton field decays as a−6 during kination. Thus, the reheating temperature is given by

TR =

(
30

π2g∗

)1/4
ρ1/4

χ,R =

(
3

π2g∗

)1/4√
ΘHkin, (30)

where g∗ = 106.75 are the degrees of freedom for the Standard Model. Then,

TR ∼= 3.33× 10−7
√

ΘMpl = 8.12× 1011
√

Θ GeV (31)
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and, since a simple calculation leads to the value Θ ∼= H2
kin

30M2
pl

∼= 6.9× 10−14, we can conclude that

the reheating temperature when the reheating is via the gravitational production of light particles is
TR ∼= 213 TeV, which is basically the same result as the one obtained by Peebles and Vilenkin in their
paper [4].

Finally, we will show that the thermalization is nearly an instantaneous process compared with
the duration of the kinetic era. Following the reasoning of [3] and [4], the decay products have a typical
energy of the form ε̄ ∼ Hkin

(
akin
a(τ)

)
and their number density is n ∼ Rε̄3 ∼= 10−1ε̄3. Now, we take into

account that if the particles interact by the exchange of gauge bosons and establish thermal equilibrium
among the fermions and gauge bosons, the interaction rate will be nσ, where the cross section is
given by σ ∼ α2

ε̄2 , with the coupling constant satisfying the inequality 10−2 ≤ α ≤ 10−1. Therefore,
the thermal equilibrium will be accomplished when the interaction rate becomes comparable to the

Hubble parameter H = Hkin

(
akin
a(t)

)3
, which happens when

(
akin
ath

)2
= 10−1α2, where the subscript “th”

attached to any quantity refers to its value at the time when the thermal equilibrium was established.
On the other hand, one can calculate the scale factor at the reheating time t = tR, which occurs at the

end of kination, as follows: Since
(

akin
aR

)2
= Θ, then we will have

(
akin
aR

)2
=

ρχ,kin

ρϕ,kin
= 10−1 H2

kin
3M2

pl
=

H2
kin

3M2
plα

2

(
akin
ath

)2
=⇒ a2

th =
H2

kin
3M2

plα
2

a2
R

and, thus,

ath
∼=

8.3
α
× 10−7aR ≤ 8.3× 10−5aR =⇒ tR

tth
≥ 1.7× 1012,

where we used that during kination the scale factor evolves as t1/3. This result means that the thermal
equilibrium occurs well before the equality between the energy density of the scalar field and the one
of the decay products, i.e., well before to the end of kination which in this case coincides with the
beginning of the radiation era. Hence, one can safely assume an instantaneous thermalization.

4.2. Gravitational Production of Superheavy Particles

In this subsection, we will assume that the χ-field has a mass mχ greater than 1015 GeV. Therefore,
since this mass is greater than the Hubble rate, we can apply the WKB solution when we calculate the
evolution of the modes. In the appendix of [15] it was shown that the leading term of the re-normalized
energy density of the produced particles after the phase transition is given by

ρχ(τ) =
1

2π2a4(τ)

∫ ∞

0
ωk(τ)k2|βk|2dk (32)

and, for our model, in order to obtain the β-Bogoliubov coefficient we use the WKB approximation.
Please note that the second iteration W(2)

k including temporal derivatives up to order four was
obtained in [71], which is enough for our calculations because for the model (2) the third derivative
of the Hubble rate is discontinuous and the term responsible for the leading contribution to the
β-Bogoliubov coefficient is contained in W(2)

k . As we show in Appendix A, for the conformally coupled

case, i.e., when ξ = 1/6, the term leading to the main contribution is given by
a6m2

χ

16ω5
k

...
H, and for the

non-conformally coupled case by − 3a4(ξ−1/6)
4ω3

k

...
H. Therefore, using Equation (A11) of Appendix B and

the energy density of the produced particles ρχ(τ) ∼= mχ

2π2a3(τ)

∫ ∞
0 k2|βk|2dk, we will obtain
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ρχ(τ) ∼=


7λ2

589824π

(
ϕ̇kin
mχ

)4 ( akin
a(τ)

)3
for the conformally coupled case

λ2

256π

(
ϕ̇kin
mχ

)4 ( akin
a(τ)

)3
for the nonconformally coupled case,

(33)

where in the nonconformally coupled case we took
∣∣∣ξ − 1

6

∣∣∣ ∼= 1, which is its maximum value because

the WKB approximation is a perturbative one that only holds when m2
χ �

∣∣∣ξ − 1
6

∣∣∣ R and, thus, since at

GUT scales R ∼= 12H2 ∼= 1029 GeV2 and Mpl � mχ ≥ 1015 GeV, we can conclude that
∣∣∣ξ − 1

6

∣∣∣ ≤ 1.

Remark 3. Please note that in the nonconformally coupled case in (A11) we corrected by a factor of 2 the result
obtained in [53].

As we will see in next section dealing with the overproduction of GW, when considering reheating
via gravitational production of superheavy particles, in order to prevent the BBN success we have
to impose the decay of the χ-field to be after the end of kination, i.e., after the equality between the
energy density of the field and the one of the produced particles.

Since the decay is after tend (tend denotes the instant when kination ends), one has to impose
Γ ≤ Hend, where Γ is the decay rate of χ-particles. Taking this into account, one has

H2
end =

2ρϕ,end

3M2
pl

and ρϕ,end = ρϕ,kin

(
akin
aend

)6
= 3H2

kin M2
plΘ

2, (34)

where we used that for a superheavy field the heating efficiency satisfies Θ =
(

akin
aend

)3
. On the other

hand, a simple calculation leads to the result

Θ ∼=


7.61× 10−37

(Mpl
mχ

)4
for the conformally coupled case

2.51× 10−34
(Mpl

mχ

)4
for the nonconformally coupled case.

(35)

Consequently, from Equation (34) one can easily find Hend =
√

2HkinΘ and, thus, one obtains that
the decay rate has to satisfy Γ ≤

√
2HkinΘ, which means that

Γ ≤


3.7× 10−24

(Mpl
mχ

)4
GeV for the conformally coupled case

1.25× 10−21
(Mpl

mχ

)4
GeV for the nonconformally coupled case.

(36)

Since as we already showed that the thermalization is nearly instantaneous, the reheating
temperature (i.e., the temperature of the universe when the thermalized plasma starts to dominate)
will be

TR =

(
30

π2g∗

)1/4
ρ1/4

χ,dec =

(
90

π2g∗

)1/4√
ΓMpl , (37)

where we used that after tend the energy density of the produced particles dominates the energy density
of the inflaton field. Then, we will have that TR ∼= 0.54

√
Γ

Mpl
Mpl and, thus, we have the following

bound for the reheating temperature,
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TR ≤


1.62× 10−3

(Mpl
mχ

)2
GeV for the conformally coupled case

2.99× 10−2
(Mpl

mχ

)2
GeV for the nonconformally coupled case.

(38)

In addition, finally, since we are assuming that the mass of the χ-field is greater than 1015 GeV,
we obtain the following upper bound for the reheating temperature,

TR ≤


9.64 TeV for the conformally coupled case

178 TeV for the nonconformally coupled case.
(39)

We end this subsection noting that these bounds are obtained without taking into account the
production of GWs, which leads to more restrictive bounds as we will see in next section.

4.3. Instant Preheating

In this subsection, we will assume that the bare mass of the χ-field, which we impose to be
conformally coupled to gravity, is zero and we also consider an interaction between the inflaton field ϕ

and the quantum χ-field, whose interacting Lagrangian is given by Lint = − 1
2 g2 ϕ2χ2, where g is a

dimensionless coupling constant. The enhanced symmetry point was chosen ϕ = 0 because at this
point the velocity of the scalar field is nearly maximum as one can see in Figure 1. In this situation
the χ-particles, which have an effective mass mχ,e f f (t) = g|ϕ(τ)|, are created via a mechanism named
instant preheating, which was introduced in [42] in the framework of standard inflation and was applied
for the first time to quintessential inflation in [43].

Remark 4. The reheating via instant preheating is usually used in models with very smooth potentials because
in these models the gravitational production of particles is completely inefficient due to the adiabatic regime
during all the evolution (see for instance [20,44]). On the contrary, the introduction of the interacting Lagrangian
term depicted above breaks down the adiabatic evolution at the beginning of the kination phase, which as we will
see allows the production of enough particles to reheat the universe in a viable way. However, as we will see in
Section 6.2, if we assume that dark matter is also created during the phase transition from inflation to kination,
then this dark matter cannot be created via instant preheating and one needs another mechanism to create it,
which could be the gravitational particle production. Therefore, in this hypothetical situation the potential cannot
be so smooth.

Then, if the reheating is via instant preheating, soon after the beginning of kination the χ-field
acquires an effective mass equal to mχ,e f f = gMpl and the energy density of the χ-field is given by [43]

ρχ(τ) = gMplnχ(τ) = gMplnχ,kin

(
akin
a(τ)

)3
, (40)

where the number density of particles at the beginning of kination is calculated as follows:
Near the beginning of kination, i.e., when ϕ = 0, one has ϕ(τ) ∼= ϕ′kin(τ− τkin) and the frequency

of the k-mode of the field χ is ωk(τ) =
√

k2 + g2a2
kin ϕ′2kin(τ − τkin)2, where the expansion of the

universe is not considered and for this reason we approximated the scale factor by its value at the
beginning of kination. Then, the k-mode of the χ-field satisfies the equation of a time dependent
harmonic oscillator

χ′′k + ω2
k(τ)χk = 0, (41)
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obtaining an over-barrier problem in scattering theory, whose β-Bogoliubov coefficient is related to the
reflexion coefficient via the formula [72–75]

|βk|2 = e−Im
(∫

γ ωk(τ)dτ
)

, (42)

where γ denotes a closed path that wraps around the turning points τ± = τkin ± i k
gakin ϕ′kin

and the

average number of produced particles in the k-mode is given by

nk = |βk|2 = e
− πk2

gakin ϕ′kin . (43)

Thus, the average number density of χ-particles at the beginning of kination is given by

nχ,kin ≡
1

2π3a3
kin

∫ ∞

0
k2nkdk =

g3/2 ϕ̇3/2
kin

8π3 . (44)

Remark 5. Since the effective mass of the χ-field is g|ϕ(τ)|, in order to prevent the vacuum polarization effects
from affecting the evolution of the inflaton field during inflation, one has to impose the effective mass of the
χ-field to be greater than the Hubble rate, which leads to the condition

g|ϕ(τ)| ≥
√

λ

3
Mpl =⇒ g ≥

√
λ

3
Mpl

|ϕ(τ)| , (45)

which always holds if we assume that g ≥
√

λ
3

Mpl
|ϕEND |

(because |ϕ(τ)| is a decreasing function during inflation),
where ϕEND denotes the value of the ϕ-field at the end of inflation. Since inflation ends when the slow-roll

parameter ε is equal to one, one easily gets that ϕEND =
√

3
2 ln(
√

3(2−
√

3))Mpl
∼= −0.94Mpl , which leads

to the constraint for the parameter g of

g ≥ 5.83× 10−6. (46)

These particles are very massive and, in order to avoid a second inflationary epoch due to the
χ-field, one has to assume that the decay is well before the end of the kination regime [43]. Since the
thermalization is nearly instantaneous as we have already seen, in this case the reheating is completed
at the end of kination and, thus, the reheating temperature is calculated as follows:

Using that Hdec
Hkin

= Γ
Hkin

=
(

akin
adec

)3
we have

ρϕ,dec = 3Γ2M2
pl , and ρχ,dec =

g5/2Mpl ϕ̇
3/2
kin

8π3
Γ

Hkin
∼= 1.85× 10−5g5/2M3

plΓ. (47)

On the other hand, from the condition ρχ,dec ≤ ρϕ,dec (the decay is before the end of the kination phase),
one gets

Γ ≥ 6.18× 10−6g5/2Mpl (48)

and, since we showed that g ≥ 5.83× 10−6, we see that the decay rate is greater than 5.07× 10−19Mpl
∼=

1.2 GeV. We note that the evolution of the energy density of the created particles and the background
are respectively

ρχ(t) = ρχ,dec

(
adec
a(t)

)4
, ρϕ(t) = ρϕ,dec

(
adec
a(t)

)6
, (49)
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which tells us that at the time when the kination phase ends, i.e., when ρϕ,end = ρχ,end, one has(
adec
aend

)2
=

ρχ,dec
ρϕ,dec

. Therefore, the reheating temperature takes the form

TR =

(
30

π2g∗

)1/4
ρ1/4

χ,end =

(
30

π2g∗

)1/4
ρ1/4

χ,dec

√
ρχ,dec

ρϕ,dec

∼= 6.7× 10−5g15/8
(Mpl

Γ

)1/4

Mpl
∼= 1.63× 1014g15/8

(Mpl

Γ

)1/4

GeV. (50)

This reheating temperature [i.e., Equation (50)] could be bounded using (48), obtaining

TR ≤ 3.27× 1015g5/4 GeV. (51)

On the other hand, since the decay is after the beginning of kination, we have that Γ ≤ Hkin
∼=

1.44× 10−6Mpl
∼= 3.51× 1012 GeV, getting the bound

TR ≥ 4.7× 1015g15/8 GeV, (52)

which means that in order to preserve the BBN success, a reheating temperature approximately
between 1 MeV and 106 TeV is required and, thus, the constraint g ≤ 2.76× 10−4 has to be satisfied,
which restricts the value of g in the following narrow band,

5.83× 10−6 ≤ g ≤ 2.76× 10−4=⇒ g ∼= 10−5. (53)

Finally, if for example we choose g ∼= 10−5 and Γ ∼= 10−10Mpl , which satisfy the constraint (48),
one obtains a reheating temperature equal to

TR ∼= 2.18× 104 TeV. (54)

5. BBN Constraints Coming from the Production of Gravitational Waves

This section is devoted to present the bounds of the proposed improved version of the quintessential
inflationary model using the Big Bang Nucleosynthesis (BBN), where we explicitly use the BBN
constraints from the logarithmic spectrum of GWs and consequently the BBN bounds from the
overproduction of GWs.

5.1. BBN Constraints from the Logarithmic Spectrum of Gws

It is well-known that during inflation GWs are produced (known as primordial GWs, in short
PGWs) and in the post-inflationary period, i.e., during kination, the logarithmic spectrum of GWs,
namely ΩGW defined as ΩGW ≡ 1

ρc

dρGW (k)
d ln k (where ρGW(k) is the energy density spectrum of the

produced GWs; ρc = 3H2
0 M2

pl , where H0 is the present value of the Hubble parameter, is the so-called

critical density) scales as k2 [66], producing a spike in the spectrum of GWs at high frequencies. Then,
so that GWs do not destabilize the BBN, the following bound must be imposed (see Section 7.1 of [52]),

I ≡ h2
0

∫ kend

kBBN

ΩGW(k)d ln k ≤ 10−5, (55)

where h0 ∼= 0.678 parametrizes the experimental uncertainty to determine the current value of the
Hubble constant and kBBN , kend are the momenta associated with the horizon scale at the BBN and
at the end of inflation respectively. As was shown in [69], the main contribution of the integral (55)
comes from the modes that leave the Hubble radius before the end of the inflationary epoch and finally
re-enter during the kination, that means, for kend ≤ k ≤ kkin, where kend = aendHend and kkin = akin Hkin.



Universe 2020, 6, 87 17 of 35

For these modes one can calculate the logarithmic spectrum of GWs as in [76] (see also [66,77–79]
where the graviton spectra in quintessential models were reassessed, in a model-independent way,
using numerical techniques),

ΩGW(k) = ε̃Ωγh2
GW

(
k

kend

)
ln2
(

k
kkin

)
, (56)

where h2
GW = 1

8π

(
Hkin
Mpl

)2
is the amplitude of the GWs; Ωγ

∼= 2.6× 10−5h−2
0 is the present density

fraction of radiation, and the quantity ε̃, which is approximately equal to 0.05 for the Standard
Model of particle physics, takes into account the variation of massless degrees of freedom between
decoupling and thermalization (see [66,69] for more details). As was derived in [69], the specific form
of the expression above comes from the behavior of the Hankel functions for small arguments. Now,
plugging expression (56) into (55) and disregarding the sub-leading logarithmic terms, one finds

2ε̃h2
0Ωγh2

GW

(
kkin
kend

)
≤ 10−5 =⇒ 10−2

(
Hkin
Mpl

)2 (
kkin
kend

)
≤ 1. (57)

Remark 6. A further bound on primordial gravitational waves is imposed by the CMB constraint on additional
massless degrees of freedom. As GWs with frequencies larger than the corresponding horizon at CMB decoupling
contribute to the radiation density of the Universe, constraints on their total energy density can be phrased
in terms of the effective number of massless neutrino species Ne f f , which is bounded by Ne f f = 3.04± 0.17
(see Section 5 of [80]), namely

∫ kend

kBBN

ΩGW(k)d ln k = 1.95× 10−5(Ne f f − 3.046) =⇒

=⇒
∫ kend

kBBN

ΩGW(k)d ln k ≤ 0.6513× 10−5 at 2σ C.L. (58)

and, thus, turning to the following constraint,

3.33× 10−2

(
Hkin
Mpl

)2 (
kkin
kend

)
≤ 1, (59)

which is practically the same constraint obtained above. Please note that this constraint is more
restrictive than the one obtained with the effective number of massless neutrino species from BBN,
namely Ne f f = 3.28± 0.28 [80], which leads to the same constraint as in Equation (57).

To calculate the ratio kkin/kend, we will have to study the following three different situations:

1. When the produced particles are very light and its energy density decays as a−4. In this case,
as was shown in [66], one will have

kkin
kend

=
1√
2Θ

, (60)

where Θ is once again the heating efficiency introduced previously. Thus, the constraint (57)
eventually leads to

Θ ≥ 7× 10−3

(
Hkin
Mpl

)2

∼= 1.45× 10−14. (61)
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Taking into account that when the reheating is due to the creation of very light particles during
the phase transition the reheating temperature is (see Section 4.1)

TR =

(
3

π2g∗

)1/4√
ΘHkin

∼= 8.12× 1011
√

Θ GeV, (62)

one has the following lower bound,

TR ≥ 97.8 TeV. (63)

Finally, note that we showed that when reheating is due to the gravitational production of light
particles the reheating temperature is TR ∼= 213 TeV, which means that the reheating via the
gravitational production of light particles satisfies the bound (55).

2. When the reheating is due to the production of superheavy particles which decay after the end of

kination, as we showed in Section 4.2, we have that Θ =
(

akin
aend

)3
and Hend =

√
2HkinΘ and, thus,

kkin
kend

=
akinHkin
aendHend

=
Θ1/3
√

2Θ
=

1√
2Θ2/3

. (64)

Therefore, the constraint (57) leads to

Θ2/3 ≥ 7× 10−3

(
Hkin
Mpl

)2

∼= 1.45× 10−14 =⇒ Θ ≥ 1.75× 10−21. (65)

Now, since in Section 4.2 we obtained the following value of the heating efficiency,

Θ ∼=


7.61× 10−37

(Mpl
mχ

)4
for the conformally coupled case

2.51× 10−34
(Mpl

mχ

)4
for the nonconformally coupled case,

(66)

we deduce that in the conformally coupled case the mass of the χ-field has to satisfy mχ ≤
3.52× 1014 GeV, which is incompatible with our assumption mχ ≥ 1015 GeV. This shows that the
gravitational production of superheavy particles conformally coupled to gravity is not viable.
On the contrary, when the χ-field is not conformally coupled to gravity, one gets the bound
mχ ≤ 1.5 × 1015 GeV, which means that the viability of our model requires its mass to be
mχ
∼= 1015 GeV when reheating is due to the gravitational production of superheavy particles

noncoformally coupled to gravity.
3. When the decay happens before the end of kination, as the case of instant reheating, a simple

calculation leads to

kkin
kend

=
1√
2Θ

(
Γ

Hkin

)1/3
(67)

and, consequently, the constraint (57) becomes

Θ
(

Hkin
Γ

)1/3
≥ 7× 10−3

(
Hkin
Mpl

)2

=⇒
(Mpl

Γ

)1/4

≥ 2.42× 10−2

(
Hkin

MplΘ3/5

)5/4

, (68)
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which applied to our model finally leads to another lower bound of the reheating temperature,
which is obtained via instant preheating (see Section 4.3),

TR ≥ 1.97× 105 g15/8

Θ3/4 GeV ∼= 1.84× 106g3/8 GeV, (69)

where we used that in the case of instant preheating one has Θ = g2

2π2 .

Now, since the reheating temperature has to be less than 106 TeV, one gets the bound
g ≤ 1.97× 107, which is less restrictive than the one obtained in Section 4.3, meaning that
when reheating is due to the production of particles via instant preheating, the bound (55) is
clearly overpassed.

5.2. BBN Bounds from the Overproduction of Gws

The success of the BBN demands that [44]

ρGW,R

ρχ,R
≤ 10−2, (70)

where ρGW(t) is the energy density of the GWs produced at the phase transition and both quantities
are evaluated at the reheating time. The value of the energy density of the GWs is ρGW(t) ∼=
10−2H4

kin

(
akin
a(t)

)4
(see for example [4,70]).

Then, when the reheating is via the gravitational production of light particles, we have

ρGW,R

ρχ,R
=

ρGW,kin

ρχ,kin
∼=

1
Ns

, (71)

which as pointed out by Peebles and Vilenkin, results 1
Ns

= 0.25 for a minimal GUT. Therefore, this
bound is never reached, meaning that in this case the overproduction of GWs could affect the BBN
process. However, if one goes beyond a minimal GUT and accepts minimal supersymmetric (SUSY)
theories, then Ns = 104 and, thus, the bound (70) is overpassed.

On the other hand, in the case in which superheavy particles (which could decay in lighter ones
to match with the HBB) are gravitationally created during the phase transition, we firstly see that the
decay can never be before the end of kination because, if so, at the decay time, which occurs when
Hdec = Γ, we would have

ρGW,dec

ρχ,dec
=

ρGW,kin

ρχ,kin

(
Γ

Hkin

)1/3
=

10−2

3

(
Hkin
Mpl

)2
1
Θ

(
Γ

Hkin

)1/3
∼=

∼= 6.91× 10−15 1
Θ

(
Γ

Hkin

)1/3
, (72)

where once again, we used that
(

akin
adec

)3
= Γ

Hkin
. Thus, for the nonconformally coupled case (recall that

the conformally coupled case was disregarded by the bound (55)), we obtain

ρGW,R

ρχ,R
=

ρGW,dec

ρχ,dec
= 2.75× 1019

(
mχ

Mpl

)4 (
Γ

Hkin

)1/3
∼= 2.44× 1021

(
mχ

Mpl

)4(
Γ

Mpl

)1/3

(73)
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and now we use that the decay is before the end of kination, i.e., that ρχ,dec ≤ ρϕ,dec. Taking into

account that ρχ,dec =
λ2

256π

(
ϕ̇kin
mχ

)4 ( akin
adec

)3
and

(
akin
adec

)3
= Γ

Hkin
, one gets the bound

(
Γ

Mpl

)1/3

≥ 7.12× 10−14
(Mpl

mχ

)4/3

(74)

and, thus,

ρGW,R

ρχ,R
≥ 1.74× 108

(
mχ

Mpl

)8/3

. (75)

Therefore, imposing the constraint (70), one gets that mχ ≤ 3.5× 1014 GeV, which contradicts our
assumption that mχ ≥ 1015 GeV.

Hence, the decay must occur after tend and, assuming once again the instantaneous thermalization,
the reheating time will coincide with the decay one. Then, we will have ρχ,dec = 3Γ2M2

pl and, since

Hdec = Hend

(
aend
adec

)3/2
=⇒

(
aend
adec

)3/2
=

Γ√
2HkinΘ

, (76)

we obtain

ρGW,dec = ρGW,end

(
aend
adec

)4
= ρGW,end

(
Γ√

2HkinΘ

)8/3
= 10−2H4

kinΘ−4/3
(

Γ√
2Hkin

)8/3
(77)

and, thus,

ρGW,R

ρχ,R
∼=

ρGW,dec

3Γ2M2
pl

∼= 10−2 H4
kin

3Γ2M2
pl

Θ−4/3
(

Γ√
2Hkin

)8/3
∼= 2.15× 10−11Θ−4/3

(
Γ

Mpl

)2/3

. (78)

Now, we use that for the nonconformally coupled case we already showed that mχ
∼= 1015 GeV

and Θ = 2.51× 10−34
(Mpl

mχ

)4 ∼= 8.90× 10−21 in order to get that

ρGW,R

ρχ,R
∼= 1.17× 1016

(
Γ

Mpl

)2/3

=⇒ Γ
Mpl

≤ 7.90× 10−28, (79)

which reduces the maximum reheating temperature TR ∼= 0.54
√

Γ
Mpl

Mpl to be TR ≤ 37 TeV.

Finally, in the case of instant preheating, when the decay is before the end of kination as we already

explained, using Formula (72) and the fact that Θ = g2

2π2 we arrive at

ρGW,R

ρχ,R
∼= 1.21× 10−11 1

g2

(
Γ

Mpl

)1/3

(80)

and, taking into account the bound Γ
Mpl
≤ 1.44× 10−6, we get

ρGW,R

ρχ,R
≤ 1.36× 10−13 1

g2 . (81)
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Therefore, since at the end of Section 4.3 we already showed that g ≥ 5.83× 10−6, we reach

ρGW,R

ρχ,R
≤ 1.36× 10−13 1

g2 ≤ 4.02× 10−3, (82)

which assures that the constraint (70) is fulfilled when the reheating is via instant preheating.
Summing up, we showed that a viable reheating in the case of gravitational reheating requires the

creation of superheavy nonconformally coupled particles with mass nearly 1015 GeV, which must decay
after the end of kination, obtaining a maximum reheating temperature around 37 TeV. In addition,
when the reheating is via instant preheating, the coupling constant g has to be close to 10−5, obtaining a
reheating temperature greater than 20 TeV (where we used the bound (69)).

6. Abundance of Dark Matter

In this section, we will explore the possibility that the breakdown of the adiabatic regime leads
to the possibility to explain the abundance of dark matter through the gravitational production
of superheavy particles [40,81], although gravitational production of dark matter could also occur
in standard inflation during the oscillations of the inflaton field [82–85] (see also the earlier
papers [9,86,87]).

6.1. Reheating Via Production of Superheavy Nonconformally Coupled to Gravity

As we already showed, the reheating via gravitational production of superheavy particles
conformally coupled is not viable and, when these superheavy particles are nonconformally coupled
to gravity, its mass must be very close to 1015 GeV.

Now we also assume that there is another kind of superheavy particles conformally coupled to
gravity, named Y-particles, which do not decay and only interact gravitationally, and could be the
responsible for the current abundance of the dark matter. In Section 4.2, we saw that the energy density

of the Y-particles will be ρY(τ) ∼= 7λ2

589824π

(
ϕ̇kin
mY

)4 ( akin
a(τ)

)3
, where mY is the mass of the Y-particles, and

the one of the χ-particles evolves before the decay as ρχ(τ) ∼= λ2

256π

(
ϕ̇kin
mχ

)4 ( akin
a(τ)

)3
.

Therefore, since in order to preserve the BBN success the decay of the χ-particles has to be after
the end of kination, as we saw in Section 3.1, the thermalization is instantaneous. Therefore, at the
reheating time we will have

ρY,R

ρχ,R
=

7
2304

(
mχ

mY

)4
. (83)

Now, taking into account that mχ
∼= 1015 GeV and the energy density of the χ-particles must be

greater than the one of the Y-particles so that the universe reheats, we deduce the following bound for
the mass of Y-particles,

mY > (7/2304)1/4 mχ
∼= 0.235mχ. (84)

After reheating the evolution of the corresponding energy densities will be

ρχ(τ) = ρχ,R

(
aR

a(τ)

)4
and ρY(τ) = ρY,R

(
aR

a(τ)

)3
, (85)

meaning that at the matter-radiation equality

ρχ,eq

ρY,eq
=

2304
7

(
mY
mχ

)4 aR
aeq

. (86)
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On the other hand, taking the following observational data at present time (H0 ∼= 1.42× 10−33 eV,
ΩY,0 = 0.262, Ωb,0 = 0.048 and Ωmatt,0 = 0.31, where b denotes the baryonic matter and matt the total
matter (dark+baryonic)), it is satisfied that

ρmatt,eq = ρmatt,0(1 + zeq)
3 ρY,eq = ρY,0(1 + zeq)

3, (87)

where zeq denotes once again the cosmic red-shift at the matter-radiation equality. Then, since ρχ,eq =

ρmatt,eq at the matter-radiation equality, we will have ρχ,eq = ρmatt,0(1 + zeq)3 and, thus,

ρχ,eq

ρY,eq
=

ρmatt,0

ρY,0
=

Ωmatt,0

ΩY,0
, (88)

which combined with (87), leads to the relation

aR
aeq

=
Ωmatt,0

ΩY,0

7
2304

(
mχ

mY

)4
∼= 3.6× 10−3

(
mχ

mY

)4
(89)

and, consequently,

ρY,eq ∼= 4.67× 10−8ρren
Y,R

(
mχ

mY

)12
∼= 1.42× 10−10ρren

χ,R

(
mχ

mY

)16
∼=

1.42π2g∗
30

× 10−10T4
R

(
mχ

mY

)16
∼= 3.15× 10−63T4

R

(Mpl

mY

)16

, (90)

where we used that mχ
∼= 1015 GeV.

Now, taking into account that ρY,eq = 3H2
0 M2

plΩY,0(1 + zeq)3 and choosing 3365 as the value of

the cosmic red-shift at matter-radiation equality, we obtain ρY,eq ∼= 3.598× 10−1 eV4 and, inserting this
expression in (90), one gets the following relation between the reheating temperature and the mass of
dark matter,

TR ∼=
(

3.598
315

)1/4
1016

(
mY
Mpl

)4

eV ∼= 3.27× 106

(
mY
Mpl

)4

GeV. (91)

Then, since the decay is after the end of kination and the thermalization is nearly instantaneous,
the reheating temperature is

TR =

(
90

π2g∗

) 1
4 √

ΓMpl
∼= 1.32× 1018

√
Γ

Mpl
GeV, (92)

which gives us the following relation between the mass of dark matter and the decay rate of the
χ-particles,

mY ∼= 7.97× 102

(
Γ

Mpl

)1/8

Mpl
∼= 1.94× 1021

(
Γ

Mpl

)1/8

GeV. (93)

Finally, we have to use the bounds that must satisfy the decay rate to bound the mass of dark
matter. For example the overproduction of gravitational waves leads to Γ

Mpl
≤ 7.90× 10−28 and, thus,

mY ≤ 7.94× 1017 GeV. In addition, taking into account that the reheating temperature must be greater



Universe 2020, 6, 87 23 of 35

than 1 MeV because the BBN occurs approximately at 1 MeV when the universe is already reheated,
from Equation (92) one gets

Γ
Mpl

≥ 5.74× 10−43 =⇒ mY ≥ 1.02× 1016 GeV, (94)

that is, a viable quintessential inflation model where dark matter is created gravitationally requires the
mass of dark matter to be bounded as follows,

1.02× 1016 GeV ≤ mY ≤ 7.94× 1017 GeV, (95)

and a maximum reheating temperature around 37 TeV.

6.2. Reheating via Instant Preheating

First of all it is important to note that when reheating is via instant preheating, the production of
dark matter cannot be via the same mechanism because the coupling constant g is restricted to be close
to 10−5 and, thus, the energy of the dark matter and the one of the particles that reheat the universe
after its decay would be of the same order, which would forbid a radiation phase, which is essential
for correctly depicting the evolution of our universe.

Therefore, in that case we also have to consider the possibility that dark matter was created
gravitationally. Therefore, we consider once again superheavy Y-particles only conformally coupled to
gravity, which would be the responsible for the present abundance of dark matter in the universe in
our model.

As we already discussed, in order to avoid a second inflationary period it is mandatory that unlike
the superheavy particles created gravitationally studied in the previous section, these χ-particles decay
well before the end of kination. Then, at the matter-radiation equality we will have

ρχ,eq = ρχ,dec

(
adec
aeq

)4
, ρY,eq = ρY,dec

(
adec
aeq

)3
, (96)

and, thus,

ρχ,eq

ρY,eq
=

ρχ,dec

ρY,dec

(
adec
aeq

)
=

gMplnχ,kin

ρY,kin

(
adec
aeq

)
, (97)

where we used that at the decay time ρχ,dec = gMplnχ,kin
Γ

Hkin
and ρY,dec = ρY,kin

Γ
Hkin

.
On the other hand, as we already saw in the previous subsection,

ρχ,eq

ρY,eq
=

Ωmatt,0

ΩY,0
, (98)

meaning that

adec
aeq

=
Ωmatt,0

ΩY,0

ρY,kin

gMplnχ,kin
. (99)

Therefore, we will have

ρY,eq = ρχ,eq
ΩY,0

Ωmatt,0
= gMplnχ,kin

Γ
Hkin

(
Ωmatt,0

ΩY,0

)3
(

ρY,kin

gMplnχ,kin

)4

(100)
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and, recalling that

ρY,kin

gMplnχ,kin
=

7π2λ2

2048
6−3/4g−5/2

H5/2
kin M3/2

pl

m4
Y

and nχ,kin =
63/4(gHkin Mpl)

3/2

8π3 , (101)

we get that

ρY,eq = 1.08× 10−42g−15/2
(Mpl

mY

)16 Γ
Mpl

eV4, (102)

but the energy density of the dark matter at the matter-radiation equality is ρY,eq ∼= 3.598× 10−1 eV4.
Then, we have the following relation between the mass of the dark matter and the decay rate of the
χ-particles

mY ∼= 2.54× 10−3g−15/32

(
Γ

Mpl

)1/16

Mpl
∼= 5.61× 10−1

(
Γ

Mpl

)1/16

Mpl , (103)

where we have used that g ∼= 10−5.
Finally, using that when the reheating is via instant preheating the decay of the χ-particles will be

during the kination phase, we have the bounds obtained in Section 4.3,

6.18× 10−6g5/2 ∼= 1.95× 10−18 ≤ Γ
Mpl

≤ 1.44× 10−6, (104)

which bound the mass of the dark matter to be in the domain

1.07× 1017 GeV ≤ mY ≤ 5.90× 1017 GeV =⇒ mY ∼= 1017 GeV, (105)

that is, the mass of dark matter must be very close to 1017 GeV when reheating is via instant preheating.

7. Other Kind of Potentials

In this section, we would like to check the importance of the breakdown of the adiabatic evolution.
For this reason we will consider a more abrupt phase transition than the one given by the potential (2).
For example, we choose the following potential,

V(ϕ) =

 λM4
pl

(
1− e

α
ϕ

Mpl

)
+ λM4 for ϕ ≤ 0

λ M8

ϕ4+M4 for ϕ ≥ 0,
(106)

where now α denotes a positive dimensionless parameter. Please note that in this case, the inflationary
piece is an Exponential SUSY inflation-type potential.

Here, when the field vanishes the potential has a discontinuity in its first derivative, which was
pointed out in [63,64], and could be obtained introducing a second scalar field experiencing a first
order phase transition. This means, using Raychaudhuri equation, that the second derivative of
the field and, thus, the second derivative of the Hubble rate are discontinuous at the beginning of
kination. Therefore, once again, we have to understand this model as a toy model, which allows us to

perform analytically all the calculations, belonging to the class of potentials satisfying 1
ω4

k (τ)

d3ωk(τ)
dτ3 ≥ 1

near the beginning of kination, where ωk(τ) =
√

k2 + m2
χa2(τ) is the frequency of the k-mode of the

χ-field. Another important thing is that since the phase transition is abrupter than in the previous case,
this means that now the gravitational production will be greater, thus obtaining a greater reheating
temperature than for the potential (2).
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As proved in [67], both potentials lead to equivalent expressions for the spectrum index, number
of e-folds and ratio of tensor to scalar perturbations, that is, the spectral index is ns ∼= 1− 2

N and
the tensor/scalar ratio is given by r = 8

α2 N2 , where the number of e-folds depends on the reheating
temperature as follows,

N ∼= 60− 1
3

ln
(

TR
GeV

)
. (107)

Hence, the computations will be done for the same value of α as used in the previous potential,

namely α =
√

2
3 , for which we obtain the corresponding numerical value of ϕ̇kin = 5.75× 10−6M2

pl .
If we first consider the case in which the reheating takes place via the gravitational production

of light particles, the energy density of produced particles is, once again, given by ρχ(τ) ∼=
10−1H4

kin

(
akin
a(τ)

)4
and, following step by step the reasoning done in Section 4.1, we get that the

reheating temperature becomes greater than before, namely TR ∼= 568 TeV.
With regards to the case of gravitational production of superheavy particles, here we first need to

recalculate the β-Bogoliubov coefficients both when the χ field is conformally coupled to gravity or not.
In this case we only need the first order WKB approximation, i.e., W(1)

k , which is obtained in Appendix
A, and the value of the β-Bogoliubov coefficient (see Formula (A14) of Appendix B), to obtain the
energy density of the produced particles at the beginning of kination

ρχ,kin =


5λ2 ϕ̇2

kin
196608

(Mpl
mχ

)2
for ξ = 1/6

3λ2 ϕ̇2
kin

256π

(Mpl
mχ

)2
for
∣∣∣ξ − 1

6

∣∣∣ ∼= 1.

(108)

Hence, analogously as done before, we arrive at the value of the heating efficiency, namely

Θ ∼=


4.12× 10−25

(Mpl
mχ

)2
for ξ = 1/6

6.04× 10−23
(Mpl

mχ

)2
for
∣∣∣ξ − 1

6

∣∣∣ ∼= 1,

(109)

and the lower bound for the decay rate, when the decay is after the end of kination, is

Γ ≤


3.34× 10−12

(Mpl
mχ

)2
for ξ = 1/6

4.89× 10−10
(Mpl

mχ

)2
for
∣∣∣ξ − 1

6

∣∣∣ ∼= 1,

(110)

which leads for the decay being after the end of kination to a reheating temperature of

TR ≤


1.54× 103 Mpl

mχ
GeV for ξ = 1/6,

1.87× 104 Mpl
mχ

GeV for
∣∣∣ξ − 1

6

∣∣∣ ∼= 1,

(111)

which is respectively 3.77× 103 TeV and 4.56× 104 TeV when restricting mχ ≥ 1015GeV, so we obtain
minimum reheating temperatures considerably greater than the ones obtained for the potential with a
discontinuity in the second derivative. Now, when considering instant preheating, the results are very
similar to the other potential, obtaining as well a very narrow band for g corresponding to g ∼= 10−5.

Then, by taking into account the BBN constraints, we first consider the ones coming from the
logarithmic spectrum of GW. When the reheating is produced via the production of light particles,
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we get the constraint TR ≥ 260 TeV, which is fulfilled by the computed value TR ∼= 568 TeV. With regards
to the production of superheavy particles decaying after the end of kination we obtain the bounds mχ ≤
1.80× 1016 GeV for the conformally coupled case and mχ ≤ 2.17× 1017 GeV when non-conformally
coupled. Please note that differently from the other potential, both constraints are compatible with
mχ ≥ 1015 GeV.

As we will immediately see, when dealing with the overproduction of GWs, for this potential
the decay of superheavy particles is possible before the end of kination. In this case, the reheating
temperature is given by (50), namely

TR =

(
30

π2g∗

)1/4
ρ1/4

χ,end =

(
30

π2g∗

)1/4
ρ1/4

χ,dec

√
ρχ,dec

ρϕ,dec
, (112)

with

ρχ,dec = ρχ,kin
Γ

Hkin
and ρϕ,dec = 3Γ2M2

pl , (113)

which leads to the following reheating temperature.

TR ∼=


4.07× 10−5

(Mpl
Γ

)1/4 (Mpl
mχ

)3/2
GeV for ξ = 1/6

1.72× 10−3
(Mpl

Γ

)1/4 (Mpl
mχ

)3/2
GeV for

∣∣∣ξ − 1
6

∣∣∣ ∼= 1,

. (114)

Now, applying the bound (68), namely

(Mpl

Γ

)1/4

≥ 2.42× 10−2

(
Hkin

MplΘ3/5

)5/4

(115)

with

Θ ∼=


4.12× 10−25

(Mpl
mχ

)2
for ξ = 1/6

6.04× 10−23
(Mpl

mχ

)2
for
∣∣∣ξ − 1

6

∣∣∣ ∼= 1,

(116)

the term
(Mpl

mχ

)3/2
appearing in the expressions of TR and Θ cancels and we get the following lower

bound for the reheating temperature,

TR ≥
{

176 TeV for ξ = 1/6

176 TeV for
∣∣∣ξ − 1

6

∣∣∣ ∼= 1.
(117)

As for the case of instant preheating. we get a minimum reheating temperature around 55 TeV.
Thus, for this kind of potentials, if the particles decay before the end of kination the reheating via
gravitational production of superheavy particles could lead to a reheating temperature greater than
the one obtained when the reheating is via instant preheating.

Regarding the constraints from the overproduction of GW, reheating via production of light
particles is also forbidden and, in the case of the production of superheavy particles decaying before
the end of kination, we obtain that
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(
Γ

Mpl

)1/3

≥


9.89× 10−10

(Mpl
mχ

)2/3
for ξ = 1/6

5.21× 10−10
(Mpl

mχ

)2/3
for
∣∣∣ξ − 1

6

∣∣∣ ∼= 1,

(118)

which restricts mχ to be mχ ≤ 9.94 × 1014 GeV and mχ ≤ 1.2× 1016 GeV for the conformal and
non-conformal cases respectively. Hence, both cases are compatible with the minimum mass for
mχ. In addition, when superheavy particles decay after the end of kination, the upper bound for the
reheating temperature is

TR ≤
{

6.26× 103 TeV for ξ = 1/6

9.20× 105 TeV for
∣∣∣ξ − 1

6

∣∣∣ ∼= 1
, (119)

which does not reduce the bounds in (111) for mχ ≥ 1015 GeV.
Therefore, the constraints coming from the production of GWs lead to completely different results

depending on how abrupt the phase transition is. For instance, for the first potential reheating via
gravitational production of superheavy conformally coupled particles is forbidden, which does not
happen with the second potential if these particles decay after the end of kination. In addition, for the
second potential the decay of superheavy particles, both conformally and non-conformally coupled to
gravity, could be produced before or after the end of the reheating, obtaining a very efficient reheating
mechanism which could lead to reheating temperatures greater than the one obtained using instant
preheating as a reheating mechanism.

Dealing with the present abundance of dark matter, we are going to consider two types of
particles: χ-particles, which can be now both conformally and non-conformally coupled to gravity,
and Y-particles, conformally coupled and responsible for the abundance of dark matter. In contrast
with the former potential, the decay of χ-particles can be both before and after the end of kination.
If we first proceed analogously as in Section 6.1, i.e., by considering that the decay is produced after
the end of kination when χ-particles are non-conformally coupled, we obtain that

ρY,eq ∼= 1.25× 10−7T4
R

(
mχ

mY

)8
, (120)

reaching finally the following bounds,

156 ≤ mY
mχ
≤ 1.5× 108, (121)

which result in the following range of values for the dark matter mass, namely 1.56× 1017 GeV ≤
mY ≤ 2.44× 1018 GeV, taking into account that 1015 GeV ≤ mχ ≤ 2.17× 1017 GeV and that mY ≤ Mpl .
When χ-particles are conformally coupled the obtained bounds are 1.84× 1018 ≤ mY ≤ 2.44× 1018,
hence mY . Mpl .

On the other hand, if the decay is produced before the end of kination and considering first
χ-particles non-conformally coupled, we have that

ρY,eq = ρY,dec

(
adec
aeq

)3
∼= ρY,dec(8.07× 10−3)3

(
mχ

mY

)6
∼=

∼= ρχ,dec
ΩY,0

Ωmatt,0
(8.07× 10−3)4

(
mχ

mY

)8
=

=
3λ2 ϕ̇2

kinΩY,0Γ
256πΩmatt,0Hkin

(Mpl

mχ

)2

(8.07× 10−3)4
(

mχ

mY

)8
, (122)
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where we used that adec
aeq

=
Ωmatt,0

ΩY,0

ρY,dec
ρχ,dec

∼= 8.07× 10−3
(

mχ

mY

)2
, given that ρa,dec = ρa,kin

Γ
Hkin

for a = χ, Y.
Now, using Equation (68) and Equation (118), we find that bounds for the dark matter mass are
considerably over the Planck’s mass. The same happens when χ-particles are conformally coupled.
Hence, the presence of dark matter gravitationally created during the phase transition from the end
of inflation to the beginning of kination cannot be explained with a reheating via the gravitational
creation of superheavy particles decaying before the end of kination for this potential.

Finally, when the reheating is produced via instant preheating, the energy density of the dark
matter particles at the matter-radiation equality results

ρY,eq ∼= 3.14× 105g−15/2
(Mpl

mY

)8 Γ
Mpl

eV4, (123)

leading, as well, to bounds for mY over the Planck’s mass. Therefore, instant preheating cannot either
be used for this potential in order to explain the presence of gravitationally produced dark matter.

8. Concluding Remarks

In the present work, we studied with all details the reheating of the universe via gravitational
particle production and via instant preheating in quintessential inflation, taking into account the bound
imposed by the production of GWs during the phase transition between the end of inflation and the
beginning of kination.

To perform analytically all the calculations, we considered a toy model inspired in the well-known
Peebles-Vilenkin model in which the discontinuity occurs in the second derivative of the potential.

Our study shows that the reheating via gravitational production of light particles is forbidden
due to the overproduction of GWs, i.e., the bounds imposed to prevent the success of the BBN are
not overpassed. A similar situation occurs when the reheating is via the gravitational production of
superheavy particles conformally coupled to gravity, in this case the bound imposed by the spectrum of
the GWs is not accomplished. Therefore, only two situations are acceptable to have a viable reheating
that does not affect the success of the BBN:

1. Reheating via graviational particle production of superheavy particles not conformally coupled
to gravity.

2. Reheating via instant preheating.

However, several restrictions must be imposed to the parameters appearing in the theory: In the
case of gravitational production of superheavy particles nonconformally coupled to gravity, the decay
of theses particles in lighter ones in order to obtain a relativistic plasma has to be after the end of
kination obtaining a maximum reheating temperature around 37 TeV. In addition, the mass of these
superheavy particles has to be approximately equal to 1015 GeV.

On the contrary, when reheating is via instant preheating, the produced particles have to decay
before the end of the kination phase, obtaining a minimum temperature around 10 TeV. Moreover,
the dimensionless coupling constant between the inflaton field and these particles has to be of the
order of 10−5.

On the other hand, when one assumes that dark matter could be created via gravitational particle
production of conformally coupled particles during the phase transition from the end of inflation to
the beginning of kination, its mass has to range between 1016 GeV and 1018 GeV, when the reheating is
via gravitational production of superheavy particles nonconformally coupled to gravity. In addition,
when the reheating is via instant preheating the mass of the dark matter would only be of the order of
1017 GeV.

In last section, we have considered another toy model inspired in the Peebles-Vilenkin model in
which the discontinuity occurs in the first derivative of the potential and we have shown the differences
with respect to the first potential considered, i.e., with the one with the discontinuity in the second
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derivative of the potential. Basically, in that case, if the reheating is via gravitational production of
superheavy particles the reheating temperature is considerably increased being able to be even greater
than the one obtained when the reheating mechanism is via the instant preheating.

Moreover, the constraints coming from the production of GWs allow in this case the decay of
superheavy particles before and after the end of kination. However, if one assumes that the abundance
of dark matter is due to its gravitational production during the phase transition, then neither the
reheating via gravitational production of superheavy particles decaying before the end of kination nor
via instant preheating could be able to explain this abundance.

Finally, we show the allowed cases with the corresponding values of the parameters in the
following table, where c.c. and n.c. stand for χ-particles being respectively conformally and
non-conformally coupled to gravity, V1(ϕ) and V2(ϕ) refer to the two potentials that were considered,
and a line was drawn where we have achieved no constraints because the corresponding process was
proved as forbidden.

Table 1. Constraints for TR, mχ and mY for the different potentials and reheating mechanisms.

Reheating VIA
Gravitational Production of

Light Superheavy Particles Decaying Instant
Particles after Kination Ends before Kination Ends Preheating

c.c. n.c. c.c. n.c. g ∼= 10−5

V1(ϕ) TR (TeV) . 37 & 20
mχ (GeV) ∼= 1015

mY (GeV) 1016–1018 ∼= 1017

V2(ϕ) TR (TeV) . 3.8× 103 . 4.6× 104 & 180 & 180 & 55
mχ (GeV) 1015–1016 1015–1017 ∼= 1015 1015 − 1016

mY (GeV) ∼= 1018 1017 − 1018
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Appendix A. The WKB Approximation in Cosmology

For a non-conformally coupled with gravity χ-field, its k-mode satisfies the equation [60]

χ′′k + Ω2
kχk = 0, (A1)

where Ω2
k = ω2

k +
(

ξ − 1
6

)
a2R, being ξ the coupling constant to gravity, R = 6(Ḣ + 2H2) the Ricci

scalar and ωk =
√

k2 + a2m2
χ the time dependent frequency of the k-mode. The solution of this

equation for a positive frequency mode is χk =
1√
2Wk

e−i
∫ τ Wk(η)dη , where Wk satisfies the equation [71]

W2
k = Ω2

k −
1
2

(
W ′′k
Wk
− 3

2
W ′2k
W2

k

)
. (A2)

Then, the WKB solution is obtained solving iteratively this equation, taking as a zero-order WKB
solution W(0)

k = Ωk.
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The first iteration W(1)
k leads to

W(1)
k
∼= ωk +

1
2ωk

(ξ − 1/6)a2R− 1
4ωk

(
ω′′k
ωk
− 3

2
(ω′k)

2

ω2
k

)
, (A3)

and the second iteration W(2)
k including temporal derivatives up to order four was obtained in [71].

The result of this calculation in terms of the cosmic time is given by

W(2)
k = ωk +

(ξ − 1/6)a2

ωk
(4H2 + 3Ḣ)−

m2
χa4

4ω3
k
(Ḣ + 3H2) +

5m2
χa6

8ω5
k

H2

+
m2

χa6

16ω5
k
(

...
H + 15ḦH + 10Ḣ2 + 86ḢH2 + 60H4)

−
m4

χa8

32ω7
k
(28ḦH + 19Ḣ2 + 394ḢH2 + 507H4)

+
221m6

χa10

32ω9
k

(Ḣ + 3H2)H2 −
1105m8

χa12

128ω11
k

H4

− (ξ − 1/6)a4

4ω3
k

(117H4 + 198H2Ḣ + 54Ḣ2 + 27ḦH + 3
...
H)

+(ξ − 1/6)
m2

χa6

8ω5
k
(24H4 + 87H2Ḣ + 3ḦH + 18Ḣ2). (A4)

As a consequence, for the conformally coupled case, i.e., when ξ = 1/6, the term leading to the

main contribution is given by
a6m2

χ

16ω5
k

...
H, and for the nonconformally coupled case by − 3a4(ξ−1/6)

4ω3
k

...
H.

Appendix B. Calculation of the β-Bogoliubov Coefficient

For the potential (2), we use the second iteration of the WKB solution and we write χ
(2)
x,WKB =

1√
2W(2)

k

e−i
∫ τ W(2)

k (η)dη . Then, before the phase transition the positive frequency mode evolves

approximately as χ
(2)
x,WKB but after the abrupt phase transition the positive and negative frequencies

mix and the mode evolves approximately as αkχ
(2)
x,WKB + βk(χ

(2)
x,WKB)

∗. By matching both expressions
at the beginning of the kination phase, which we assumed to be at ϕ = 0 as we already explained
(see also Figure 1), we obtain

βk =
W[χ

(2)
x,WKB(τ

+
kin); χ

(2)
x,WKB(τ

−
kin)]

W[χ
(2)
x,WKB(τ

+
kin); (χ

(2)
x,WKB)

∗(τ+
kin)]

∼= −iW[χ
(2)
x,WKB(τ

+
kin); χ

(2)
x,WKB(τ

−
kin)], (A5)

where τkin denotes the beginning of kination, W[ f ; g] = f g′ − g f ′ is the wronskian of the functions f
and g, and f (τ±kin) = lim

τ→τ±kin

f (τ) denotes the values of f immediately before and after the beginning

of kination.
Now a simple calculation shows that

|βk |2 =
1

4W(2)
k (τ+

kin)W
(2)
k (τ−kin)

(W(2)
k (τ+

kin)−W(2)
k (τ−kin))

2 +
1
4

(
W(2)′

k (τ+
kin)

W(2)
k (τ+

kin)
−

W(2)′
k (τ−kin)

W(2)
k (τ−kin)

)2 , (A6)
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which for our model can be approximated by

|βk|2 =
1
4
(W(2)

k (τ+
kin)−W(2)

k (τ−kin))
2

W(2)
k (τ+

kin)W
(2)
k (τ−kin)

∼=
(W(2)

k (τ+
kin)−W(2)

k (τ−kin))
2

4ω2
k,kin

, (A7)

where we introduced the notation ωk,kin ≡ ωk(τkin).

Then, using the leading terms of W(2)
k , obtained in the Appendix A, we reach

|βk|2 ∼=


m4

χa12
kin

1024ω12
k,kin

(
...
H(τ+

kin)−
...
H(τ−kin))

2 for the conformally coupled case

9a8
kin(ξ−1/6)2

64ω8
k,kin

(
...
H(τ+

kin)−
...
H(τ−kin))

2 for the nonconformally coupled case,

(A8)

and, in order to obtain the value of
...
H(τ+

kin)−
...
H(τ−kin), first of all we take the time derivative of the

conservation equation, namely
...
ϕ + 3Ḣ ϕ̇ + 3H ϕ̈ + Vϕϕ ϕ̇ = 0, which leads to

...
ϕ(τ+

kin)−
...
ϕ(τ−kin) = −ϕ̇kin(Vϕϕ(0+)−Vϕϕ(0−)), (A9)

where we used that up to the second derivative the scalar field ϕ is continuous at the beginning
of kination.

On the other hand, from Raychaudhuri equation
...
H = − 1

M2
pl
(ϕ̈2 + ϕ̇

...
ϕ), we get

...
H(τ+

kin)−
...
H(τ−kin) =

ϕ̇2
kin

M2
pl
(Vϕϕ(0+)−Vϕϕ(0−)) = −

4λ

3
ϕ̇2

kin, (A10)

which finally leads to [53]

|βk|2 ∼=


m4

χλ2a12
kin ϕ̇4

kin
576ω12

k (τkin)
for the conformally coupled case

λ2a8
kin ϕ̇4

kin
4ω8

k (τkin)
(ξ − 1/6)2 for the nonconformally coupled case.

(A11)

Finally, dealing with the potential (106), we only have to use the first order WKB solution, and
then Equation (A6), changing W(2)

k by W(1)
k , can be approximated by

|βk|2 ∼=
1

16ω4
k,kin

(
W(1)′

k (τ+
kin)−W(1)′

k (τ−kin)
)2

. (A12)

Now, taking into account that for the conformally coupled case the leading term of W(1)
k is− 1

4ωk

ω′′k
ωk

and for the nonconformally coupled one is 1
2ωk

(ξ − 1/6)a2R (see Formula (A3)), after some algebra
we obtain

|βk|2 ∼=


m4

χa10
kin

256ω10
k,kin

(Ḧ(τ−kin)− Ḧ(τ+
kin))

2 for ξ = 1/6,

9a6
kin

16ω6
k,kin

(Ḧ(τ−kin)− Ḧ(τ+
kin))

2 for |ξ − 1
6 | ∼= 1,

(A13)

where from conservation and Raychaudhuri equations, we have that (Ḧ(τ−kin) − Ḧ(τ+
kin))

2 =

ϕ̇2
kin

(
Vϕ(0−)

M2
pl

)2
= 2λ2

3 ϕ̇2
kin M2

pl and, thus,
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|βk|2 ∼=


m4

χa10
kinλ2

384ω10
k,kin

ϕ̇2
kin M2

pl for ξ = 1/6,

3a6
kinλ2

8ω6
k,kin

ϕ̇2
kin M2

pl for |ξ − 1
6 | ∼= 1.

(A14)
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