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Abstract: In this paper, we argue that the problem of time is not a crucial issue inherent in the
quantum picture of the universe evolution. On the minisuperspace model example with the massless
scalar field, we demonstrate four approaches to the description of quantum evolution, which give
similar results explicitly. The relevance of these approaches to building a quantum theory of gravity
is discussed.
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1. Introduction

Usually, some crucial theoretical problems were self-created in some sense, and then these issues
were solved successfully during some period. An example could be the spin crisis problem, which had
been stating about 30 years ago [1]. The problem of time [2–6] held for a relatively long time from [7]
and was related closely with the variety of the points of view in a gravity quantization [8]. The root of
this issue is the gauge invariance of the general relativity [9]1. Such invariance allows for choosing the
equivalent time parameterizations, and one may suspect that the time is an “illusion” [10].

On the other hand, astrophysical data demonstrate the time evolution of the universe. The modern
trends in the interpretation of quantum mechanics (e.g., see [11]) suggest that all the phenomena,
including the universe itself, are generally quantum. Thus, the time evolution in the frameworks of
quantum cosmology has to be explained.

Although “eternity” and “time” are two sides of one coin [12], all observations are performed
in time. Thus, time should put into a theory, in any case, to confront the theory with observations.
However, sometimes, it could be useful to think in terms of eternity for the development of theoretical
concepts, such as sub specie aeternitatis.

The complexity of the full system of the equations of gravity does not prevent considering this
problem as an example of the so-called minisuperspace models [13], which are extremely simple but
have the Hamiltonian constraint like that in the general case.

Here we show that the problem of time does not prevent calculating the time-dependent mean
values, which could be, in the principle, compared with the observations. In the quantization methods
considered, the time reparameterization invariance [14] is violated by imposing the gauge condition.
As a result, the Schrödinger equation arises in the methods of A,E. If the quantization procedure is
realized before imposing the gauge condition (the methods B,C,D), the WDW equation arises. After

1 The issue of compatibility of gauge invariance and the Schrödinger equation in connection with gravity quantization is
discussed in [9].
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that, the gauge condition is set in the scalar product (the methods B,C), or at a level of the operator
equations of motion (the method D).

2. Classical Picture

As is well-known, there is no problem with defining time in the classical theory because it implies
that if an observer has some particular clock, she can choose a gauge corresponding to this clock.

Let us consider an action for gravity and a real massless scalar field φ:

S =
1

16πG

∫
R
√
−g d4x +

1
2

∫
∂µφ gµν∂νφ

√
−g d4x, (1)

where R is a scalar curvature.
We restrict the consideration by the uniform, isotropic and flat universe

ds2 = gµνdxµdxν = a2(N2dη2 − d2r), (2)

where a scale factor a and a lapse function N depend on a conformal time η only. Under these
conditions, the action of Equation (1) becomes

S =
1
2

∫ 1
N

(
−M2

pa′2 + a2φ′2
)

dη, (3)

where the reduced Planck mass Mp =
√

3
4πG is used2, which is set to unity for simplicity.

The action (Equation (3)) in the generalized form [15–19] looks as

S =
∫ (
−paa′ + πφφ′ − N

(
−1

2
p2

a +
π2

φ

2a2

))
dη. (4)

The variation of Equation (4) with respect to πφ and pa gives πφ = φ′a2/N and pa = a′/N,
respectively. After substituting these values into Equation (4), Equation (3) is recovered. The explicit
expression for the Hamiltonian follows from Equation (4):

H = N

(
−1

2
p2

a +
π2

φ

2a2

)
, (5)

which is also the Hamiltonian constraint

Φ1 = −1
2

p2
a +

π2
φ

2a2 = 0, (6)

due to δS
δN = 0.

Time evolution of an arbitrary quantity is expressed through the Poisson brackets

dA
dη

=
∂A
∂η

+ {H, A}, (7)

which reads as

{A, B} = ∂A
∂πφ

∂B
∂φ
− ∂A

∂φ

∂B
∂πφ
− ∂A

∂pa

∂B
∂a

+
∂A
∂a

∂A
∂pa

. (8)

2 The scale factor a in (Equation (3)) becomes dimensional because it corresponds, in fact, to aV3/2, where V is the volume of
spatial integration in Equation (1)
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The full system of the equations of motion has the form:

π′φ = −∂H
∂φ

= 0, =⇒ πφ = const ≡ k,

φ′ =
∂H
∂πφ

=
k
a2 , a′ = − ∂H

∂pa
= pa, p′a =

∂H
∂a

= − k2

a3 . (9)

The solution of the equations of motion is

a =
√

2|πφ|η, φ =
πφ

2|πφ|
ln η + const. (10)

According to Equation (10), a gauge fixing condition

Φ2 = a−
√

2|πφ|η = 0, (11)

which conserves in time, can be introduced in addition to the constraint Φ1.
One can see that there is an explicit time evolution under some particular gauge fixing. Moreover,

for this simple example, the system could be reduced to a single degree of freedom [20,21].
Let us take πφ and φ as the physical variables, then a and pa have to be excluded by the constraints

in Equations (6) and (11). Substituting pa, a′ and a into Equation (3) results in

S =
∫ (

πφφ′ − Hphys(φ, πφ, η)
)

dη, (12)

where

Hphys(φ, πφ, η) = paa′ =
|πφ|
2 η

. (13)

3. Quantum Pictures with Time

3.1. The Schrödinger Equation with a Physical Hamiltonian (method A)

The most simple and straightforward way to the description of the quantum evolution is based
on the Schröodinger equation [20,21]

i∂ηΨ = ĤphysΨ (14)

with a physical Hamiltonian Equation (13). In the momentum representation, the operators become

π̂φ = k, φ̂ = i
∂

∂k
. (15)

The solution of Equation (14) is

Ψ(k, η) = C(k)|2kη|−i|k|/2ei|k|/2, (16)

where C(k) is a momentum wave packet. An arbitrary operator Â build from φ̂ = i ∂
∂k and a =

√
2|k|η

is, in fact, the function of η, k, and i ∂
∂k . Using the wave function Equation (16) allows us to calculate

the mean value
< C|Â|C >=

∫
Ψ∗(k, η)Â Ψ(k, η)dk. (17)

Since the base wave functions ψk = |2kη|−i|k|/2ei|k|/2 contain the module of k, a singularity may
arise at k = 0 if Â contains the degrees of the differential operator ∂

∂k . That could violate hermicity. To
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avoid this, the wave packet C(k) should turn to zero at k = 0. For instance, it could be taken in the
form of the Gaussian function multiplied by k2

C(k) =
4σ5

3
√

π
k2 exp

(
− k2

2σ2

)
. (18)

Let us come to the calculation of the concrete mean values taking σ = 1 for simplicity. Mean
values of the operators φ̂2 and a are

< C|a|C >=
4
3

√
2
π

√
η
∫ ∞

−∞
e−k2

k9/2dk =
4
3

√
2
π

Γ(11/4)
√

η, (19)

< C|φ̂2|C >=
1

3
√

π

∫ ∞

−∞
e−k2

(
−4k6 + k4

(
20 + ln2 2 + ln(η |k|) ln(4η |k|)

)
−

8k2 + 2i |k|3
(
−2k2 ln(2η |k|) + 4 ln(η |k|) + 4 ln 2 + 1

))
dk =

1
12

ln η(3 ln η − 3γ + 8) +
π2

32
+

γ2

16
− γ

3
+

4
3

, (20)

where Γ is the Gamma function, and γ is the Euler constant. Let us note that the imaginary part
in Equation (20) disappears after integration on k due to hermicity of φ̂. Figure 1 demonstrates the
infiniteness of the mean-square value of φ at η = 0, then it decreases and begins to increase finally.
Examples of software calculating mean values are supplemented [22](see supplementary).

Another more complicated example is

< C|φ̂2 a + a φ̂2|C >=
1

3072

(
16 ln η

(
ln η(4 ln η(3 ln η − 6γ + 16) + 9π2 + 6γ(3γ− 16) + 384)−

9γπ2 + 24π2 − 6γ(64 + (γ− 8)γ) + 800
)
+ 224ζ(3)(−6 ln η + 3γ− 8) + 21π4 +

12γ(3γ− 16)π2 + 768π2 + 4γ
(
γ(384 + γ(3γ− 32))− 1600

)
+ 16640

)
, (21)

where ζ(x) is the Zeta-function. The time dependence in Equation (21) arises from two sources: the
time-dependent wave function in Equation (17) and a =

√
2|k|η.

0 1 2 3 4 5

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Η

<
C
ÈΦ`

2

ÈC
>

Figure 1. The mean value of the square of the scalar field with respect to the wave packet Equation
(18).
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3.2. Time Evolution from the WDW Equation (method B)

The problem of time began from the discussion of the WDW equation [7,9,20,23,24], which is a
workhorse of quantum cosmology and a mathematical implementation of eternity. It is often stated that the
WDW equation does not contain time explicitly. Indeed, it is true. Nevertheless, the WDW equation
does not forbid a time evolution if one considers a full quantum picture, including gauge fixing and
evaluation of the mean values of the operators[25]3. The point is that the WDW equation has to be
supplemented by the scalar product.

Let us to introduce the variable α = ln a and perform the canonical quantization

[ p̂α, α] = i, [π̂φ, φ] = −i (22)

of the constraint Φ1 = 0. That results in the WDW equation(
∂2

∂α2 −
∂2

∂φ2

)
Ψ(α, φ) = 0 (23)

of the Klein–Gordon type.
Scalar products for the Klein–Gordon equation are discussed in [18,26–28], where the “current”

and “density” [26] products were proposed. Here we use only the scalar product of the “current” type:

< Ψ|Ψ >= i
∫ (

Ψ∗(α, φ)
∂

∂α
Ψ(α, φ)−Ψ(α, φ)

∂

∂α
Ψ∗(α, φ)

)∣∣∣∣
α=α0

dφ, (24)

including the hyperplane α = α0. For a mean value of some operator, the following expression could
be introduced (see the last formula in [26])

< Ψ|Â|Ψ >= i
∫ (

Ψ∗D̂1/4 Â D̂−1/4 ∂Ψ
∂α
−
(

∂Ψ∗

∂α

)
D̂−1/4 Â D̂1/4 Ψ

)∣∣∣∣
α=α0

dφ, (25)

where D̂ = − ∂2

∂φ2 . In the momentum representation π̂φ = k, φ̂ = i ∂
∂k , the WDW Equation (23) reads as

(
∂2

∂α2 + k2
)

ψ(α, k) = 0, (26)

and, as a result of D̂1/2 = |k|, the scalar product of Equation (25) takes the form:

< Ψ|Â|Ψ >= i
∫

C∗(k)ei|k|α Âe−i|k|αC(k)
∣∣∣∣

α=α0

dk, (27)

where

Ψ(α, φ) =
∫

eikφψ(α, k)dk =
∫ eikφ−i|k|α√

2|k|
C(k)dk (28)

is taken. To introduce the time evolution into this picture, one has to choose a time-dependent
integration plane in Equation (27) instead of α = α0 by writing α = 1

2 ln (2|k|η) according to Equation
(11), i.e., to Φ2 = 0.

3 One has to note that the methods considered are not the exclusive methods describing the quantum evolution of the universe.
For instance, one could take a scale factor or a scalar field [25] as the “time variable.”
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However, if the operator Â(α, k, i ∂
∂α , i ∂

∂k ) contains differentiation ∂
∂k or ∂

∂α , hermicity could be lost.
To prevent this, let us rewrite Equations (25) (27) in the form of

< ψ|Â|ψ >=
∫

ψ∗(α, k)
(
|k|1/2 Â|k|−1/2δ(α− 1

2
ln(2|k|η)) p̂α +

p̂αδ(α− 1
2

ln(2|k|η))|k|−1/2 Â|k|1/2
)

ψ(α, k)dαdk, (29)

where pα = i ∂
∂α and hermicity of Â relatively α, k variables are implied. In this case, no problem with

hermicity arises if one takes the functions ψ(α, k) tending to zero at α→ ±∞ to provide the throwing
over the differential operators ∂/∂α by the integration by parts. The functions ψ(α, k) = e−i|k|α√

2|k|
C(k) do

not possess such a property. Thus, we shall take the functions

ψ(α, k) =
e−i|k|α−α2/∆√

2|k|
C(k) (30)

in the intermediate calculations and, then, after integration over α, tend ∆ to infinity. Performing the
concrete calculations with the above wave packet Equation (18), we again obtain the same values for
Equations (19) and (20). As for the mean value Equation (21) of Section 3.1, we cannot compare it
using this picture because the particular operator ordering aφ̂2 + φ̂2a has been used in Equation (21),
but here the operators a = exp α and φ̂ commute formally implying an existence of some intrinsic
automatic ordering.

3.3. An Evolution from the WDW Using the Grassmann Variables (Method C)

Another version with the anticommutative variables could be proposed in the form

< ψ|A|ψ >=
∫

ψ∗(α, k) exp
(

iλ
(
α− 1

2
ln(2|k|η)

)
+ θ̄θ p̂α +

1
2

χ̄χ
(
|k|−i/2 Â |k|i/2 + |k|i/2 Â |k|−i/2

))
ψ(α, k)dλdαdkdθdθ̄dχdχ̄, (31)

where the anticommutating Grassmann variables θi = (θ, χ), θ̄i = (θ̄, χ̄) have the following properties:
θiθj + θjθi = 0,

∫
dθi = 0,

∫
θidθi = 1, (θ̄i)

∗ = θi, (θ̄iθj)
∗ = θ̄jθi. Again, for reasons of hermicity, we take

the functions of Equation (30) and then tend ∆ to infinity. For the practical calculations, it is convenient
to separate the expression in the exponent of Equation (31) into two parts M = iλ

(
α− 1

2 ln (2|k|η)
)

,

and R̂ = θ̄θ p̂α +
1
2 χ̄χ

(
|k|−i/2 Â|k|i/2 + |k|i/2 Â|k|−i/2

)
for using the formula [29]

exp
(

M̂ + R̂
)
=

(
1 +

∞

∑
m=1

X̂m

m!

)
exp M̂, (32)

where X̂m is set recursively as X̂1 = R and X̂m = R̂X̂m−1 + [M̂, X̂m−1]. In fact, it is sufficient to take
only finite number of terms in a sum of Equation (32).

3.4. The quasi-Heisenberg Picture (Method D)

Another approach to consider the time evolution is to take classical equations of motion and then
quantize them, i.e., write “hat” over every quantity [30–33]. The operator equations of motion take the
form:

φ̂′′ + 2α̂′φ̂′ = 0, α̂′′ + α̂′2 + φ̂′2 = 0. (33)
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One needs to find the commutation relations of the operators α̂(η), φ̂(η). The problem was solved
by Dirac, who has introduced the “Dirac brackets” for a system with constraints postulating that
commutator relations of the operators have to be analogous to the Dirac brackets. However, it is not
always possible to find an operator realization of this commutator relations. The quasi-Heisenberg
picture suggests to find an operator realization only at the initial moment and then allow operators to
evolve according to the equations of motion. The initial conditions for operators could be taken in the
form

α̂(0) = α0, α̂′(0) = e−2α0 |k|, φ̂(0) = i
∂

∂k
, φ̂′(0) = e−2α0 k. (34)

The solution of the operator equations of motion (Equation (33)) with the initial conditions
(Equation (34)) is

α(η) = α0 +
1
2

ln
(

1 + 2|k|η e−2α0
)

, φ̂(η) = i
∂

∂k
+

k
2|k| ln

(
1 + 2|k|η e−2α0

)
. (35)

To built the Hilbert space, in which these quasi-Heisenberg operators act, one may use the WDW
Equation (23) and the scalar product (Equation (27)) but, at the end of mean values evaluating, the
value of α0 should be set to minus infinity, i.e., α0 → −∞, which corresponds to a → 0 at η = 0.
Explicit calculation gives the same mean values as Equations (19), (20) and (21).

3.5. An Evolution Using the Unconstraint Schrödinger Equation in the Extended Space (Method E)

It is believed [14,34,35] that the Grassmann variables allow for writing the Lagrangian without
constraints at all. Here, one has two possibilities: to set a gauge imposing an additional condition as a
function of pa, a, πφ, φ such as Equation (11) (canonical gauge). Another alternative is to impose this
condition as a function of N (non-canonical gauge).

3.5.1. Canonical Gauge

The discussion can be started in terms of continual integral which gives a transition amplitude
from in to out states [14,36,37]:

< out|in >= Z =
∫

ei
∫
(πφφ′−Hphys(φ,πφ))dη DπφDφ, (36)

where Hphys is given by Equation (13). This functional can be rewritten in the form

Z =
∫

e
i
∫(

πφφ′−paa′−N

(
− 1

2 p2
a+

π2
φ

2a2

))
dη

Πη paΠηδ
(
a−

√
2η|πφ|

)
DpaDaDπφDφDN, (37)

where [37] pa = {Φ1, Φ2} is the Faddeev–Popov determinant. Equivalence of Equations (36) and (37)

can be checked by transition to a new integration variable ã = a−
√

2η|πφ|, and integrating on ã, N,
pa in Equation (37) gradually.

Using the Grassmann anticommutative variables in Equation (37) leads to the form containing
the unconstraint Lagrangian in the exponent

Z =
∫

ei
∫ (

πφφ′−paa′−N
(
− 1

2 p2
a+

π2
φ

2a2

)
−λ(a−

√
2η|πφ |)−θ̄θpa

)
dηDpaDaDπφDφDNDλDθDθ̄. (38)

Equation (38) allows for writing the Hamiltonian

H = N
(
−1

2
p2

a +
π2

φ

2a2

)
+ λ

(
a−

√
2η|πφ|

)
+ θ̄θpa, (39)
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which, after canonical quantization, could be used to describe evolution as in both Schrödinger and
Heisenberg pictures.

3.5.2. Non-Canonical Gauge

Let us remind, how the Faddeev–Popov determinant appears in non-canonical gauge. The action
Equation (3) is an invariant relatively the infinitesimal gauge transformations:

ã = a + δa = a + ε a′, (40)

φ̃ = φ + δφ = φ + ε φ′, (41)

Ñ = N + δN = N + (Nε)′, (42)

where ε is an infinitesimal function of time. When one sets a non-canonical gauge condition in the
form F(N) = 0, the functional integral, including a gauge fixing multiplier with the Dirac δ-function,
becomes [14]

Z =
∫

e
i
∫(

πφφ′−paa′−N

(
− 1

2 p2
a+

π2
φ

2a2

))
dη

Πη
δF
δε

Πηδ(F)DpaDaDπφDφDN, (43)

where again the Faddev–Popov determinant ∆FP = δF
δε has been introduced [14]. In the particular case

F = N − 1, it follows from Equation (42) that the determinant is ∆FP = δN
δε = N′ + N ∂

∂η . Using the
Grassmann variables raises the determinant into an exponent

Z = i
∫

e
i
∫(

πφφ′−paa′−N

(
− 1

2 p2
a+

π2
φ

2a2

)
−λ(N−1)−N′ θ̄θ−Nθ̄θ′

)
dη

DpaDaDπφDφDλDNDθDθ̄

=
∫

e
i
∫(

πφφ′−paa′−
(
− 1

2 p2
a+

π2
φ

2a2

)
−θ̄θ′

)
dη

DpaDaDπφDφDθDθ̄. (44)

An expression in the exponent of Equation (44) could be treated as Lagrangian, but it cannot be
put into the generalized Hamiltonian form, because the velocity θ′ cannot be expressed through a
momentum. In this relation, an interesting trick has been suggested [34]: to take the gauge condition
N′ = 0, instead of N = 1. For this new gauge, it follows from Equation (42) that

δF = δN′ = (Nε)′′, (45)

and

Z =
∫

e
i
∫(

πφφ′−paa′−N

(
− 1

2 p2
a+

π2
φ

2a2

)
−λN′−θ̄(Nθ)′′

)
dη

DpaDaDπφDφDNDλDθDθ̄. (46)

The unconstraint Lagrangian is written from Equation (46) as

L = πφφ′ − paa′ − N

(
−1

2
p2

a +
π2

φ

2a2

)
− λN′ + θ̄′(Nθ)′, (47)

For the momentums of the Grassmann variables and N, one has from Equation (47)

πθ = − ∂L
∂θ′

= Nθ̄′, πθ̄ =
∂L
∂θ̄′

= N′θ + Nθ′, pN =
∂L

∂N′
= −λ + θ̄′θ, (48)
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where, as usual, the left derivative over the Grassmann variables ∂
∂θ

(
θ f (θ̄)

)
= f (θ̄) is implied. The

Lagrangian Equation (47), rewritten in terms of momentums acquires the form

L = πφφ′ − paa′ + pN N′ + θ̄′πθ̄ + πθθ′ − N

(
−1

2
p2

a +
π2

φ

2a2

)
− 1

N
πθπθ̄ . (49)

This means that the corresponding Hamiltonian is

H = N

(
−1

2
p2

a +
π2

φ

2a2

)
+

1
N

πθπθ̄ . (50)

Thus, two Hamiltonians, Equations (39) and (50), which drive unconstraint dynamics, have
been obtained. The first one is time-dependent and contains the Grassmann variables as parameters.
The second one is time-independent and implies the time dynamics of the Grassmann variables [34].
Further, we consider only the Hamiltonian (Equation (50)), because this timeless Hamiltonian seems
more perspective in the general gravity quantization. Opposite to commutation relation (Equation
(22)), the anticommutation relation have to be introduced for the Grassmann variables

{πθ , θ} = −i, {πθ̄ , θ̄} = −i. (51)

In the particular representation α = ln a, p̂α = i ∂
∂α , φ̂ = i ∂

∂k , π̂φ = k, π̂θ = −i ∂
∂θ , π̂θ̄ = −i ∂

∂θ̄
, the

Schrödinger equation reads as

i
∂

∂η
ψ =

(
N
2

e−2α

(
∂2

∂α2 + k2
)
− 1

N
∂

∂θ

∂

∂θ̄

)
ψ, (52)

where the operator ordering in the form of the two-dimensional Laplacian has been used.
It should be supplemented by the scalar product

< ψ|ψ >=
∫

ψ∗(η, N, k, α, θ̄, θ)ψ(η, N, k, α, θ̄, θ)e2αdαdkdNdθdθ̄, (53)

where the measure e2α arises due to hermicity requirement [37,38]. This measure is a consequence
of a minisuperspace metric if the Hamiltonian is written in the form H = N

2 gij pi pj +
1
N πθπθ̄ with

pi ≡ {α, φ}, gij = diag{−e−2α, e−2α}. Thus, the measure takes the form
√
|det gij| = e2α [38].

One of the particular formal solutions of Equation (52) could be written as

ψ(η, N, k, α, θ̄, θ) = (θ̄ + θ)ψ1(η, N, k, α) + i(θ̄ − θ)ψ2(η, N, k, α), (54)

where the functions ψ1 and ψ2 satisfy the equation

i
∂

∂η
ψ1,2 = Ĥ0ψ1,2, (55)

where Ĥ0 = N
2 e−2α

(
∂2

∂α2 + k2
)

. Then, the scalar product reduces to

< ψ|ψ >= 2i
∫

(ψ∗2 ψ1 − ψ∗1 ψ2) e2αdαdkdN. (56)

To obtain the mean values close to that given by the previous methods, where the Klein–Gordon
scalar product is used, let us take the functions ψ1, ψ2 in the form

ψ2 = e−iĤ0ηψ0(α, k), ψ1 = e−iĤ0η ∂

∂α
ψ0(α, k), (57)
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where ψ0(α, k) is given by Equation (30). As one can see, at the limit of ∆→ ∞, the state Equation (57)
comes to the space of the WDW solution (see, e.g., [39]), and the time evolution disappears. However,
if this limit is taken after the calculation of the mean values, then the explicit time evolution can be
caught. Let us consider the mean value of a2 = e2α for the wave packet Equation (18). For the variable
N, we will consider a very narrow packet around the value N = 1, i.e., simply set N = 1 and abandon
integration over N. Remaining integrations give for the normalizing multiplier

< ψ|ψ >= 2i
∫

(ψ∗2 ψ1 − ψ∗1 ψ2) e2αdαdk =
3πe∆/2

√
∆

2
√

2
. (58)

Then the mean value of a2 becomes

< a2 >=
< ψ|e2α|ψ >

< ψ|ψ >
= e3∆/2 +

8(2∆ + 1)η
3
√

π∆
+

3e−∆/2η2

∆
. (59)

As one can see, three terms appear in Equation (59). The first term is divergent at ∆ → ∞, i.e.,
when one proceeds to the space of the WDW solutions, the evolution disappears, in a sense that this
constant term dominates in Equation (59). However, if one omits this constant term (not dependent on
time) and then tends to the limit of ∆→ ∞, then the value < a2 >= 16η

3
√

π
is the same as in the previous

methods A,B,C,D. In the general case, for instance, under evaluation a4, the other diverging terms
depending on the time appear. That prevents extracting the time evolution when one proceeds from
the extended space to the space of the WDW solutions. However, one could believe that some good
regularization method could exist.

4. Discussion and Possible Application of the Above Approaches to the General Case of Gravity
Quantization

The results of the calculation of the mean values are presented in Table 1. The mean value of
< C|a2|C > turns out to be the same for all the methods considered. For the method of Section 3.5, we
are not able to calculate the mean values of the other operators for two reasons: because we use the
most primitive way of calculation by expanding the exponent e−iĤ0η in Equation (57) over the degrees
of η, and use the primitive regularization under transition from extended space [34,35] to the space of
the WDW equation solutions.

Table 1. Comparison of the mean values calculated by the different methods. Capital letters denote a
method. A plus implies that the values obtained by the different methods coincide. Crosses of two
types in a circle mean that the values obtained at least by two different methods coincide.

Method A B C D E

a + + + +
a2 + + + + +
φ̂2 + + + +
φ̂4 ⊕ ⊗ ⊗ ⊕
φ̂6 ⊕ ⊕
aφ̂2 + φ̂2a ⊕ ⊕

The methods A, B, C, and D produce the same value of the operators a, φ2 as shown in Table 1. For
the mean value of φ̂4, some difference emerges, which is shown in Figure 2. It is not the uncertainty of
numerical calculations because they are fully analytical and have been performed using Mathematica.
However, let us emphasize that it does not mean that the different methods are nonequivalent. In the
general case, as illustrated in Figure 3, the different methods should not have the same Hilbert space
when producing the same values of the different operators. Only the correspondence between these
spaces should exist, i.e., these spaces have to be connected by some transformation.
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In light of quantum gravity, one could guess that the method of Section 3.1 is not likely to be
applicable to the building of the general theory of quantum gravity. It is not possible, simply, to resolve
the Hamiltonian and the momentum constraints to exclude the extra degrees of freedom in the general
case.

Most of the considered methods use the time-dependent gauge condition. It seems the restrictive
case for the general gravity is to demand conservation of the gauge condition in time. In fact, it is
equivalent to the preliminary solution of the equations of motion for gravity. An exception is the
quasi-Heisenberg picture (see Section 3.4), which demands to set a gauge condition only at the initial
moment of time. Thus, it seems the most perspective picture. The unconstraint Schrödinger equation
of Section 3.5 also seems attractive [9]. Still, it needs the invention of some regularization scheme when
one proceeds from the extended space to the space of the WDW equation solutions. One could hope
that quantum computing will be applied [40–42] for a description of the quantum universe evolution
in the future.

0 1 2 3 4 5
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10

15

20

25

30

Η

<
C
ÈΦ`

4

ÈC
>

Figure 2. The mean value of φ̂4 over the wave packet Equation (18) for methods. A,D: solid line and
methods B,C: dashed line. .

Figure 3. The illustration that different methods could have different Hilbert spaces for producing the
same set of the mean values for the arbitrarily given operators. Still, there should be correspondence
between the state C(k) of the Hilbert space 1 and the state C̃(k) of the Hilbert space 2 producing the
same mean values. .
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5. Conclusions

As one can see, the description of quantum evolution is very straightforward and unambiguous.
Still, it teems with different details such as choosing a scalar product and operator ordering, which are
typical for quantization of the systems with constraints [28]. It is shown that if one wants to discuss
the quantum evolution of the universe, there are no serious obstacles to this. Namely, the “problem of
time” does not exist as a real problem preventing the calculation of the time-dependent mean values.

Let us summarize the methods producing an explicit time evolution: i) the time-dependent
physical Hamiltonian with the excluded extra degrees of freedom, ii) the WDW equation with the
time-dependent integration plane in the scalar product, iii) the quasi-Heisenberg picture quantizing
the equations of motion and iv) the unconstraint Hamiltonian with the Grassmann variables.

Since the WDW equation tells nothing about time evolution without determining the scalar
product, this equation alone is only halfway to a full picture. The time-independent wave function of
the universe does not prohibit time-evolution. Still, it only reflects the desire of a researcher to work
in terms of “eternity”, but, when she chooses a time-dependent gauge condition (methods A,B,C,E)
or defines it at the initial moment of time (method D), she begins to work in terms of “time’. It is
interplay of “time’ and “eternity” [12]. Also, one may consider that all the information about the
universe is actually stored in the WDW equation solution as “eternity”, but could be retrieved from
it only through time-dependent histories of the average values of the operators. From this point of
view, individual existence represents one of the possible histories in the real universe. When such an
existence ceases, its history begins simply to refer to the parts of the wave function, which is more
distributed in the space (not only in geometrical but rather functional space to which the universe
wave function belongs). Certainly, the information about this existence is not disappeared from the
wave function of the universe and could be, in principle, be used by the other “histories”. At this point,
it is necessary to mention the possible sources of information loss in the universe, such as black holes.
Fortunately, there exists a chance that they are absent [43]. In this case, the information contained in
the wave function of the universe never disappears, in a sense that it could be in principle always
accessible for observers existing from Big Bang to Big Rip.

Supplementary Materials: The following *.nb files are available online at http://www.mdpi.com/2218-1997/6/
5/67/s1: timePhysPhi2, timeDeWittPhi2, timeDeWitt1Phi2, timeQuasiPhi2 and timePhysPhi4, timeDeWittPhi4,
timeDeWitt1Phi4, timeQuasiPhi4 which calculate < C|φ2|C > and < C|φ4|C > by the methods A,B,C,D
respectively. A notebook timeShredA2.nb calculates < C|a2|C > by the method E. All these files are also
available at [22].
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