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Abstract: The current work performs a numerical study on periodic motions of the Hill three-body
problem. In particular, by computing the stability of its basic planar families we determine vertical
self-resonant (VSR) periodic orbits at which families of three-dimensional periodic orbits bifurcate.
It is found that each VSR orbit generates two such families where the multiplicity and symmetry
of their member orbits depend on certain property characteristics of the corresponding VSR orbit’s
stability. We trace twenty four bifurcated families which are computed and continued up to their
natural termination forming thus a manifold of three-dimensional solutions. These solutions are
of special importance in the Sun-Earth-Satellite system since they may serve as reference orbits for
observations or space mission design.
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1. Introduction

It is well-known that the restricted three-body problem may serve as a basic dynamical model
for the study of many real systems in the field of Celestial Mechanics. One of its benefits, in this field,
is that it may be used for several applications in our Solar system and especially in the Earth-Moon
one (see [1,2], among others) while another asset is that it may be utilized for revealing the orbital
dynamics of a natural/artificial satellite or an asteroid (e.g., [3–5]). In addition, it may be adopted for
the consideration of the dynamical stability of an inner terrestrial planet which is in mean-motion
resonance with an outer giant planet [6]. For the study of the restricted three-body problem, several
authors concentrated their work on periodic orbits because they play a key role on the exploration of
its dynamics due to their immediate connection with the characterization of nearby orbits (see [7–11]
and references therein). Additionally, stable periodic orbits are important in planetary dynamics
since they can host real planetary systems [12]. These orbits are also strongly connected with the
librational motion either in two or three-dimensions. For example, Voyatzis et al. [13] determined
resonant families of three-dimensional periodic orbits related to the dynamics of the Sun-Neptune and
a trans-Neptunian object system in order to study the librations and the long-term evolution of orbits
near them. Furthermore, several modifications of the restricted problem have been proposed in the past
so as to make it more realistic to certain systems of Celestial Mechanics. Such modifications include
the radiation and oblateness effects of the primaries [14–17] or the incorporation of some relativistic
terms [18,19], while various works involve also a larger number for the primary bodies [20,21].

A special variant of the classical restricted three-body problem is the Hill one which was firstly
proposed by Hill [22] for the study of the moon’s motion. In this limiting case of the restricted problem
the massless body is attracted by two primary bodies one of which is extremely larger from the second
one, e.g., the Sun and the Earth. In the rotating coordinate system, the smaller primary is located at
the origin while the positive Ox-axis points to the larger one which is always at infinite distance from
the secondary. For this problem, Hénon [23] explored numerically the network of families of simple
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planar periodic orbits together with their horizontal stability properties while the same author also
studied the vertical stability of these families [24]. The three-dimensional periodic solutions emanating
from the two collinear equilibrium points of the Hill’s problem were determined by Zagouras and
Markellos [25]. For the same problem, Hénon [26] searched for families of multiple planar periodic
orbits while low-energy escaping trajectories were numerically investigated by means of the Poincaré
maps by Villac and Scheeres [27].

In the framework of the Hill’s problem where the radiation of the larger primary is also taken into
account Kanavos et al. [28] studied its equilibrium points and produced a general map of symmetric
periodic orbits in the space of initial conditions while Papadakis [29] presented families of symmetric
periodic orbits in the case of regularized variables through the Levi-Civita coordinate transformation.
In addition, for the same modified model, de Bustos et al. [30] worked on the bifurcation analysis of
the main families of simple periodic orbits. Also, Markellos et al. [31] introduced the version of Hill’s
problem with oblateness for which they determined the Hill stability of direct orbits around the smaller
primary while the network of families of simple and multiple planar periodic orbits was computed by
Perdiou et al. [32] and Perdiou [33], respectively. For the same problem, Papadakis [34] determined
the map of the basic families using the regularized equations of motion. In the case where both the
oblateness and radiation are incorporated in the model Perdiou et al. [35] presented the chart of the
basic planar families together with their stability giving special attention to the stability of retrograde
satellites whilst by the use of several numerical techniques Zotos [36] revealed the fractal basins of
attraction associated to the collinear equilibria in the complex plane .

Furthermore, in the framework of the classical spatial Hill three-body problem, Batkhin and
Batkhina [37] investigated the families of spatial periodic orbits which bifurcate from the Vertical
Critical (VC) orbits of the basic families of simple planar periodic solutions and formed a network
that connect those planar orbits with the determined spatial ones. In the same vein, our aim here
is to numerically explore all the families of three-dimensional periodic orbits (up to their natural
termination), which emerge through their bifurcations from the Vertical Self-Resonant (VSR) orbits of
the previous mentioned basic planar families. In all the considered cases, we find that each VSR orbit
gives rise to two branches of families of three-dimensional periodic orbits whose type of symmetry
depends on their own multiplicity. In particular, if the multiplicity of the detected spatial orbits is odd,
the member orbits of the one branch is of axisymmetric type while the members of the second one
possess the plane symmetric type. In the case where the spotted spatial orbits have been ascertained
to have even multiplicity, both the generated branches are constituted by doubly symmetric periodic
orbits. This pattern was firstly observed by Robin and Markellos [38] for the vertical branches of the
basic family of retrograde satellites in the circular restricted three-body problem. Our results focus to
the VSR orbits which give rise to three-dimensional periodic orbits with multiplicity three and four
which means that the generated spatial families consist of orbits having the triple or quadruple the
period comparably to that of the VSR orbit, respectively. Twenty four such families are found, six of
which consist of axisymmetric orbits, six of plane symmetric ones and twelve families are composed
by doubly symmetric periodic orbits.

Our work is structured as follows. In Section 2, we recall the equations of motion of the Hill’s
problem and compute the families of simple planar symmetric periodic orbits together with their
stability properties. Specifically, we determine accurately the VSR periodic orbits at which families of
three-dimensional periodic orbits bifurcate where their orbits have the triple or quadruple multiplicity
(period) with respect to the multiplicity of the detected planar VSR orbits. In Section 3, the families of
spatial periodic orbits that bifurcate from the planar VSR orbits are computed and presented. Finally,
in Section 4, we summarize our work and conclude.

2. Planar Motion

In this section we study the simple planar symmetric periodic orbits, together with their stability
properties, of the planar Hill problem. In particular, we recompute the network of its basic families,
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as it was determined by [23], in order to detect and determine accurately the planar symmetric
periodic orbits at which families of three-dimensional periodic orbits bifurcate having period up to the
quadruple of that of the planar orbits.

2.1. Hill’s Equations of Motion

The equations of motion of the Hill’s problem are (for a detailed description of the problem we
may refer here to the famous book by Szebehely [39]):

ẍ− 2ẏ =
∂W
∂x

= 3x− x
r3 , ÿ + 2ẋ =

∂W
∂y

= − y
r3 , z̈ =

∂W
∂z

= −z− z
r3 , (1)

where r =
√

x2 + y2 + z2 is the distance of the particle from the secondary while the relevant potential
function has the form:

W =
3x2

2
− z2

2
+

1
r

. (2)

The problem possesses the following integral:

2W − (ẋ2 + ẏ2 + ż2) = Γ, (3)

where Γ is the Jacobi-like constant related to the Jacobi constant C of the restricted three–body problem
by the relation C = 3 + µ2/3Γ. We recall that both Ox, Oy are axes of symmetry and that two collinear
equilibrium points exist; L1 which is located on the negative axis and L2 on the positive one.

2.2. Vertical Stability

To study the stability of motion of the massless body we introduce the new variables x1 = x,
x2 = y, x3 = z, x4 = ẋ, x5 = ẏ, x6 = ż and write Equation (1) in the following form:

ẋi = fi(x1, x2, x3, x4, x5, x6), i = 1, 2, . . . 6, (4)

where
f1 = x4, f2 = x5, f3 = x6, f4 = 2x5 + 3x1 −

x1

(x2
1 + x2

2 + x2
3)

3/2
,

f5 = −2x4 −
x2

(x2
1 + x2

2 + x2
3)

3/2
, f6 = −x3 −

x3

(x2
1 + x2

2 + x2
3)

3/2
.

(5)

The coordinates of the third body, along any solution, depend uniquely on the initial conditions and
time, namely xi = (x01, x02, x03, x04, x05, x06; t), i = 1, 2, . . . , 6, and their partial derivatives with respect
to the initial conditions fulfill the variational equations:

d
dt

∂xi
∂x0j

=
6

∑
k=1

∂ fi
∂xk

∂xk
∂x0j

, i, j = 1, 2, . . . , 6, (6)

or equivalently by using matrix notation:

dV
dt

= PV, (7)

with
P = P(x) =

∂ fi
∂xj

, and V = V(x0; t) =
∂xi
∂x0j

, i, j = 1, 2, . . . , 6, (8)
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while the involved partial derivatives in P can be easily computed. The variational equations take the
following special form:

v̇ij = v(i+3)j, i = 1, 2, 3, j = 1, 2, . . . , 6,

v̇ij = fi1v1j + fi2v2j + fi3v3j + fi4v4j + fi5v5j + fi6v6j, i = 4, 5, 6, j = 1, . . . , 6,
(9)

where we have abbreviated vij = ∂xi/∂x0j and fij = ∂ fi/∂x0j.
Of importance here are the variations which describe the stability of planar periodic orbits when

small perturbations perpendicular to the plane of motion occur. These variations correspond to
the vertical stability indices as they were defined by [40] and provide information for families of
three-dimensional periodic orbits bifurcating from the plane. Explicitly, the corresponding indices are:

av =
∂x3

∂x03
= v33, bv =

∂x3

∂x06
= v36, cv =

∂x6

∂x03
= v63, dv =

∂x6

∂x06
= v66, (10)

and stability occurs when |sv| < 1, where sv = (av + dv)/2, while for planar symmetric periodic orbits
it holds av = dv and the latter condition reduces to:

− 1 < av < 1. (11)

According to Hénon [40] when av = 1 the basic family of planar periodic orbits bifurcates with a
family of three-dimensional periodic orbits of the same period while the case av = −1 matches to a
corresponding period doubling bifurcation, i.e., the three-dimensional periodic orbits of the bifurcating
family have the double period w.r.t. that of the planar periodic orbits of the basic one. The respective
planar periodic orbits are known as VC. Condition (11) also indicates the existence of higher order
resonances, i.e., families of three-dimensional periodic orbits are generated from the plane whose
orbits have multiple period with respect to the period of the planar periodic orbits of the original
family. These are the VSR orbits and correspond to a value of the vertical stability index:

av = cos(2π
p
q
), (12)

where p, q ∈ Z with p < q and p/q irreducible fraction while q is the multiplicity of the bifurcating
spatial family with q 6= 1, 2 since these values correspond to the critical cases described above. So, if T
is the period of the VSR orbit, the bifurcating spatial periodic orbit will have the period qT.

2.3. Families of Planar Periodic Orbits

In order to detect appropriate initial conditions for the accurate computation of the basic families
of the Hill’s problem we use the grid search method as it was described by Markellos et al. [41].
This method is appropriate for the detection of planar symmetric periodic orbits and has been used
by several authors in order to sketch the skeleton of the basic families of periodic orbits in several
dynamical models of two degrees of freedom (see, e.g., [42–44], among others).

For its application, we briefly recall that, we scan the plane of initial conditions (Γ0, x0) so as to
obtain a thin grid. Since we look for symmetric periodic orbits each node possesses initial conditions
of the form (x, y, z, ẋ, ẏ, ż) = (x0, 0, 0, 0, ẏ0, 0), where ẏ0 (>0) is determined from the Jacobi Equation (3)
using the specific values (Γ0, x0) of the node. The equations of motion (1) are integrated numerically
up to the k-th intersection of the orbit with the Ox-axis. Then, we move to the next node of the grid
which corresponds, e.g., to the same value of the Jacobi constant Γ0 and a slightly different value
x0 + δx0 of x, and using these new initial conditions we integrate the equations of motion again up
to the k-th intersection of this orbit with the Ox-axis and look for a change of sign of the value of ẋ
at this intersection. If such a change is found a symmetric periodic orbit, having 2k− intersections in
total with the Ox-axis, has been detected with an initial value of x between the two values of x0 and
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x0 + δx0 for which the change of sign was spotted. The second perpendicular crossing of an orbit with
the Ox-axis ensures that the orbit will be a closed curve in the phase space according to the mirror
theorem [45]. The same procedure is followed for all nodes of the grid.

The resulting, by the grid search technique, points on the (Γ0, x0) plane correspond to roughly
determined initial conditions which are then used for the accurate computation of planar symmetric
periodic orbits. According to the above mentioned discussion, a symmetric orbit will be periodic if at
the half number k− of its total crossings 2k− with the Ox-axis (or equivalently at the half period) it
fulfills the following periodicity condition:

ẋcut(x0, 0, 0, 0, ẏ0, 0) = 0. (13)

If this condition is not satisfied we seek appropriate corrections δx0 and δẏ0 of the initial conditions so
as to fulfill it. Linearizing (13) in the corrections we obtain:

∂ẋcut

∂x0
δx0 +

∂ẋcut

∂ẏ0
δẏ0 = −ẋcut, (14)

from which by fixing one of them, e.g., δx0, we obtain the remaining one in the form:

δẏ0 = − ẋcut

∂ẋcut/∂ẏ0
. (15)

When a symmetric periodic orbit has been determined with initial conditions (x0, 0, 0, 0, ẏ0, 0),
this means that the RHS of (14) is equal to zero, we modify ∆x0 to an arbitrarily chosen small value ε,
e.g., ε = 0.5× 10−3, in (14) and get in this way the prediction for a next periodic orbit in the form:

∆ẏ0 = −∂ẋcut/∂x0

∂ẋcut/∂ẏ0
ε, (16)

where now in expansion (14) we have set δx0 ≡ ∆x0 and δẏ0 ≡ ∆ẏ0 to distinguish between prediction
and correction steps. The iterative application of the above procedure represents the predictor-corrector
algorithm for the accurate computation of families of planar symmetric periodic orbits.

By applying the grid search and the aforementioned predictor-corrector techniques we have
computed the basic families of planar symmetric periodic orbits of the classical Hill problem.
The resulting family characteristics in the plane of initial conditions (Γ0, x0) are shown in Figure 1.
We note here that, for the Hill problem the respective families have been firstly computed and presented
by Hénon [23] but we recompute them here in order to detect appropriate initial conditions for the
VSR orbits (which had not been determined in that paper) which will be used as seed for their accurate
computation. Also, for each computed family we keep the name which had been given by Hénon.

We now deal with the VC as well as the VSR orbits at which families of three-dimensional periodic
orbits bifurcate. Our aim is to compute them with a predetermined accuracy, e.g., 0.5× 10−8, and use
them as appropriate starting points for the determination of the corresponding bifurcating families of
spatial periodic orbits. So, at the half number of the total crossings of a planar symmetric orbit with
the Ox-axis, i.e., at its half period t = T/2, the orbit will be considered to be periodic and VC or VSR if
it simultaneously fulfills the following conditions:

ẋcut(x0, 0, 0, 0, ẏ0, 0) = 0, av(x0, 0, 0, 0, ẏ0, 0) = d, (17)

where d may take the values −1,−1/2, 0 and 1, which correspond to the specific bifurcations of the
family of planar periodic orbits with a family of spatial periodic orbits which initially have the double,
triple, quadruple or the same period with that of the planar one, respectively. These particular values
of d are obtained directly from the relevant relations (11) and (12). If the above conditions do not
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hold we look for appropriate corrections δx0 and δẏ0 of the initial conditions such that to fulfill (17).
Expanding the arising equations in Taylor series and keeping only the linear terms we get:

∂ẋcut

∂x0
δx0 +

∂ẋcut

∂ẏ0
δẏ0 = −ẋcut,

∂av

∂x0
δx0 +

∂av

∂ẏ0
δẏ0 = d− av, (18)

from which we obtain the corrector system.
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Figure 1. The basic families of planar periodic orbits of the Hill problem as they were determined
in [23]—reproduction here. Forbidden regions to motion are shown with light grey color while red
dashed line represents the position of the smaller primary body. The respective families have been
recomputed here in order their VSR orbits to be calculated.

In Figure 2 we present the vertical stability diagrams of all the computed families. In particular,
in Figure 2a we show the vertical stability of the Lyapunov family a emanating from the collinear
equilibrium point L2. Due to the symmetry of the classical Hill problem with respect to both axes the
corresponding stability diagram of the second Lyapunov family c emanating from the other collinear
equilibrium point L1 is the same; therefore it is not presented here separately. As we see, there are
three VC orbits, denoted by a1v, a2v and a5v, from which two families of 3D periodic orbits of the same
period and one family of such orbits of double period bifurcate. Also, one VSR orbit exists (denoted by
a4v) from which a family of spatial periodic orbits of triple period bifurcates and one VSR orbit (a3v)
from which a family of 3D periodic orbits of quadruple period bifurcates.

In Figure 2b the vertical stability diagram of family g is shown. For this family we observe that
there are six VC and VSR periodic orbits. Specifically, at the VC orbit g3v a family of 3D periodic
orbits of double period bifurcate while at g6v the 3D members of the bifurcated family are of the same
period. Note here that, the stability curve of this family is tangential to the line av = −1 at its VC orbit
g3v providing that this VC orbit is a double root. In addition, in this frame we see the existence of
two VSR orbits (g2v and g4v) at which two families of spatial periodic orbits of triple period bifurcate
as well as two VSR orbits (g1v and g5v) at which families of spatial periodic orbits of the quadruple
period bifurcate.

Finally, in Figure 2c, the vertical stability of family g′ is depicted. In this figure, it can be seen
that there are five VC and six VSR periodic orbits. Two VC orbits (g′27v and g′28v) give rise to two
families of spatial periodic orbits of the same period while three VC orbits (g′3v, g′4v and g′211v) give
rise to three such families whose members have the double period. Additionally, from the VSR orbits
g′2v, g′5v and g′210v three families of spatial periodic orbits of triple period bifurcate while from the
VSR orbits g′1v, g′6v and g′29v three families of such orbits bifurcate whose member orbits have the
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quadruple period. We note also here that, all the VC orbits had been determined in [24] but none of
the VSR orbits and we choose to present them also here for the completeness of our study as well as
for reader’s convenience. Additionally, we note here, that family f does not possess any VSR orbits
with q = 3 or q = 4 in relation (12), therefore we do not show its vertical stability diagram.
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Figure 2. Vertical stability diagrams of (a) family a, (b) family g and (c) family g′. aiv, i = 1, 2, . . . , 5,
giv, i = 1, 2, . . . 6 and g′iv, i = 1, 2, . . . 11, denote the VC or VSR orbits of the respective families.

Accurate initial conditions of the determined VC and VSR orbits of families a, g and g′ are given in
Table 1. In particular, in this table, we give the half of the orbit’s period T/2, the position and velocity
components x0 and ẏ0 at the initial vertical intersection of the VC or VSR orbit with the Ox-axis (this
means that the remaining components of the position and velocity vectors are y0 = 0 and ẋ0 = 0),
respectively, as well as the value of the Jacobi constant Γ0 as it is computed through Equation (3) of
the integral of motion for (x0, 0, 0, ẏ0). Finally, we present the value of the position xcut at the second
orbit’s vertical intersection with the Ox-axis while in the last three columns of the table we incorporate
the vertical stability indices av, bv, cv and dv, as they are determined by variations (10) and their values
define the kind of the vertical bifurcation that occurs at a specific VSR planar periodic orbit.
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Table 1. VC and VSR orbits of families a, g and g′. Due to the symmetry w.r.t. both axes the
corresponding orbits of the Lyapunov family c emanating from the other equilibrium point L1 are
obtained directly from the Lyapunov family a; so, they are not given here.

Orbit T/2 x0 ẏ0 Γ0 xcut av − dv bv cv

a1v 1.54072125 0.58126467 0.67012429 4.00531265 0.77465745 1.000 −0.083 0.000
a2v 2.06338271 0.21266090 2.88309804 1.22806326 0.94913598 1.000 0.000 −30.662
a3v 2.54074663 0.12430197 3.97250147 0.35543401 1.10262083 0.000 0.019 −53.643
a4v 2.69141465 0.10657722 4.31885774 0.14727997 1.16098760 −0.500 0.020 −37.453
a5v 2.82554541 0.09298784 4.64365350 −0.02938892 1.21816343 −1.000 0.020 0.000
g1v 0.70912134 0.30115821 1.62301941 4.27892454 −0.30115821 0.000 0.138 −7.268
g2v 0.94220945 0.32764501 1.59674819 3.87661638 −0.32764501 −0.500 0.127 −5.911
g3v 1.47270071 0.31084341 1.91481277 3.05747078 −0.31084341 −1.000 0.000 0.000
g4v 2.05558702 0.22845003 2.61489589 2.07353736 −0.22845003 −0.500 −0.071 10.511
g5v 2.27921091 0.19822182 2.90881626 1.74637033 −0.19822182 0.000 −0.082 12.237
g6v 2.56862675 0.16471506 3.29248839 1.38309359 −0.16471506 1.000 −0.089 0.000
g′1v 0.67152649 0.39943360 1.02470483 4.43571163 −0.18804330 0.000 0.229 −4.371
g′2v 0.80598291 0.49144348 0.66802090 4.34794216 −0.13202001 −0.500 0.264 −2.846
g′3v 1.05140046 0.57085389 0.44267629 4.28518367 −0.08646195 −1.000 0.000 −0.328
g′4v 1.08318636 0.57696026 0.42952310 4.28060260 −0.08221610 −1.000 −0.051 0.000
g′5v 1.32511737 0.60237171 0.40729155 4.24287767 −0.05283047 −0.500 −0.387 1.938
g′6v 1.45376790 0.60041876 0.46088083 4.20010544 −0.03615817 0.000 −0.439 2.277
g′27v 1.81528649 0.46469701 1.24961994 3.39015957 −0.00439928 1.000 −0.179 0.000
g′28v 3.48496672 0.11419691 4.13226025 0.47715701 −0.28581588 1.000 0.000 −104.825
g′29v 4.08061376 0.07884361 5.03211914 0.06309927 −0.35442155 0.000 0.008 −123.893
g′210v 4.30312817 0.06856493 5.40976067 −0.08197783 −0.38101203 −0.500 0.009 −84.427
g′211v 4.51230096 0.05994922 5.79584998 −0.21952852 −0.40811555 −1.000 0.009 0.000

3. Spatial Periodic Orbits

The VSR orbits give rise to families of three-dimensional periodic orbits which may possess all
possible types of symmetry. In particular, the multiplicity q, as it is defined in (12), determines the
symmetry properties of the generated spatial periodic orbits. These orbits possess, at least initially,
the period qT, where T is the whole period of a VSR orbit. Additionally, at each VSR orbit two branches
of spatial periodic orbits bifurcate, i.e., from VSR orbits families always occur in pairs. This has been
firstly identified by Robin and Markellos [38] who also described the mechanism where the spatial
periodic orbits branch out from the plane. They pointed out that at a VSR orbit, i.e., q ≥ 3, exactly two
branches of three-dimensional periodic orbits bifurcate while their symmetry properties depend on
their own multiplicity. Specifically, in case that the generated spatial periodic orbits are of:

1. Odd multiplicity q, i.e., their period is (2n + 1)T, q = 2n + 1, n = 1, 2, . . . , with T being the VSR
orbit’s period, two such families branch out from the corresponding VSR orbit; one family consists
of axis-axis symmetric periodic orbits while the members of the other family are plane-plane
symmetric. More precisely, each branch has one of the following symmetries:

(a) Ox−Ox symmetry, i.e., they are axisymmetric spatial periodic orbits. They start on the
Ox-axis with initial conditions of the form (x0, 0, 0, 0, ẏ0, ż0) while at their half period T/2
return on this axis with final conditions of the form (xcut, 0, 0, 0, ẏcut, żcut).

(b) Oxz−Oxz symmetry, i.e., they are plane symmetric spatial periodic orbits. They
start on the Oxz−plane with initial conditions of the form (x0, 0, z0, 0, ẏ0, 0) while
at their half period T/2 return on this plane perpendicularly with final conditions
(xcut, 0, zcut, 0, ẏcut, 0).

2. Even multiplicity q, i.e., their period is (2n)T, q = 2n, n = 2, 3, . . . , with T being the VSR orbit’s
period, two families branch out from the corresponding VSR orbit; both of them consist of orbits
which are doubly symmetric according to the following characteristics:

(a) Ox−Oxz symmetry, i.e., they are doubly symmetric spatial periodic orbits. They start
on the Ox-axis with initial conditions of the form (x0, 0, 0, 0, ẏ0, ż0) while at the quarter
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of their period T/4 return perpendicularly on the Oxz−plane with the final conditions
(xcut, 0, zcut, 0, ẏcut, 0).

(b) Oxz−Ox symmetry, i.e., they are also doubly symmetric spatial periodic orbits. However,
now they start on the Oxz−plane with initial conditions of the form (x0, 0, z0, 0, ẏ0, 0)
while at the quarter of their period T/4 return on the Ox-axis with the final conditions
(xcut, 0, 0, 0, ẏcut, żcut), respectively.

For the computation of these branches we can construct corrector-predictor algorithms based on
the periodicity conditions. So, to compute a three-dimensional periodic orbit of type, e.g., Ox−Oxz
double symmetry (case 2(a) above) we choose an initial state vector of the form x0 = (x0, 0, 0, 0, ẏ0, ż0).
In this case, at the quarter T/4 of the period, namely the orbit meets the Oxz−plane, the following
conditions must be hold:

ẋcut(x0, 0, 0, 0, ẏ0, ż0) = 0,
żcut(x0, 0, 0, 0, ẏ0, ż0) = 0,

(19)

i.e., the orbit has to cross perpendicularly the Oxz−plane in order the periodicity to be established.
In general, these are not satisfied, so we seek appropriate corrections δx0, δẏ0 and δż0 of the initial
conditions. Then, the resulting equations are expanded in Taylor series up to first order terms obtaining:

ẋcut +
∂ẋcut

∂x0
δx0 +

∂ẋcut

∂ẏ0
δẏ0 +

∂ẋcut

∂ż0
δż0 = 0,

żcut +
∂żcut

∂x0
δx0 +

∂żcut

∂ẏ0
δẏ0 +

∂żcut

∂ż0
δż0 = 0.

(20)

Since we have two simultaneous equations with three unknowns, we choose to fix one of them, e.g.,
δż0 = 0, and solve for obtaining the remaining corrections. In this case, these are:

δx0 =
v45żcut − v65 ẋcut

v41v65 − v45v61
, δẏ0 =

v61 ẋcut − v41żcut

v41v65 − v45v61
, (21)

where the partial derivatives v41 = ∂ẋcut/∂x0, v45 = ∂ẋcut/∂ẏ0, v61 = ∂żcut/∂x0 and v65 = ∂żcut/∂ẏ0

are elements of the variational matrix given in (8). By iterating this process the three-dimensional
periodic solution will be computed with the desired accuracy. If a spatial periodic orbit has been
sought, i.e., conditions (19) are fulfilled with a predetermined accuracy, a next such orbit existing in its
neighbourhood can be predicted. To do so, we use the linearized system (20) and slightly change ∆ż0

to an arbitrarily chosen small constant ε in order to get the remaining predictions in the form:

∆x0 =
v45v66 − v46v65

v41v65 − v45v61
ε, ∆ẏ0 =

v46v61 − v41v66

v41v65 − v45v61
ε, (22)

where in system (20) we have now set δx0 ≡ ∆x0, δẏ0 ≡ ∆ẏ0 and δż0 ≡ ∆ż0 to distinguish the prediction
and correction steps. Also, the new terms appeared in (22) are v46 = ∂ẋcut/∂ż0 and v66 = ∂żcut/∂ż0.

The stability of a three-dimensional periodic orbit can be determined through the variational
Equation (7) and using the following formulas [38]:

P =
α +

√
α2 − 4(β− 2)

2
, Q =

α−
√

α2 − 4(β− 2)
2

, (23)

with α = 2 − Tr(V) and β = (α2 + 2 − Tr(V)2)/2, while V is the variational matrix given in (8),
computed at the orbit’s period T. In this case, the periodic orbit in question is stable if the defined
parameters P, Q of (23) are reals for which it simultaneously holds |P| < 2 and |Q| < 2. Note that,
we can also exploit the symmetry properties of the periodic orbit so as to determine the variational
matrix at the half or the quarter of the period T, i.e., T1 = T/2 or T2 = T/4, depending on whether it
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possesses a simple or double symmetry, respectively. In particular, for the simple types of symmetry
we get the variational matrix by using the following two formulas [38]:

V(T) = MV−1(T1)MV(T1), V(T) = LV−1(T1)LV(T1), (24)

where the first one corresponds to the Ox−Ox type of symmetry and the second holds for the Oxz−Oxz
plane one. Finally, for the orbits of double symmetry we have that:

V(T) = [MV−1(T2)LV(T2)]
2, V(T) = [LV−1(T2)MV(T2)]

2. (25)

The first formula fits to the Ox−Oxz double symmetry while the second to the Oxz−Ox one.
In all the above mentioned cases, L, M are the diagonal matrices L = diag{1,−1, 1,−1, 1,−1} and
M = diag{1,−1,−1,−1, 1, 1}, respectively. Obviously, the determination of the variational matrix
through transformations (24) and (25) offers economy to the computations of the numerical integration.

So, by applying the above mentioned techniques we have determined twenty four families of
three-dimensional periodic orbits, together with their stability properties, which bifurcate from the
VSR orbits given in Table 1. Note that, the corresponding families where the VC orbits, of the same
table, generate have been discussed by Batkhin and Batkhina [37], so we do not consider their study
here. Specifically, Table 1 contains twelve VSR periodic orbits; each one of these planar orbits possesses
two vertical intersections with the Ox-axis (given in this table as x0 and xcut, respectively) so as a
mirror configuration to be satisfied [45]. Twelve families of three-dimensional periodic orbits branch
from the first vertical intersection of a VSR orbit while the rest twelve spatial families are generated
from the second intersection of the same VSR orbit. All these branches of spatial periodic orbits have
been computed and followed to their natural end.

The planar Lyapunov family a has two VSR orbits under consideration at which four families of
spatial periodic orbits bifurcate. These are shown in Figure 3 where we have plotted their characteristic
curves in the space of their initial conditions. Families f (3,4)

a and f (4,3)
a bifurcate from the first

perpendicular intersections of a3v and a4v VSR orbits, respectively, while the second such intersections
give rise to the families f (3cut,4)

a and f (4cut,3)
a , correspondingly. In the superscript, the first number

follows the running number of the corresponding VSR orbit while the second one indicates that the
period of the spatial periodic orbits is, at least initially, qT, q = 3 or 4, where T is the period of the VSR
orbit, i.e., it describes the period commensurability between the planar and spatial orbits.

-8
-4

0

4

1

3

5

0.0

0.2

0.4

0.6

.z0

x0

a4V
a3V

L2

(a)

 

  

a

fa(4,3) fa(3,4)

-4
0

4

-0.5

0.0

0.5

1

2

fa(3cut,4)

a3V

acut

x0

z0

a4V
L2

fa(4cut,3)
(b)

 

 

 

Figure 3. 3D families bifurcating from the VSR orbits a3v and a4v of family a. (a) Bifurcating families
starting from the initial condition (Γ0, x0) of the planar family and (b) Bifurcating families starting
from the initial condition (Γ0, xcut) of the planar family. Grey star indicates that a family goes to
collision orbit.
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More precisely, in the first frame of Figure 3 we present the characteristic curve of the planar
family a by giving its initial conditions (Γ0, x0), where the value of the Jacobi constant Γ0 is determined
by (3) for x0, y0 = 0, z0 = 0, ẋ0 = 0, ẏ0 and ż0 = 0 (first perpendicular cuts of family’s orbits with the
Ox-axis), while the second frame depicts the respective characteristic curve in the (Γ0, xcut) plane, i.e.,
these conditions correspond to the second perpendicular cuts xcut, ycut = 0, zcut = 0, ẋcut = 0, ẏcut

and żcut = 0 of the planar orbits with the Ox-axis (obviously it holds Γ0 ≡ Γc). Also, according to the
multiplicity q, family f (4,3)

a consists of axisymmetric spatial periodic orbits and family f (4cut,3)
a of plane

symmetric ones while families f (3,4)
a and f (3cut,4)

a have spatial members which are doubly symmetric.
All the computed families go to three-dimensional collision orbits, so we consider that this is their
natural termination and stop calculating them.

In Figure 4 the corresponding spatial branches which the planar family g generates are presented.
This family possesses four VSR orbits therefore, eight such branches bifurcate. For their names we
follow the same terminology described in the previous paragraph. So, g1v gives rise to families
f (1,4)
g and f (1cut,4)

g which consist of doubly symmetric spatial members and both of them terminate

with co-planar periodic orbits. Families f (5,4)
g and f (5cut,4)

g bifurcate from g5v and due to their
orbit’s multiplicity they are also comprised by orbits of double symmetry. Both of them goes to
three-dimensional collision orbits. Finally, families f (2,3)

g , f (2cut,3)
g and f (4,3)

g , f (4cut,3)
g are produced by

the VSR orbits g2v and g4v, respectively. The spatial member orbits of branches f (2,3)
g and f (4,3)

g are

axisymmetric while the corresponding members of families f (2cut,3)
g and f (4cut,3)

g are plane symmetric.
The last four families terminate on the plane.
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g4V

(b)
z0
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Figure 4. 3D families bifurcating from the VSR orbits giv, i = 1, 2, 4, 5 of family g. (a) Bifurcating
families starting from the initial condition (Γ0, x0) of the planar family and (b) Bifurcating families
starting from the initial condition (Γ0, xcut) of the planar family. Grey star indicates that a family goes
to collision orbit.

All families of three-dimensional periodic orbits which bifurcate from the VSR orbits of the planar
family g′ and their members have initially multiplicities 3 and 4 are presented in Figure 5. The six
VSR orbits g′iv, i = 1, 2, 5, 6, 9 and 10, of g′ which have been spotted indicate that, in total, twelve
vertical branches intersect them. In particular, the branched families f (2,3)

g′ , f (5,3)
g′ and f (10,3)

g′2 , which
are generated from the first vertical intersections of the VSR orbits g′2v, g′5v and g′210v, respectively,
consist of three-dimensional members which admit the Ox−Ox axis symmetry. Moreover, the first two
families terminate on the Oxy−plane with coplanar orbits while the third one goes to a collision orbit in
three-dimensions. The second vertical intersections of these VSR orbits give rise to the families f (2cut,3)

g′ ,

f (5cut,3)
g′ and f (10cut,3)

g′2 whose member orbits possess the Oxz−Oxz plane symmetry. Furthermore,
the first two families fall on planar periodic orbits and eventually cease to exist in three-dimensions
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while the rest one is led to spatial collision orbits. Besides, families f (1,4)
g′ , f (6,4)

g′ and f (9,4)
g′2 , emerge

from the VSR orbits g′1v, g′6v and g′29v, respectively, and they are constituted by orbits of the double
symmetry Ox−Oxz. The first family terminate on the plane while the rest two go to collision orbits.
Finally, the same VSR orbits give also rise to the branches f (1cut,4)

g′ , f (6cut,4)
g′ and f (9cut,4)

g′2 , respectively,
where the first two end on the plane while the third one goes, in its evolution, to collision orbits.
The member orbits of the latter families are Oxz−Ox doubly symmetric.
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Figure 5. 3D families bifurcating from the VSR orbits g′iv, i = 1, 2, 5, 6, 9, 10 of family g′. (a) Bifurcating
families starting from the initial condition (Γ0, x0) of the planar family and (b) Bifurcating families
starting from the initial condition (Γ0, xcut) of the planar family. Grey star indicates that a family goes
to collision orbit.

The terminations of the spatial families which were found to end on the physical plane Oxy are
shown in Figure 6 with the cyan, green and magenta coloured dots. In this figure, we have plotted the
basic families of planar symmetric periodic orbits along both the positive and negative direction of
the flow, i.e., for ẏ > 0 (black continuous lines) and ẏ < 0 (blue dotted lines), respectively, providing
thus a chart with all vertical intersections of the respective planar orbits with the Ox-axis. In particular,
the green dots correspond to the terminations of families f (2cut,3)

g and f (4cut,3)
g where they end up with

degenerated orbits around the primary body located at the origin. Furthermore, the magenta dots
indicate the planar terminations of families f (4,3)

g , f (5cut,3)
g′ , f (5,3)

g′ and f (6cut,4)
g′ . Specifically, family f (4,3)

g

ends up on a planar family where its members are of multiplicity five (magenta dot near L2), f (5cut,3)
g′

terminates on another family with planar periodic orbits of multiplicity three (magenta dot near the
characteristic curve of f ) while f (5,3)

g′ and f (6cut,4)
g′ end up also on planar families with members of

multiplicity three (the magenta dots which are shown to be located on the characteristic curves of g′

and g′2). The latter four cases of planar families have not been identified in our study since we have
only considered the basic families of the Hill’s problem. Also, the two cyan dots on the characteristic
curve of family f with ẏ < 0, i.e., family fcut, correspond to the termination orbits of families f (2,3)

g and

f (1,4)
g′ . However, the first family bifurcates from a VSR orbit of the family fcut of retrograde satellites

with q = 5 in relation (12) while the second one emanates from a VSR orbit with q = 6, two cases which
have not also been considered in our study. The remaining five cyan dots located on the characteristic
curves of g′, g′cut and gcut represent the terminations of families f (2,3)

g′ , f (2cut,3)
g′ , f (1,4)

g , f (1cut,4)
g and

f (1cut,4)
g′ which return on VSR orbits of these planar families (existing in Table 1) or on VSR orbits

which are images of the latter ones under reflection in the origin and have the same value of the Jacobi
constant Γ. In particular, families f (2,3)

g′ and f (2cut,3)
g′ end up on the two vertical intersections of the

symmetrical VSR orbit of g′2v. Also, f (1,4)
g terminates on the positive crossing of the image planar orbit
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of g′1v while f (1cut,4)
g falls on the vertical intersection xcut of g′1v. Finally, f (1cut,4)

g′ falls on the vertical

intersection xcut of g1v from which f (1cut,4)
g originates, so these two families are essentially the same.
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Figure 6. The full chart of the basic families of planar periodic orbits of the Hill problem where both
the positive (black continuous lines) and negative (blue dotted lines) crossings of the orbits with the
Ox-axis are presented. Forbidden regions to motion are shown grey while red dashed line stands for
the position of the secondary. Cyan, green and magenta dots represent the planar termination orbits of
the spatial families.

Table 2 incorporates initial conditions for sample members of the six computed spatial families
whose orbits are axisymmetric and have been generated from the VSR orbits a4v, g2v, g4v, g′2v, g′5v
and g′210v. In particular, each entry involves the orbit’s half period T/2, the position and velocity
components (x0, 0, 0, 0, ẏ0, ż0) which the orbit has initially on the Ox-axis as well as the value of the
Jacobi constant. The last column indicates whether the family contains some stable parts (S) or not
(U). In Table 3 we present sample members of the six families which bifurcate from the other vertical
intersection of the same planar VSR orbits. Since their orbits are planar symmetric, we give now the
position and velocity components (x0, 0, z0, 0, ẏ0, 0) when the orbit starts perpendicularly from the
Oxz−plane. Finally, in the Tables 4 and 5 we provide data for sample orbits of the families which the
VSR orbits a3v, g1v, g5v, g′1v, g′6v and g′29v generate from their two vertical intersections with the
Ox-axis. The presented data correspond to the quarter of the orbits’ period T/4 since these families
consist of spatial orbits which are doubly symmetric.

Table 2. Sample members of families of 3D periodic orbits having the Ox−Ox axis symmetry. These
families bifurcate from the VSR orbits as the first column denotes. The last column indicates whether
each family contains stable parts (S) or not (U).

VSR Orbit Family T/2 x0 ẏ0 ż0 Γ0 Stability

a4v f (4,3)
a 8.28108914 0.09738337 4.35161692 1.30000000 −0.06073137 U

g2v f (2,3)
g 3.02875641 0.36825238 0.02326322 1.73500119 2.82711705 U

g4v f (4,3)
g 6.40350957 0.27206142 1.28603484 2.16710076 1.22312215 U

g′2v f (2,3)
g′ 2.71221891 0.24559916 1.30859807 1.72000000 3.65347819 U

g′5v f (5,3)
g′ 4.40022566 0.52395964 0.57439090 0.97702231 3.35619150 U

g′210v f (10,3)
g′2 14.90408085 0.04362095 6.66929837 1.40386131 −0.59513059 U
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Table 3. Sample members of families of 3D periodic orbits having the Oxz−Oxz plane symmetry.
These families bifurcate from the second vertical intersection with the Ox-axis of the corresponding
VSR orbits, presented in the first column. The last column indicates whether each family contains
stable parts (S) or not (U).

VSR Orbit Family T/2 x0 z0 ẏ0 Γ0 Stability

a4v f (4cut,3)
a 8.10480019 1.17311668 0.05000000 −2.39299088 0.10301672 U

g2v f (2cut,3)
g 2.94020264 −0.16401030 0.25153736 −1.87987761 3.14385103 S

g4v f (4cut,3)
g 6.31311752 −0.13802904 0.12953972 −2.98949436 1.66882484 U

g′2v f (2cut,3)
g′ 2.86331675 −0.16518580 0.19202694 −2.13512698 3.38200526 S

g′5v f (5cut,3)
g′ 5.47054222 −0.04220315 0.10082891 −4.03567045 2.00597171 U

g′210v f (10cut,3)
g′2 14.50221897 −0.47514046 0.05000000 2.31882339 −0.51599948 U

Table 4. Sample members of families of 3D periodic orbits having the Ox−Oxz double symmetry.
These families bifurcate from the VSR orbits presented in the first column. The last column indicates
whether each family contains stable parts (S) or not (U).

VSR Orbit Family T/4 x0 ẏ0 ż0 Γ0 Stability

a3v f (3,4)
a 5.08770908 0.13256407 3.55142141 1.50000000 0.27716970 U

g1v f (1,4)
g 1.43380965 0.29446412 1.34203629 1.08722851 4.06899919 S

g5v f (5,4)
g 4.64387725 0.19337079 2.72154006 1.24600000 1.49570433 U

g′1v f (1,4)
g′ 1.36955543 0.38309726 1.04442285 0.50000000 4.32007783 U

g′6v f (6,4)
g′ 3.17340274 0.51995209 0.57763956 1.00000000 3.32389130 U

g′29v f (9,4)
g′2 8.22922408 0.07940642 4.91666525 1.00000000 0.03219913 U

Table 5. Sample members of families of 3D periodic orbits having the Oxz−Ox double symmetry.
These families bifurcate from the second vertical intersection with the Ox-axis of the corresponding
VSR orbits, presented in the first column. The last column indicates whether each family contains
stable parts (S) or not (U).

VSR Orbit Family T/4 x0 z0 ẏ0 Γ0 Stability

a3v f (3cut,4)
a 5.56514907 1.28678525 −0.19596176 −2.59789645 −0.28347259 U

g1v f (1cut,4)
g 1.41364637 −0.22169375 −0.11327032 −2.00619479 4.14339700 S

g5v f (5cut,4)
g 4.61712103 −0.16386318 0.08332496 −3.06307199 1.57070128 U

g′1v f (1cut,4)
g′ 1.43381518 −0.25279920 −0.14461255 −1.72308981 4.06898038 S

g′6v f (6cut,4)
g′ 2.91496122 −0.03575314 0.00564098 −7.14762756 4.17085491 U

g′29v f (9cut,4)
g′2 9.16012429 −0.42750381 −0.04366273 2.34791591 −0.31222756 U

4. Conclusions

The Hill three-body problem was considered and its three-dimensional periodic solutions which
bifurcate from the VSR periodic orbits of the basic planar families were determined. We focused on
families where their spatial members have initially three or four times the period of a specific VSR
planar orbit. Twelve such VSR orbits were detected and calculated accurately while these orbits were
found to give rise to twenty four families of three-dimensional periodic orbits. As it happens in the
classical restricted three-body problem, we also identified here that each VSR orbit may generate two
vertical branches; each branch bifurcates from a vertical intersection of the planar VSR periodic orbit
with the Ox-axis.

Besides, the multiplicity of the generated spatial orbit’s period was noticed to specify the symmetry
properties of the orbit. Our results showed that the spatial orbits of the computed branches may have
the following types of symmetry: axis-axis, plane-plane as well as double symmetry which combines
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both the other two types. The numerical continuation of these branches were accomplished through
predictor-corrector algorithms which were based on mirror configurations where the periodicity
conditions fulfill according to the spatial orbit’s type of symmetry. Thirteen branches were found
to terminate with coplanar periodic orbits while the remaining eleven ones were collided in their
evolution with the smaller primary body. Additionally, among the twenty four computed families
of three-dimensional periodic orbits, we found that only five of them include stable parts; these are
f (2cut,3)
g , f (2cut,3)

g′ , f (1,4)
g , f (1cut,4)

g and f (1cut,4)
g′ .

Since the vertical stability diagrams of the basic planar families indicated the existence of higher
order resonances (than q = 4 which was the maximum considered here) for the generation of vertical
branches, a natural continuation of the present work would be to consider a similar study for their
determination. Also, another interesting extension could be to incorporate additional forces in the
Hill’s problem, such as the radiation of the larger primary body, i.e., the Sun emits radiation, and
examine the influence of these forces to the considered here spatial solutions.
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