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Abstract: Applying the cosmological principle to Finsler spacetimes, we identify the Lie Algebra of
symmetry generators of spatially homogeneous and isotropic Finsler geometries, thus generalising
Friedmann-Lemaître-Robertson-Walker geometry. In particular, we find the most general spatially
homogeneous and isotropic Berwald spacetimes, which are Finsler spacetimes that can be regarded
as closest to pseudo-Riemannian geometry. They are defined by a Finsler Lagrangian built from
a zero-homogeneous function on the tangent bundle, which encodes the velocity dependence of
the Finsler Lagrangian in a very specific way. The obtained cosmological Berwald geometries are
candidates for the description of the geometry of the universe, when they are obtained as solutions
from a Finsler gravity equation.

Keywords: Finsler geometry; Berwald space; Berwald spacetime; cosmology; cosmological principle
on Finsler spacetimes

1. Introduction

To describe the evolution of the whole universe in cosmology, one applies the cosmological
principle (CP), which states that there exists no preferred spatial position and no preferred spatial
direction on large scales. Applying this principle to general relativity leads to the spatially
homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker (FLRW) metric as the unique
ansatz for the geometry of spacetime. It contains two free functions which depend only on time,
the lapse function and the scale factor. The lapse function can be normalized to unity, by a suitable
choice of the time coordinate. The scale factor remains the only free function to be determined as
solution of the Einstein equations, sourced by a perfect fluid energy-momentum tensor. On the basis
of this mathematical model for the universe, one has to conclude that only ∼5% of the Universe
consists of standard model baryonic matter, while the rest is composed of what is nowadays called
dark energy [1,2] and dark matter [3]. The standard approach to cosmology is excellently summarized
for example in reference [4].

A promising approach for a geometric explanation of the dark matter and dark energy
phenomenology is to use Finsler spacetime geometry for the description of the gravitational interaction,
instead of pseudo-Riemannian geometry [5–9]. In particular, it has recently been suggested that
Finsler geometry provides the correct mathematical framework [10] and extension of the Einstein
equations [11] for the accurate determination of the gravitational field distribution of a kinetic gas.

In this article we apply the cosmological principle to Finsler spacetime geometry. Starting from
a symmetry group which acts transitively on spatial equal time surfaces and which contains a local
isotropy group acting transitively on spatial directions at each point, we find that a cosmological
homogeneous and isotropic Finsler geometry is defined by a Finsler Lagrangian with a very specific
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dependence on the tangent bundle coordinates. Yet, since the Finsler Lagrangian is a 2-homogeneous
function in its dependence on the directional variable of the tangent bundle, the demand of
cosmological symmetry leaves large classes of allowed Finsler Lagrangians; the symmetry demand
does not provide a strong limitation in this regard. Specific choices of Finsler geometries have been
investigated in their capability to explain aspects of the cosmological dark matter and dark energy
phenomenology [12–18].

A class of Finsler spacetime geometries, which can be regarded as closest to pseudo-Riemannian
geometry, are the so-called Berwald spacetimes [19–22]. They are characterized by the fact that, in any
local chart, the Chern-Rund connection coefficients on the tangent bundle only depend on the points of
the base manifold, or, equivalently, the geodesic spray coefficients are quadratic in their dependence on
the directional variables of the tangent bundle. In other words, on Berwald spacetimes, the Chern-Rund
connection gives rise to an affine connection on the spacetime manifold. In general, this connection is
not the Levi-Civita connection of any pseudo-Riemannian metric, but instead, it can be regarded as a
non metric-compatible metric-affine connection without torsion [23].

We derive the most general cosmologically (spatially homogeneous and isotropic) Berwald
spacetime geometry. It serves as simplest Finslerian candidate for the description of the geometry of
the universe. The obtained Finsler Lagrangian contains one free function, which encodes the velocity
dependence of the Finsler Lagrangian in a very specific way. The Berwald geometry we obtain is the
minimal Finsler geometric extension of pseudo-Riemannian FLRW geometry.

We present our results in the following way. In Section 2, we introduce the definition of
Finsler spacetimes and the mathematical language needed to discuss the cosmological principle
and cosmologically symmetric Finsler spacetimes. We apply the cosmological principle to Finsler
spacetime geometry and identify the symmetry generating vector fields in Section 3. In Section 4 we
recall how to identify Berwald spacetimes and derive the most general cosmologically symmetric
Berwald spacetime Finsler Lagrangian. Finally, we conclude in Section 5.

2. Berwald Finsler Spacetime Geometry

Throughout this article, we consider the tangent bundle TM of a 4-dimensional connected
and oriented manifold M, equipped with manifold induced local coordinates, as follows. A point
(x, ẋ) ∈ TM will have local coordinates of the form (xa, ẋa), where xa are the local coordinates of the
point x ∈ M and ẋ = ẋa∂a ∈ Tx M is the decomposition of the vector ẋ ∈ Tx M in the natural basis.
If there is no risk of confusion, we will sometimes suppress the indices of the coordinates. The symbol
π denotes the canonical projection of the tangent bundle. The local coordinate bases of the tangent
and cotangent spaces, T(x,ẋ)TM and T∗(x,ẋ)TM, of the tangent bundle are {∂a = ∂

∂xa , ∂̇a = ∂
∂ẋa } and

{dxa, dẋa}.
A conic subbundle of TM is a non-empty open submanifold Q ⊂ TM\{0}, with the

following properties:

• πTM(Q) = M;
• conic property: if (x, ẋ) ∈ Q, then, for any λ > 0 : (x, λẋ) ∈ Q.

By a Finsler spacetime we will understand in the following a pair (M, L), where M is a smooth
n-dimensional manifold and the Finsler Lagrangian L : A → R is a smooth function on a conic
subbundle A ⊂ TM, such that:

• L is positively homogeneous of degree two with respect to ẋ: L(x, λẋ) = λ2L(x, ẋ) for all λ ∈ R+;
• on A, the vertical Hessian of L, called L-metric, is non-degenerate,

gL
ab =

1
2

∂2L
∂ẋa∂ẋb ; (1)
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• there exists a conic subset T ⊂ A such that on T , L > 0, gL has Lorentzian signature (+,−,−,−)
and on the boundary ∂T , L can be continuously extended as L|∂T = 0. 1

This is a refined version of the definition of Finsler spacetimes in Reference [11] and basically
covers, if one chooses A = T , the improper Finsler spacetimes defined in Reference [24].

The 1-homogeneous function F, which defines the point particle action for curves γ on M ,

S[γ] =
∫

dτ F(γ, dγ
dτ ) , (2)

is obtained from the Finsler-Lagrange function L as F =
√
|L| and interpreted as proper time integral

of observers. For clarity, we list the different sets which appear in the above definition and comment
on their meaning:

• A: the subbundle where L is defined, smooth and gL is nondegenerate, with fiberAx = A∩ Tx M,
called the set of admissible vectors;

• T : the set of future pointing timelike directions, a maximally connected conic subbundle where
L > 0, the L-metric exists and has Lorentzian signature (+,−,−,−), with fiber Tx = T ∩ Tx M;

• N = {(x, ẋ)|L(x, ẋ) = 0}: the subbundle where L = 0, with fiber Nx = N ∩ Tx M.

We like to point again the relation ∂T ⊂ N is demanded in our definition.
An important building block of the geometry of Finsler spacetimes is the geodesic spray,

locally given by the coefficients

Ga =
1
4

gLaq(ẋm∂m∂̇qL− ∂qL) . (3)

It defines the Finsler geodesic equation in arclength parametrization ẍa + 2Ga(x, ẋ) = 0,
the canonical (Cartan) nonlinear connection coefficients Ga

b = ∂̇bGa and the Berwald linear connection
coefficients Ga

bc = ∂̇c∂̇bGa.
A Finsler spacetime is called of Berwald type [19,25], or simply Berwald spacetime, if and only if,

in any local chart, the geodesic spray is quadratic in its dependence on the tangent space coordinates ẋ:

Ga(x, ẋ) =
1
2

Ga
bc(x)ẋb ẋc . (4)

This is equivalent to demanding that the canonical nonlinear connection coefficients are actually
linear in their ẋ dependence, or that the Berwald linear connection coefficients are independent of ẋ.
The latter means that the Ga

bc(x) define an affine connection on M.
Next, we will determine the most general cosmologically symmetric Finsler spacetimes from the

CP, before we derive the most general homogeneous and isotropic Berwald spacetime in Section 4.

3. The Cosmological Principle on Finsler Spacetimes

We will prove in the following that, applying the CP to Finsler spacetime geometry singles out
6 symmetry generating vector fields, which characterize spatially homogeneous and isotropic Finsler
spacetimes. More precisely, these symmetry generating vector fields are the same as the ones defining
cosmological symmetry in general relativity, that is, the same as in the case of pseudo-Riemannian
geometry. The key argument is that spatial homogeneity and isotropy ensure the existence of a
maximally symmetric Riemannian metric on the 3-dimensional time slice hypersurfaces of a Finsler
spacetime. The Finsler Lagrangians we will determine will involve this maximally symmetric
Riemannian metric, albeit, in a non-trivial way.

1 It is possible to equivalently formulate this property with opposite sign of L and metric gL of signature (−,+,+,+). We fixed
the signature and sign of L here to simplify the discussion.
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We begin by assuming that the spacetime in consideration possesses a smooth global time
function t : M → R, which assigns to each p ∈ M a time stamp and whose differential dt satisfies
dt(X) > 0, ∀X ∈ T ∪ ∂T . The level sets of the time function ΣT = {p ∈ M|t(p) = T = constant} are
interpreted as equal-time spatial hypersurfaces. We assume that these level sets are connected.

The demand of the existence of a symmetry group acting on the hypersurfaces ΣT is the core of
the cosmological principle.

3.1. The Symmetry and the Isotropy Group

A Finsler spacetime geometry satisfies the CP if it is (see for example Wald [26] or Weinberg [4]
for pseudo-Riemannian spacetimes):

• spatially homogeneous, that is, for each fixed value T of the time function t and for any two points
q1 and q2 in ΣT , there exists a diffeomorphism of M which maps q1 to q2 and preserves the Finsler
Lagrangian L. In other words, there exists a Lie Group G of isometries of (M, L) acting transitively
on each slice ΣT ;

• spatially isotropic, that is, around each p ∈ M there exists a congruence of observer curves γ(t, s)
with tangent vector field ∂γ

∂t ∈ T , such that for each two lines [Z1] and [Z2] in TpΣT there exists a
diffeomorphism of M preserving p, ∂γ

∂t and L while mapping [Z1] to [Z2] (the equivalence relation
[] is defined as Z ∼ Z̄ if Z = λZ, λ ∈ R∗). In other words, the stabilizer Gp = {ψ ∈ G|ψ(p) = p}
at p ∈ M acts transitively on the projective tangent spaces PTpΣT of ΣT .

Fix T ∈ R. We start by a first remark: if a Lie group acts transitively on a connected manifold,
then the connected component of the identity element is a Lie subgroup that still acts transitively on
the respective manifold [27].

Since the slice ΣT is connected, there is no loss of generality if we assume that G is connected
(in the contrary case, we can restrict our attention to the connected component G0 of the identity
in G, which still acts transitively on ΣT . The corresponding isotropy group will then be Gp ∩ G0).
The connected component of the identity in G only contains orientation-preserving diffeomorphisms
ψ : M→ M.

We note that the homogeneity demand makes (ΣT , G) a homogeneous space; thus, ΣT is
diffeomorphic to the quotient G/Gp and the following relation between the dimensions of the involved
sets holds

dim G = dim Gp + dim ΣT = dim Gp + 3. (5)

We will now prove two lemmas to identify the dimension of the groups G and Gp.

Lemma 1. On a Finsler spacetime (M, L) satisfying the CP, the dimension of the space of Killing vectors at
each point p ∈ M is at most 6 and the dimension of the isotropy group Gp is at most 3.

Proof. Locally, in a coordinate chart around each p ∈ M, the action of G on M is determined by
the generating vector fields ξ = ξa∂a; the 1-parameter subgroup of G generated by such a vector
field ξ acts on M by some diffeomorphisms ψ locally expressed as: ψa(x) = xa + εξa(x) +O(ε2).
On a Finsler spacetime (M, L), these diffeomorphsims are isometries if and only if ξC(L) = 0,
where ξC = ξa∂a + ẋb∂bξa∂̇a is the complete lift of ξ to the tangent bundle.

Using the Killing equation ξC(L) = 0 on a Finsler spacetime (M, L), it was proven in Reference [28]
(Section 5.4.4) that any Killing vector field ξ = ξa∂a in local coordinates around any point p ∈ M,
is locally uniquely determined by the values ξa(p) and by the derivatives ∂bξa(p), with a < b. For an
n-dimensional Finsler spacetime this means, we can freely choose at most n values ξa(p) and at most
n(n−1)

2 values ∂bξa(p); all in all, this gives at most n + n(n−1)
2 = n(n+1)

2 independent Killing vectors.
Thus, for n = 4 the dimension of the isometry group can be at most 10.
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Choose an arbitrary local chart such that the first coordinate is the time function x0 = t. Since the
diffeomorphisms ψ ∈ G preserve the time slices ΣT , we find that ξ(T) = 0, that is, ξ0 and its derivatives
identically vanish and that the remaining components ξ i, i = 1, 2, 3 can only depend on xi, i = 1, 2, 3.
That is, we can only pick freely, at a given point, 3 values ξa(p) and 3 derivatives ∂bξa(p), with a < b,
which gives us at most 6 degrees of freedom for the space of Killing vectors at each point. In particular,
since the isotropy subgroup Gp fixes the point p, we must have ξa(p) = 0 for all a = 0, . . . , 3, hence we
can only freely choose the 3 derivatives ∂bξa(p) with a < b. Consequently, the dimension of Gp cannot
exceed 3, which proves our first remark.

Lemma 2. The dimension of the isotropy group Gp is at least 3.

Proof. Let us properly understand the statement “the isotropy group Gp = {ψ ∈ G|ψ(p) = p} at
p ∈ M acts transitively on the projective tangent spaces PTpΣT of ΣT”. We will identify a transitive
and effective action of a quotient group of Gp on the projective tangent space PTpΣT . This group is
obtained by identifying elements of Gp that have the same linear tangent map at p.

Any Lie group action on a manifold gives rise to an effective Lie group action on the respective
manifold, by factorizing away the elements that provide trivial actions. In our case, assume the group
Gp does not act effectively on the (for the moment, non-projectivized) tangent space TpΣT and denote
by Idp the subset of Gp whose elements provide trivial actions. Then, Idp is a normal subgroup of Gp

and the factor group

G′p = Gp/Idp (6)

acts effectively on TpΣT , by the rule (dψ ◦ Idp)v := dψ (v).
The group G′p can be identified with a subgroup of the general linear group GL3(R) (more

precisely, of the connected component of GL3(R) consisting with matrices with positive determinants).
This is justified as follows. Fix an arbitrary coordinate chart on TM. The action the subgroup Gp

fixing p on the tangent space TpΣT is then expressed as a matrix multiplication, namely, by the
Jacobian matrices of the diffeomorphisms ψ ∈ Gp. Factorizing Gp by the subgroup Idp actually means
identifying as a single element those diffeomorphisms ψ, ψ′ of M which have the same values at p
and the same Jacobian matrices (but whose higher order derivatives at p might differ). This way,
the mapping from G′p to GL3(R) associating to a class [ψ] ∈ G′p the Jacobian matrix at p of ψ, is an
injective homomorphism, which gives us the right of identifying G′p as a subgroup of GL3(R).

Further, passing to the projectivised tangent spaces (that can be identified with the projective plane
PR3 once a choice of the basis of TpΣT is made), the group that naturally acts is then the subgroup PG′p
of the projective group PGL3(R) obtained by factorizing GL3(R) by the group of rescalings A 7→ λA,
with λ ∈ R. Hence, on one hand, the isotropy request that Gp acts transitively on the projective
tangent space PTpΣT implies that the group PG′p (which is isomorphic to a subgroup of the projective
linear group PGL3(R)), acts transitively and effectively on PTpΣT . The latter is true since PGL3(R)
acts effectively on PTpΣT and so do all of its subgroups, hence in particular PG′p. On the other hand,
we notice that the only rescalings that can belong to G′p are those with positive factors λ. But these
cannot be L-isometries unless λ = 1, since L(λV) = λ2v for all v ∈ TpΣT . That is, the subgroup of G′p
we have used for factorization is actually trivial, that is,

G′p ' PG′p. (7)

There is actually a smaller subgroup of PGL3(R) which still acts transitively on PTpΣT . To identify
this subgroup, we mention the following result ([27,29], p. 398): If a connected Lie group acts on
a compact manifold with finite fundamental group, then any maximal compact subgroup also acts
transitively on the respective manifold.
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The projectivized space PTpΣT is connected, compact and its fundamental group is Z2.
Since PTpΣT is connected, the connected component of the identity in G′p still acts transitively and
effectively on it. Denoting by Hp a maximal compact subgroup of the connected component of the
identity in PG′p, we find that Hp also acts transitively and effectively on PTpΣT .

Finally, we use a result in Reference [29] (pp. 398–401), stating that any connected, compact Lie
group acting transitively and effectively on the projective plane PR3 is isomorphic to SO(3); that is,
our subgroup Hp of the isotropy group PG′p must be isomorphic to SO(3) and thus:

dim Gp ≥ dim G′p = dim PG′p ≥ dim Hp = 3. (8)

From Lemma 1 and Lemma 2 we find

Theorem 1. On a Finsler spacetime satisfying the cosmological principle, the dimension dim Gp of the isotropy
group Gp is 3 and the dimension dim G of the full symmetry group G is 6.

Remark 1. The above result intuitively tells us that, on one hand, by taking into account only the linear
approximation at p of the diffeomorphisms ψ and, on the other hand, by taking into account just a bounded
region around the identity of the symmetry group, we do not lose any generators of the Lie algebra.

We can actually state a much stronger result.

Remark 2. On Finsler spacetimes with cosmological symmetry, the isotropy group Gp is compact.

Proof. First we show that Gp is connected, and then we apply Cartan’s Theorem on connected
Lie groups.

• Under the above assumption that G is connected, the isotropy group Gp is also connected.
To see this, let us assume that Gp is the disjoint union of at least two connected components,
say, Gp = A t B, where A is the component of the identity. Since PTpΣT is connected and Gp acts
transitively on it, it follows that A also acts transitively on PTpΣT and see Reference [29] (p. 395),

Gp = AHv, (9)

where Hv is the stabilizer of a point [v] in PTpΣT . But, Hv = {ψ ∈ Gp|[dψ v] = [v], ∀v ∈ TpΣT}
consists of rescalings with positive factors; recalling that rescalings with positive factors cannot
be L-isometries, it follows that Hv is trivial, hence, Gp coincides with its identity connected
component A.

• Further, we apply Cartan’s classification theorem ([29], p. 389 ), to Gp. The Theorem states that
any connected Lie group is the direct product between one of its maximal compact subgroups,
sayH, and a Euclidean space. Since Gp acts transitively on the compact manifold PTpΣT (which,
as we have seen above, has finite fundamental group), its maximally compact subgroupH also
acts transitively on PTpΣT . But, the smallest compact group that can act transitively on PTpΣT is
3-dimensional (more precisely, SO(3)), that is, dimH ≥ 3. Taking into account that the dimension
of Gp itself is 3, it means that Gp = H, that is Gp itself is compact.

3.2. The Symmetry Generators

To explicitly determine the generators of the groups G and Gp, we use the above remark,
which states that Gp is compact. Then, we take into account that ΣT is a homogeneous manifold
having a compact isotropy group and thus it must admit a G-invariant Riemannian metric h ([30],
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Example 1.3, p. 154). In other words, the generators of our group G are also Killing vector fields of h.
But, for a 3 dimensional Riemannian manifold there can exist at most 6 Killing vector fields, hence ΣT
is maximally symmetric and h is the corresponding maximally symmetric metric. In particular, h has
constant scalar curvature k. The Riemannian metric h also gives us the possibility of having local
spherical coordinates (t, r, θ, φ) around p. In these coordinates, see Reference [4,31,32], the isotropy
group generators (which are the elements of the Lie algebra so(3)) are written as:

X1 = sin φ∂θ + cot θ cos φ∂φ, X2 = − cos φ∂θ + cot θ sin φ∂φ, X3 = ∂φ , (10)

and the generators of quasi translations, as:

X4 =
√

1− kr2 sin θ cos φ∂r +

√
1− kr2

r
cos θ cos φ∂θ −

√
1− kr2

r
sin φ

sin θ
∂φ

X5 =
√

1− kr2 sin θ sin φ∂r +

√
1− kr2

r
cos θ sin φ∂θ +

√
1− kr2

r
cos φ

sin θ
∂φ

X6 =
√

1− kr2 cos θ∂r −
√

1− kr2

r
sin θ∂θ .

(11)

Finally, solving the Finsler Killing equation XC
I (L) =, I = 1, ..., 6, where XC = Xa∂a + ẋb∂bXa∂̇a

yields that

L(t, r, θ, φ, ṫ, ṙ, θ̇, φ̇) = L(t, ṫ, w), w2 =
ṙ2

1− kr2 + r2(θ̇2 + sin2 θφ̇2) , (12)

is the most general spatially homogeneous and isotropic Finsler Lagrangian. The explicit calculation,
as well as the expressions for the complete lifts XC

I can be found for example in Reference [31].

4. Homogeneous and Isotropic Berwald Spacetimes

In order to find the desired Berwald Finsler spacetimes, we rewrite a generic Finsler Lagrangian
in a specific way, which allows us to reduce the condition that a Finsler spacetime shall be Berwald,
to a first order partial differential equation.

4.1. The Berwald Condition

Every Finsler spacetime Lagragian L can be written as L(x, ẋ) = g(ẋ, ẋ)Ω(x, ẋ), where g is an
arbitrary pseudo-Riemannian metric, g(ẋ, ẋ) = gab(x)ẋa ẋb and Ω = Ω(x, ẋ) is a 0-homogeneous
function in ẋ. In Reference [33], it was proven that L defines a Berwald Finsler geometry if and only if
there exist a g and a (1, 2)-tensor field D on M, symmetric in its vector arguments, such that Ω satisfies
the equation

∂aΩ(x, ẋ)− Γb
ac(x)ẋc∂̇bΩ(x, ẋ) = Db

ac(x)ẋc
(

∂̇bΩ +
2ẋbΩ(x, ẋ)

g(ẋ, ẋ)

)
, (13)

which we call the Berwald condition. Here, the indices were raised and lowered with the
pseudo-Riemannian metric, that is, ẋb = ẋagab(x). The connection coefficients Ga

bc in (4) are then
determined by the Christoffel symbols Γ of g and the tensor D as

Ga
bc = Γa

bc + Da
bc . (14)

In case the expansion of L = g(ẋ, ẋ)Ω(x, ẋ) is done with a proper pseudo-Riemannian metric,
where g(ẋ, ẋ) has a non trivial null structure, one might worry what happens on this null structure.

To avoid this problem observe that, if one has found one pseudo-Riemannian metric g, a tensor D
and a factor Ω which solve (13), the Berwald condition is satisfied for any alternative expansion of L of
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this type, that is, for any other pseudo-Riemannian metric g̃, we can find a corresponding (1,2)-tensor
field D̃ and a factor Ω̃.

To see this, let us expand L = g(ẋ, ẋ)Ω(x, ẋ) = g̃(ẋ, ẋ)Ω̃(x, ẋ), where g and Ω satisfy (13) for a
tensor field D. Then δaL = ∂a − Gb

a∂̇bL = 0 implies

0 = (∂aΩ̃− Gb
a∂̇bΩ̃)g̃(ẋ, ẋ) + 2x̃c(Γ̃c

ab ẋb − Gc
a)Ω̃ . (15)

Using that Ga
b = (Γa

bc + Da
bc)ẋc and introducing the tensor field components D̃a

bc = Da
bc +

Γa
bc − Γ̃a

bc we find

∂aΩ̃(x, ẋ)− Γ̃b
ac(x)ẋc∂̇bΩ̃(x, ẋ) = D̃b

ac(x)ẋc
(

∂̇bΩ̃ +
2ẋbΩ̃(x, ẋ)

g̃(ẋ, ẋ)

)
. (16)

Hence, also g̃, Ω̃ and D̃ satisfy the Berwald condition. Thus the metric factor in the expansion of
the Finsler Lagrangian can be chosen arbitrarily; in particular, we can choose a positive definite metric
g in order to avoid complications on the null structure of the metric.

In the following, we will insert the most general g and D which are compatible with a specific
spacetime symmetry and solve the Berwald condition for Ω. This determines the most general Berwald
Finsler spacetime for the desired spacetime symmetry.

4.1.1. The Cosmological Berwald Condition

To evaluate the Berwald condition, we consider Finsler Lagrangians L which are the form
L(t, ṫ, w) = (ṫ2 + σa(t)2w2)Ω(t, ṫ, w), where the metric factor g(ẋ, ẋ) = (ṫ2 + σa(t)2w2) is the most
general homogeneous and isotropic (pseudo)-Riemannian metric with positive definite (σ = 1) resp.
Lorentzian (σ = −1) signature. As we discussed, the Berwald condition (13) does not depend on this
choice, which will also explicitly follow from the upcoming calculation. The possibility of choosing
σ = 1 means that the set of null vectors of the chosen metric does not interfere with our result. On the
conic bundle T , where ṫ 6= 0, this expression can be nicely rewritten in terms of the 0-homogeneous
variable s = w/ṫ

L(t, ṫ, w) = ṫ2(1 + σa(t)2s2)Ω(t, 1, s) , (17)

which will be very convenient to evaluate the Berwald condition.
The second ingredient in this condition is the (1, 2)-tensor field D. The most general spatially

homogeneous and isotropic such tensor field that is symmetric in its vector arguments, has the
following nonzero components, see for example Reference [34],

Dt
tt = b(t), Dt

rr =
c(t)

1− kr2 , Dt
θθ = r2c(t), Dt

φφ = r2 sin2 θc(t) , (18)

Dr
rt = Dr

tr = Dθ
θt = Dθ

tθ = Dφ
φt = Dφ

tφ = d(t) , (19)

where b(t), c(t), d(t) are arbitrary functions of t.
Using the above expressions in the Berwald condition (13) yields two independent equations,

which need to be solved to determine Ω(t, s) ≡ Ω(t, 1, s). Let ′ denote derivatives with respect to the
single argument of the functions a, b, c and d, then the spatial equations, if the index a assumes the
values r, θ or φ, read

2
c(t) + σa(t)2d(t)

1 + σs2a(t)2 Ω(t, s) +
a′(t)− a(t)

[
s2(c(t)− σa(t)a′(t))− d(t)

]
sa(t)

∂

∂s
Ω(t, s) = 0 (20)
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and the temporal equation, for which the index a assumes the value t is

∂

∂t
Ω(t, s)− 2

b(t) + σs2a(t)2d(t)
1 + σs2a(t)2 Ω(t, s) +

a(t)
[
b(t)− d(t)

]
− a′(t)

a(t)
s

∂

∂s
Ω(t, s) = 0. (21)

4.2. Solving the Cosmological Berwald Condition

Solving the Berwald condition for the most general combination of Ω(t, s), b(t), c(t) and d(t) is
not trivial. We will now classify all the solutions of the system (20) and (21).

Introducing the functions

M(t, s) = 2
c(t) + σa(t)2d(t)

1 + σs2a(t)2 , N(t, s) =
a′(t)− a(t)

[
s2(c(t)− σa(t)a′(t))− d(t)

]
sa(t)

(22)

P(t, s) = −2
b(t) + σs2a(t)2d(t)

1 + σs2a(t)2 Q(t, s) =
a(t)

[
b(t)− d(t)

]
− a′(t)

a(t)
s , (23)

the Berwald condition becomes

M(t, s)Ω(t, s) + N(t, s)
∂

∂s
Ω(t, s) = 0,

∂

∂t
Ω(t, s) + P(t, s)Ω(t, s) + Q(t, s)

∂

∂s
Ω(t, s) = 0 . (24)

We now analyze the first equation and find several cases in which we obtain trivial solutions,
in the sense that the Finsler Lagrangian is pseudo-Riemannian or zero. The only case that provides
proper Finslerian solutions is M = N = 0, as we will see below.

4.2.1. Trivial Solutions

Trivial solutions arise in the following situations:

• If N is different from zero, then we can divide the first equation in (24) by N,

M(t, s)
N(t, s)

Ω(t, s) +
∂

∂s
Ω(t, s) = 0 . (25)

Now it is helpful to introduce the function

A(t, s) =
1 + σs2a(t)2

a′(t)− a(t)
[
s2(c(t)− σa(t)a′(t))− d(t)

] (26)

and to realize that it satisfies

1
A(t, s)

∂

∂s
A(t, s) =

M(t, s)
N(t, s)

. (27)

We can thus rewrite Equation (25) as

Ω(t, s)
A(t, s)

∂

∂s
A(t, s) +

∂

∂s
Ω(t, s) = 0 . (28)

After multiplication with A(t, s) we find

∂

∂s
(Ω(t, s)A(t, s)) = 0 ⇒ Ω(t, s)A(t, s) = f (t) , (29)
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where f (t) is an arbitrary function of t. Using the explicit form of the function A, we thus obtain
the solution

Ω(t, s) =
f (t)

A(t, s)
= f (t)

a′(t)− a(t)
[
s2(c(t)− σa(t)a′(t))− d(t)

]
1 + σs2a(t)2 . (30)

Constructing the Finsler Lagrangian L = ṫ2(1 − a(t)2s2)Ω(t, s) from this solution
immediately yields

L = I(t)ṫ2 + J(t)w2 , (31)

with I(t) = f (t)(a′(t) + a(t)d(t)) and J(t) = a(t) f (t)(σa(t)a′(t)− c(t)). The just constructed
Finsler Lagrangian is again quadratic in its dependence on the velocities and hence defines a
pseudo-Riemannian spacetime geometry. In the particular case when M(t, s) is zero, we see
from (25) that Ω is just a function of t.

• If N = 0 and M 6= 0, then the first equation in (24) implies immediately that Ω(t, s) = 0 and thus
the Finsler Lagrangian is L = 0.

From this analysis, we find that nontrivial cosmologically symmetric Berwald Finsler Lagrangians
can only be obtained if M = N = 0.

4.2.2. Finslerian Solutions

Demanding that M = N = 0 leads to the equations

c(t) + σa(t)2d(t) = 0, a′(t)− a(t)
[
s2(c(t)− σa(t)a′(t))− d(t)

]
= 0 (32)

for c(t) and d(t). Since s and t are independent variables, the s dependence in the latter must vanish,
which immediately implies c(t) = σa(t)a′(t). Plugging this into the remaining equations yields
d(t) = − a′(t)

a(t) .
Having solved (20) for general Ω(t, s), the remaining Equation (21) becomes

∂

∂t
Ω(t, s) + sb(t)

∂

∂s
Ω(t, s)− 2(b(t)− σs2a(t)a′(t))

1 + σs2a(t)2 Ω(t, s) = 0 . (33)

This equation intertwines the t and s dependence of Ω and can be solved by a change of variables.
For this purpose we substitute s by a new variable u, which is defined such that

s = uB(t) , B′(t) = B(t)b(t) . (34)

In other words, the function B(t) is given explicitly as the integral

B(t) = exp
(∫ t

t0

b(τ)dτ

)
, (35)

up to an undetermined constant of integration related to the choice of the lower bound t0.
Replacing Ω(t, s) by

Ω̃(t, u) = Ω(t, s) = Ω(t, uB(t)) , (36)

we find that

∂

∂u
Ω̃(t, u) = B(t)

∂

∂s
Ω(t, s) ,

∂

∂t
Ω̃(t, u) =

∂

∂t
Ω(t, s) + uB′(t)

∂

∂s
Ω(t, s) . (37)
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Using

uB′(u) = uB(t)b(t) = sb(t) , (38)

our original Equation (33) becomes

∂

∂t
Ω̃(t, u)− 2

B′(t)/B(t)− σu2B(t)2a(t)a′(t)
1 + σu2B(t)2a(t)2 Ω̃(t, u) = 0 , (39)

and so it contains derivatives with respect to t only. We can explicitly integrate this equation by
introducing another function

C(t, u) = u2a(t)2 +
σ

B(t)2 ⇒ ∂

∂t
C(t, u) = 2u2a(t)a′(t) + 2

B′(t)
B(t)3 , (40)

hence simplifying Equation (39) to

∂

∂t
Ω̃(t, u) +

Ω̃(t, u)
C(t, u)

∂

∂t
C(t, u) = 0 . (41)

After multiplication by C(t, u) we thus conclude

∂

∂t
(
Ω̃(t, u)C(t, u)

)
= 0 ⇒ Ω̃(t, u)C(t, u) = f (u) , (42)

with an arbitrary free function f (u) which depends only on u. Substituting back we obtain the general
Finslerian solution of the Berwald condition

Ω(t, s) =
B(t)2

s2a(t)2 + σ
f (sB(t)−1) . (43)

Recall from the definition (35) that B(t) is determined only up to a multiplicative constant;
however, this constant can simply be absorbed into the function f . With this result, we found the most
general nontrivial Berwald Finsler spacetimes with cosmological symmetry:

L = ṫ2(1 + σa(t)2s2)Ω(t, s) = σṫ2B(t)2 f (sB(t)−1) . (44)

The only remnant of the two different possible choices for the metric in the decomposition of the
Finsler Lagrangian appears in the overall factor σ, which can, without loss of generality, be absorbed
into the free function f .

One further step of simplification can be done by introducing the new coordinate t̃(t) =
∫ t

0 dλB(λ),
which implies dt̃

dt = B(t) and thus, for the tangent bundle coordinates, ˙̃t = ṫB(t) and s̃ = w/ ˙̃t. In these
new coordinates (45) becomes

L(t̃, ˙̃t, w) = ˙̃t2 f (s̃) . (45)

eventually there is only one free function f , which needs to be determined by Finsler gravitational
field equations. The null structure of the above Finsler Lagrangian is determined by the zeros of f ,
and surely f has to be choosen in such a way that L defines a Finsler spacetime according its definition
in Section 2.

To summarize our findings we have proven the following theorem:

Theorem 2. If a Finsler spacetime Lagrangian L is of Berwald type and admits cosmological,
spatial homogeneous and isotropic symmetry, then it falls into one of the following classes:
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1. pseudo-Riemannian (quadratic in ẋ), in which case it is, up to t coordinate redefinition, given by the FLRW
metric, or

2. nontrivially Finslerian, in which case it is of the form (45).

As an explicit example, one may consider f = (c− s̃2)h(s̃) with c being a constant and h being a
smooth and non-vanishing function. The resulting Finsler Lagrangian then is

L = (c ˙̃t2 − w2)h(s̃) , (46)

which satisfies all Finsler spacetime criteria. Still, the function h can be chosen freely and must be
determined from the gravitational field equation. The latter is work in progress.

5. Discussion and Conclusions

The cosmological principle assumes the existence of a symmetry group G that acts transitively
on spatial hypersurfaces of spacetime, and which contains a local isotropy group Gp ⊂ G. In the
context of Finsler geometry, so far, it has been assumed that the generators of this symmetry group
have the form (10) and (11). So far this had not been derived from first principles. We closed this gap
by showing that the dimension of G must be 6 and that the dimension of Gp must be 3. Thus the
dimension of these groups is the same in the pseudo-Finsler and in the pseudo-Riemannian setting.
Moreover, with the help of an auxiliary metric on the spatial slices sharing the same symmetry group,
which is guaranteed to exist, we could conclude that the symmetry generators indeed must have the
assumed form.

Among the variety of possible Finsler geometric extensions of pseudo-Riemannian geometry
as geometry of spacetime, Berwald spacetimes represent a most conservative generalization.
Our discovery of the most general non-trivial cosmological, that is, spatially homogeneous and
isotropic Berwald spacetimes reveals the class of geometries which extend the famous FLRW class
of metrics into this realm. Most importantly, we found that cosmological Berwald geometries are
parametrized by a free 0-homogeneous function on the tangent bundle, which intertwines the position
and direction dependence of the Finsler Lagrangian in a very specific way. The resulting Finsler
Lagrangian is

L = ˙̃t2 f (s̃) . (47)

As the scale factor is determined by the Einstein equations on general relativity, the free function
must be determined by suitable Finsler generalisations of the Einstein equations. Most of the suggested
generalizations in the literature simplify significantly for Berwald geometries.

In particular, the ansatz (47) is an important step in the program of the description of the evolution
of the universe in terms of a gravitational field distribution sourced by a kinetic gas. We argued in
Reference [10] that the back reaction of a kinetic gas on the geometry of spacetime can be obtained
directly from the 1-particle distribution function (1PDF) of the gas, when one employs Finsler geometry
instead of pseudo-Riemannian geometry. The explicit form of the 1PDF will then determine the free
function f , a derivation which is currently work in progress.
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