
universe

Article

Mass in de Sitter and Anti-de Sitter Universes with
Regard to Dark Matter

Jean-Pierre Gazeau

CNRS, Astroparticule et Cosmologie, Université de Paris, F-75013 Paris, France; gazeau@apc.in2p3.fr

Received: 6 April 2020; Accepted: 2 May 2020; Published: 5 May 2020
����������
�������

Abstract: An explanation of the origin of dark matter is suggested in this work. The argument is based
on symmetry considerations about the concept of mass. In Wigner’s view, the rest mass and the spin
of a free elementary particle in flat space-time are the two invariants that characterize the associated
unitary irreducible representation of the Poincaré group. The Poincaré group has two and only two
deformations with maximal symmetry. They describe respectively the de Sitter (dS) and anti-de Sitter
(AdS) kinematic symmetries. Analogously to their shared flat space-time limit, two invariants, spin
and energy scale for de Sitter and rest energy for anti-de Sitter, characterize the unitary irreducible
representation associated with dS and AdS elementary systems, respectively. While the dS energy
scale is a simple deformation of the Poincaré rest energy and so has a purely mass nature, AdS rest
energy is the sum of a purely mass component and a kind of zero-point energy derived from the
curvature. An analysis based on recent estimates on the chemical freeze-out temperature marking in
Early Universe the phase transition quark–gluon plasma epoch to the hadron epoch supports the
guess that dark matter energy might originate from an effective AdS curvature energy.
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1. Introduction: Some (Observational) Facts about Dark Matter

According to the Planck 2018 analysis of CMB power spectrum [1], our Universe is spatially flat,
accelerating, and composed of 5% baryonic matter, 27% cold dark matter (CDM, non baryonic), and
68% dark energy (Λ). (Cold) dark matter [2] is observed by its gravitational influence on luminous,
baryonic matter. The dark matter mass halo and the total stellar mass are coupled through a function
that varies smoothly with mass (see [3] and references therein), with possible noticeable exception(s)
like the recent [4–6]. Up to now, all hypothetical particle models (WIMP, Axions, Neutrinos ...) failed
direct or indirect detection tests. Alternative theories (e.g., MOND), which negate the existence of dark
matter as a physical entity, have failed to explain clusters and the observed pattern in the CMB.

In this article, we view dark matter as a physical entity and we propose an explanation of its
current existence as the remnant, after hadronization, of the zero-point energy of the quark–gluon
plasma (QGP) [7] due to an effective anti-de-Sitterian environment experienced by the QGP massive
constituents existing at the so-called quark epoch, over about 10−12 s till 10−6 s after the Big-Bang and
subsequent to the inflation (over about 10−33 s till 10−32 s).

Section 2 is a survey of Poincaré, de Sitter, and anti-de Sitter kinematic symmetries and their
quantum realizations in terms of the unitary irreducible representations (UIR) of the corresponding
relativity groups which are labeled by spin and ∼mass invariants. In Section 3, these de Sitter and
anti-de Sitter massive representations are considered from the point of view of their Minkowskian
contraction limits in terms of the so-called Garidi mass formulas. We then reexamine in Section 4 the
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dark matter enigma by advancing three hypotheses based on the anti-de Sitter Garidi mass formula and
the experimental evidence of the phase transition from hadronic confinement to QGP deconfinement.
We conclude in Section 5 with a few comments.

2. Mass and Symmetries

In Minkowski (M), the concept of (rest) mass originates from the ubiquitous law of conservation
of energy, a direct consequence of the Poincaré symmetry. This concept was formulated by Wigner [8]
in rigorous mathematical terms as associated with the concept of elementary system. The latter is
a description of a set of states which forms a unitary irreducible representation (UIR) space for the
proper orthochronous Poincaré group P↑0 = R1,3 o SO0(1, 3) (or R1,3 o SL(2,C)), semi-direct product
of the translations in Minkowski with the Lorentz group (or its universal covering). The UIRs of the
Poincaré group [9] that we are concerned with here are the massive ones with positive energy. They are
denoted by UM(m, s) and are completely characterized by the eigenvalues of two Casimir operators,
namely the quadratic Klein–Gordon operator

Q(1)
M = Pµ Pµ = P0

2 − P2 ,

with eigenvalues 〈Q(1)
M 〉 = m2 c2, and the quartic Pauli–Lubanski operator

Q(2)
M = WµWµ, Wµ =

1
2

εµνρσ JνρPσ

with eigenvalues (in the non-zero mass case) 〈Q(2)
M 〉 = −m2 c2 s(s + 1)h̄2.

As it was explained in [10], with the requirements of kinematical rotation, parity, and time-reversal
invariance, there exists one way only to deform the Poincaré group P↑0 , namely, in endowing space-time
with a certain curvature. Hence, there are two possible deformations that are distinguished with the
sign of curvature of the corresponding space-times, namely the de Sitter (dS) and anti-de Sitter (AdS)
space-times [11,12]. More precisely, dS (resp. AdS) are the unique maximally symmetric solutions of
the vacuum Einstein’s equations with positive (resp. negative) cosmological constant Λ [13]. Their
symmetries are one-parameter deformations of the Minkowskian symmetry with

• negative curvature −κdS = −H/c = −
√

ΛdS /3

• positive curvature κAdS =
√
|ΛAdS|/3

Their respective invariances (in the relativity or kinematical sense) hold with respect to the
ten-parameter dS group SO0(1, 4) (or its universal covering Sp(2, 2)) and the ten-parameter AdS group
SO0(2, 3) (or its two-fold covering Sp(4,R), or even its universal covering) groups.

The “massive” UIR’s of the dS [14,15] and AdS [16] groups are those which are deformations
of the above UM(m, s). Those UIRs are here denoted by UdS(ςdS , s) and UAdS(ςAdS, s), respectively.
The real dimensionless parameters ςdS and ςAdS replace the Minkowskian rest mass. Together with
the spin s, they determine the corresponding UIR through the eigenvalues of dS and AdS invariant
Casimir operators [17]. The dS UIR UdS(ςdS , s) belongs to the so-called principal series, for which we
have

〈Q(1)
dS
〉 = ς2

dS
+

9
4
− s(s + 1) , 〈Q(2)

dS
〉 =

(
ς2

dS
+

1
4

)
s(s + 1) ,

with ςdS ∈ R, and s ∈ N/2. Note that UdS(ςdS , 0) and UdS(−ςdS , 0) are equivalent. The AdS UIR
UAdS(ςAdS, s) belongs to the so-called discrete series, and we have

〈Q(1)
AdS〉 = ςAdS(ςAdS − 3) + s(s + 1) , 〈Q(2)

AdS〉 = −(ςAdS − 1)(ςAdS − 2)s(s + 1) ,

with s ∈ N/2 and ςAdS = s + 2, s + 3, . . . (or ςAdS > s + 1 for the universal covering of SO0(2, 3)).
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There exists an irreconcilable difference between the dS invariant ςdS and the AdS one ςAdS.
The latter is the lowest value of the discrete spectrum of the generator of “time” rotations in AdS [18].
Hence, it can be given a non ambiguous meaning of a rest energy when it is expressed in energy AdS
units h̄κAdS/c:

Erest
AdS := h̄cκAdS ςAdS . (1)

Therefore, this physical concept of “energy at rest” survives with the deformation Poincaré→
AdS.

The situation is radically different with dS. The spectrum of the generator of “time” hyperbolic
rotations in dS is not bounded below [19]. Actually, it covers the whole real line. Of course, the invariant
ςdS can be given an energy dimension as

EdS := h̄cκdS ςdS . (2)

3. Minkowskian Content of dS and AdS Elementary Systems: The Garidi Mass

If we wish to go further into the interpretative problem of a mass in a dS/AdS background,
the crucial question to be addressed concerns the interpretation of the dS/AdS UIR’s (or quantum AdS
and dS elementary systems) from a (asymptotically) Minkowskian point of view. We mean by this the
study of the contraction limit κ → 0 or equivalently Λ → 0 of these representations. The notion of
mass in “de Sitterian Physics” may appear ambiguous in terms of contraction of representation [20,21],
exemplified by the fact that one cannot give a precise meaning to a dS rest energy, except if one
follows an approach based on a causality de Sitterian semi-group [19], or based on a analyticity
prerequisite [22]. Nevertheless, a consistent mass formula has been proposed by Garidi [23] in terms
of the dS UIR parameters ςdS and s:

m2
dS

=
h̄2κ2

dS

c2

(
〈Q(1)

dS
〉 − 〈Q(1)

dS
|s=1/2+iςdS

〉
)
=

h̄2κ2
dS

c2

(
ς2

dS
+

(
s− 1

2

)2
)

. (3)

The minimal value assumed by the eigenvalues of the first Casimir in the set of UIR in the
discrete series is precisely reached at s = 1/2 + iςdS , which corresponds to the “conformal” massless
case, for which s clearly loses its spin meaning. Controlling the validity of such a formula from a
Minkowskian observer amounts to understanding the contraction (mathematically non-trivial in terms
of sequences of Hilbert spaces [24])

dS UIR −→ Poincaré UIR

Then, the contraction dS→ Poincaré in terms of mass has to be understood as

κdS → 0 and ςdS → +∞ while ςdS h̄κdS /c→ m .

In terms of representations,
D(ςdS , s) −→

κdS→0, ςdS→∞

ςdS h̄κdS /c→m

UM(m, s) .

Thus, close by the contraction limit,

mdS ≈ m

√√√√1 +
(s− 1

2 )
2

ς2
dS

=

{
m for s = 1/2

m + o(1/ςdS) for s 6= 1/2
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The analogous of the Garidi mass for the AdS case exists as well [25,26]. It precisely vanishes for
massless conformal AdS fields that lie at the lowest limit ςAdS = s + 1 of the discrete series.

m2
AdS =

h̄2κ2
AdS

c2

(
〈Q(1)

AdS〉 − 〈Q
(1)
AdS|ςAdS=s+1〉

)
=

h̄2κ2
AdS

c2

[(
ςAdS −

3
2

)2
−
(

s− 1
2

)2
]

.
(4)

As for dS, the contraction AdS→ Poincaré in terms of mass reads as

κAdS → 0 and ςAdS → +∞ while ςAdSh̄κAdS/c→ m .

The contraction AdS→ Poincaré in terms of masses and representations reads as

D(ςAdS, s) −→
κAdS→0, ςAdS→∞
ςAdS h̄κAdS/c→m

UM(m, s) .

We now show how the rest energy introduced in Equation (1) for a massive AdS elementary system
reveals a universal pure curvature or vibration energy component besides a matter energy content.
From the Garidi mass formula in Equation (4), an AdS elementary system can indeed be viewed
asymptotically [27] as a combination of both a relativistic free particle with rest energy mAdSc2 ≈ mc2

and a 3D isotropic quantum harmonic oscillator with zero-point energy 3
2 h̄κAdSc ≡ 3

2 h̄ωAdS at the first
order in the curvature:

Erest
AdS = h̄κAdScςAdS =

[
m2

AdSc4 + h̄2ω2
AdS

(
s− 1

2

)2
]1/2

+
3
2

h̄ωAdS

= mAdSc2 +
3
2

h̄ωAdS +
1
2

h̄2ω2
AdS

mAdSc2

(
s− 1

2

)2
+ o

(
κ2

AdS

)
= mAdSc2 +

3
2

h̄ωAdS + o (κAdS) .

By contrast, the meaning of energy in dS relativity with regard to its Poincaré limit is less tractable.
It is also exemplified by the absence of any term of order κAdS besides the dS mass energy

EdS = h̄κdS cςdS = mdSc2 + o(κdS)

One notices the remarkable position occupied by the spin s = 1/2 in the above formulas:

for dS : EdS = mdSc2 ,

for AdS: Erest
AdS = mAdSc2 +

3
2

h̄κAdSc .

4. Dark Matter as a Relic AdS Curvature Energy?

Dark matter is observed as an energy more or less localized in halos surrounding baryonic matter
in galaxies and galaxy clusters.

Assumption 1. In our approach, the nature of this dark matter energy is supposed to be related to some effective
AdS curvature. Precisely, for a spin 1/2 elementary particle X,

Erest
AdS = mAdS(X)c2︸ ︷︷ ︸

visible

+
3
2

h̄κAdSc︸ ︷︷ ︸
EDM(X)

, EDM(X) = r(X)mAdS(X)c2 ,
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where the ratio r(X) := EDM(X)/mAdS(X)c2 should reflect to some extent the ratio dark matter/visible matter.
By, “to some extent”, we mean that this individual ratio should be trivially larger that 1, to be compared with
the estimated global ratio 27/5 = 5.4, and not too large in order to be consistent with most of the observed
ratios halo mass:stellar mass. Typically, a galaxy with a stellar mass of about 2× 108 M� (M� is the solar mass)
should have a dark matter mass of about 6× 1010 M�; see, for instance [3], with noticeable exceptions [6].

Assumption 2. The appearance of dark matter held over a period when the temperature(s) was (were) compatible
with a phase of entities X, compatibility being understood in the sense of validity of the equipartition theorem
applied to the quantum-oscillator-like energy spectrum of an AdS elementary system:

kBTX ≈ h̄κAdSc ≈ 2r(X)

3
mAdS(X)c2 .

The most probable spin 1/2 candidates X in agreement with the above assumptions are stable light quarks
u and d when, at the “quark epoch” (about over 10−12 s till 10−6 s, T > 1012 K), the quark–gluon plasma
experienced the phase transition, i.e., hadronization, which marked the beginning of the “hadron epoch” (about
over 10−6 s till 1 s, T > 1010 K). The current estimate of the hadronization temperature for light quarks [28] is
Tc f = 156.5± 1.5 MeV ≈ 1.8× 1012 K (“chemical freeze-out temperature”). Thus, with mAdS ≈ m,

TX ≈ 1.8× 1012 K ≈ 2r(X)

3
m(X)c2

kB
. (5)

Therefore, we obtain the estimates for quarks u and d:

r(u) ≈ 108 , r(d) ≈ 49 . (6)

These values may be viewed as reasonable with regard to Assumption 1.
Moreover, the value of TX in Equation (5) yields AdS curvature κAdS and lifetime τ:

kBTX ≈ h̄κAdSc ≡ h̄
τ
⇒ τ ≈ 2.7× 10−23 s , κ−1

AdS ≈ 8 fm . (7)

This AdS length scale κ−1
AdS ≈ 8 f m is to be compared with the QGP typical distance scales, which exceed

the size of the largest atomic nuclei (and the low typical momentum scale) (in the Pb case, RPb ≈ 5.3788 fm).

Assumption 3. The pure AdS curvature energy decouples from the rest mass energy at the critical hadronization
point and abides as a free component of the Universe along its posterior epochs.

5. Discussion

The conjectural interpretation we have proposed about the relation EDM(X) = 3
2 h̄κAdSc = 3

2 h̄ωAdS

as the remnant of the AdS zero-point energy of the spin 1/2 elementary system X in the QGP period of
the early Universe, which immediately follows the dS inflationary phase like an “AdS bounce” (AdS
phase as anti inflation!) and which precedes the hadronization, requires of course a lot deeper analysis
in terms of QCD, thermal QFT, and phase transition. Note that a QCD vacuum density due to conformal
anomaly yields a Lorentz-invariant negative-valued contribution to the cosmological constant (see
the review [7] and references therein). Unfortunately, this effect is negligible in comparison with the
estimate in Equation (7). Moreover, the assumption of a AdS space-time should compel us to work
within the framework of consistent thermodynamics, QFT, and QCD in AdS and not in Minkowski,
a formidable program. Nevertheless, despite these drawbacks, one appealing aspect of our proposal is
the fact that it rests upon the experimental evidence of the phase transition from hadronic confinement
to QGP deconfinement, e.g., in CERN with SPS and LHC, or in BNL with RHIC and AGS (see [28] and
references therein). Understanding the structure and phases of the QGP state of matter is certainly one
of the main issues of modern nuclear physics.
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In this paper, we have advanced a guess about the emergence of dark matter based on some of the
most basic symmetry considerations, by exploiting ideas coming from previous works like [21,25–27].
One may imagine that in the primordial QGP period happening just after inflation the massive
constituents experience an effective geometric environment analogous to AdS during extremely
short periods, and that the total zero-point energy resulting from those AdS phases subsists after
hadronization. Like the cosmic microwave background (CMB) being a remnant from the recombination
epoch of the universe (≈ 379,000 years, at T ≈ 3000 K), when protons and electrons combined to
form neutral hydrogen atoms, the dark matter would be a “relic” of the QGP epoch, totally free of
any interaction but the gravitational one. It is indeed tempting to establish a parallel between dark
matter and CMB, since the latter is viewed as the emergence of the photon decoupling, precisely when
photons started to travel freely through space rather than constantly being scattered by electrons and
protons in plasma.

Finally, I cannot resist quoting Bacry and Lévy-Leblond in [10]:

...it is amusing to notice that, in the Newton Universe N−, resulting from c→ ∞ contraction of AdS,
the kinetic energy of the elementary system on the quantum level, that is,

EN−
kin :=

I
2

[
P2 +

1
τ2 K2

]
, I ≡ Newtonian inertia , K ≡ Newtonian boost generator

is quantized, which is not surprising in view of the “compactness” of the corresponding universe.
The oscillator levels have a separation δEN−

kin ≈ h̄τ−1 in agreement with the uncertainty principle,
since τ may be thought of as the “lifetime” of this oscillating universe.
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