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Abstract: The work presented in this paper aims to contribute to the problem of testing Finsler
gravity theories by means of experiments and observations in the solar system. Within a class of
spherically symmetric static Finsler spacetimes we consider a satellite with an on-board atomic clock,
orbiting in the Finslerian-perturbed gravitational field of the earth, whose time signal is transmitted
to a ground station, where its receive time and frequency are measured with respect to another
atomic clock. This configuration is realized by the Galileo 5 and 6 satellites that have gone astray and
are now on non-circular orbits. Our method consists in the numerical integration of the satellite’s
orbit, followed by an iterative procedure which provides the numerically integrated signals, i.e.,
null geodesics, from the satellite to the ground station. One of our main findings is that for orbits
that are considerably more eccentric than the Galileo 5 and 6 satellite orbits, Finslerian effects can
be separated from effects of perturbations of the Schwarzschild spacetime within the Lorentzian
geometry. We also discuss the separation from effects of non-gravitational perturbations. This leads
us to the conclusion that observations of this kind combined with appropriate numerical modelling
can provide suitable tests of Finslerian modifications of general relativity.

Keywords: Finsler spacetimes; numerical modelling; orbit integration; Earth satellites; frequency
shift; modified theories of gravity

1. Introduction

In this paper, we present a method of testing Finsler gravity, a generalization of Einstein’s general
theory of relativity, by means of experiments and observations in the solar system. We mainly focus on
the case that the time signal of an atomic clock on board an Earth satellite is transmitted to a ground
station, where it is compared with the time signal of another atomic clock. The Finslerian perturbations
of the Schwarzschild spacetime affect the satellite orbit and the downlink signals and cause small
shifts of the receive times and frequencies of the downlink signals, compared to the unperturbed
Schwarzschild spacetime.

Let us first make some remarks concerning the role of such experiments in testing the Einsteinian
theory or generalized theories of gravity. One of the “three classical tests of general relativity” consists
in verifying the gravitational redshift, which can be described as follows. If a source of electromagnetic
radiation is situated in a gravitational field, its spectrum measured outside or less deep in the field is
shifted to longer wavelengths compared to its spectrum measured nearby the source. In other words,
a standard clock in a gravitational field appears to run slower when observed from outside or less deep
in the field. Assuming that atomic clocks are standard clocks, there is the possibility to test general
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relativity by comparing the time signals of two atomic clocks, one on board an Earth satellite and one
on the ground.

Recently, the accuracy of such experiments has been considerably improved by using Galileo
on-board atomic clocks. On 22 August 2014, the satellites Galileo 5 and 6 were unintentionally launched
into eccentric orbits. From the point of view of gravitational physics, this mishap was a stroke of
luck. Thanks to this, a little more than four years later, Delva et al. [1] and Hermann et al. [2] were
able to report on confirmation of the prediction from general relativity with an accuracy in the order
of 10−5 at 1 σ level. This is a few times more accurate than the Gravity Probe A experiment in 1976,
see Vessot et al. [3], which had previously provided the most accurate confirmation of the general
relativistic redshift effect. The accuracy now achieved opens up the possibility of not only testing
Einstein’s theory, but also of providing quantitative bounds on alternative theories of gravity by means
of such experiments.

Finsler gravity is a generalization of general relativity, where the components of the metric tensor
can depend not only on the spacetime coordinates but also on the components of a tangent vector.
More precisely, the Lagrangian of the Finsler geodesics must no longer be bilinear in the components
of the tangent vector but only fulfil the weaker requirement of homogeneity of degree two. Since
bilinearity is a special case of homogeneity of degree two, Lorentzian geometry is a special case of
Finsler geometry. Consequently, general relativity is a special case of Finsler gravity.

With regard to the position of Finsler gravity among the alternative theories of gravity, it should
first be mentioned that it breaks spatial isotropy even on the tangent spaces. Therefore, the principle of
local Lorentz invariance (LLI) is violated and the propagation of light in vacuum may be anisotropic.
Since LLI is part of the Einstein equivalence principle (EEP), the EEP is also violated in Finsler gravity.
(As is well known, the validity of the EEP requires a pseudo-Riemannian spacetime geometry, see e.g.,
Will [4]). However, since in our class of Finsler spacetimes (see Section 2) there is a unique timelike
geodesic for every timelike initial condition, the weak equivalence principle is valid.

Since length is not a Lorentz invariant quantity, the above-mentioned violation of LLI can also be
expected in a still to be found theory of quantum gravity which asserts that there is a fundamental
length scale given by the Planck length. This motivates to consider non-quantized theories of Finsler
gravity as possible “interpolations” between general relativity and quantum gravity in some regime
of length and energy scales while maintaining the weak equivalence principle. More about this and
other motivations, so in connection with the Ehlers-Pirani-Schild [5] axiomatic approach to general
relativity, can be found in the recent review on the present status and the perspectives of Finslerian
spacetime theories by Lämmerzahl and Perlick [6] and in Section I of the article by Lämmerzahl,
Perlick, and Hasse [7]. The latter publication also provides the class of spherically symmetric static
Finsler spacetimes on which our studies are based. The Finsler metrics of this model are purely
kinematical perturbations of the Schwarzschild metric, i.e., these were not derived as solutions to any
field equation.

Gravitational perturbations by higher multipole moments of the central body (a planet or the sun)
or by other bodies (e.g., the sun and the moon in the case of a satellite orbiting the earth, the planets in
the case of a test particle in the gravitational field of the sun) as well as non-gravitational perturbations
(e.g., solar radiation pressure) have not been taken into account. This is justified by the assumption
that all these perturbations, as well as the Finslerian perturbations, are so small that in principle
one may linearize the equations of motion with respect to the corresponding terms and treat all
these perturbations separately, followed by addition of all their effects on measurable quantities.
(In this context, we note that in the already mentioned analyses [1,2] of Galileo 5 and 6 data, to test
the gravitational redshift predicted by Einstein’s theory, from the here mentioned perturbations only
Earth’s oblateness, represented by the zonal coefficient J2, has been considered.) Following this strategy,
we restrict our analysis to perturbations which can be modelled by three “perturbation functions”
which respect the stationarity and the spherical symmetry of the spacetime. These perturbation
functions will be introduced in the next section.
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The paper is organized as follows. In Section 2, we will fix our notations and conventions and
introduce the considered class of Finsler spacetimes. Section 3 gives a brief description of our model
of a downlink from an Earth satellite to a ground station. The subsequent Section 4 deals with the
mathematical representation of our model and its numerical treatment. Section 5 presents tests of our
software against results published in [7]. In Section 6 we explain the iterative procedure which provides
the null geodesics of the downlink. Readers who are less interested in the numerical aspects may skip
Sections 4–6. In order to separate the effects of the orbit perturbations from the effects of the signal
perturbations we consider in Section 7 “hybrid models”, in which both kinds of perturbations can be
“switched on” and “off” separately. The most important part of our paper is Section 8. It contains core
findings obtained by means of our simulations. We discuss, exemplarily for the orbits of the Galileo 5
and 6 satellites, to which extent Finslerian effects can be separated from effects of perturbations of
the Schwarzschild spacetime within the Lorentzian geometry. Based on these results, we consider,
in Section 9, a model satellite with high orbit eccentricity. In the concluding Section 10, we discuss,
among other things, the advantages of combining the two Galileo satellites with a future dedicated
mission and provide an outlook how our numerical approach can be brought over to other situations
of communication or even to other modifications of general relativity.

2. A Class of Spherically Symmetric Static Finsler Spacetimes

We work in the same class of Finsler spacetimes as in the paper of Lämmerzahl, Perlick, and
Hasse [7]. This class is defined in Schwarzschild coordinates t, r, ϑ, and ϕ by the Finsler Lagrangian

2L = (1 + φ0)htt ṫ2 + (1 + φ1)hrr ṙ2 + r2(ϑ̇2 + (sin2 ϑ)ϕ̇2) + φ2
hrrr2ṙ2(ϑ̇2 + (sin2 ϑ)ϕ̇2)

hrr ṙ2 + r2(ϑ̇2 + (sin2 ϑ)ϕ̇2)
, (1)

see (14) in [7] or (37) in [8], which defines a perturbed Schwarzschild spacetime. Here htt and hrr are
the Schwarzschild metric coefficients, given by

htt = −
c2

hrr
= −c2

(
1− 2GM

c2r

)
= −c2

(
1− rS

r

)
, (2)

where c is the speed of light, G is the gravitational constant, M is the mass of the gravitating body,
and rS = 2GM/c2 is its Schwarzschild radius. The metric convention is (- + + +), i.e., the unperturbed
metric has signature +2.

φ0, φ1, and φ2 are “perturbation functions” which depend differentiably only on the radial
coordinate r. For stationary observers, φ0 and φ1 perturb the measurement of proper time and radial
length, respectively. Whereas φ0 and φ1 describe perturbations within the Lorentzian geometry,
φ2 introduces a spatial anisotropy which is a genuine Finsler feature.

Let us remark that it results from sections III and IV of [7] that the choice of the Finsler
Lagrangian (1) is in some sense natural. To be more precise, it results from adding the leading-order
spherical-harmonics term in a general Finslerian perturbation of the spatial part of the metric to the
Lagrangian of the Schwarzschild metric, followed by linearisation with respect to the perturbing terms.
Thereby, “general” means only restricted to compatibility with the spherical symmetry.

Throughout this paper, as in [7], we assume that the perturbation functions are so small that we
may linearize all equations with respect to the φn(r) and their derivatives φ′n(r), n = 0, 1, 2. The outputs
of our numerical codes are also based on this linearisation procedure.

In [7] only problems are considered that can be reduced to the equatorial plane ϑ = π/2 by
spherical symmetry. But in our case, when it comes to modelling the downlink, all three spatial
dimensions must be taken into account.

The first order equations of motion in the plane ϑ = π/2, with the constants of motion as
parameters, are derived in Section IV of reference [7]. From that one can easily derive the equations
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of motion for given initial values in the four-dimensional spacetime by means of a suitable spatial
rotation of the coordinate system.

For later reference we note how φ0, φ1, and φ2 affect the propagation of material bodies and light
rays as seen from a stationary observer at infinity (at least in linear approximation). This can be seen
from the equations of motions in the Appendixes A and B. In general, φ0, φ1, and φ2 affect both the
radial and the tangential velocity components. However, there are some special cases:

• φ0, φ1, and φ2 never cause tangential acceleration components if the velocity is pure tangential or
pure radial.

• φ1 always causes pure radial acceleration.
• φ2 does not affect pure radial velocities.

3. Our Model of a Downlink from an Earth Satellite to a Ground Station

Let us assume that the geometry outside the earth is determined by the Finsler Lagrangian (1)
where, in this case, M is the earth’s mass. We consider an Earth satellite whose orbit is modelled by a
spatially bounded timelike geodesic. An on-board clock is modelled by the satellite’s Finsler proper
time (with arbitrary zero point). Furthermore, we consider a ground station on the terrestrial surface.
The rotation of the earth around its own axis is taken into account by assuming that the worldline of
the ground station is a spatially circular timelike curve with constant value of the angular coordinate ϑ,
given by the station’s latitude π/2− ϑ. The effect of the earth’s rotation on the spacetime geometry is
not taken into account. The model also contains a clock at the ground station which gives the station’s
Finsler proper time. Finally, the downlink from the satellite to the ground station is described by null
geodesics connecting the world lines of the satellite and the ground station.

4. Equations and Numerical Treatment of Our Model

The equations of the causal geodesics, proper times, and frequency shifts that are the basis of the
simulations of the satellite orbits and the signal propagation presented in Sections 8 and 9 are given
in Appendix B. The iterative procedure for determining the null geodesics from the satellites to the
ground stations will be outlined in Section 6.

The calculations were performed by one of us (I.A.) with the software Mathematica R©, version
12.0.0.0, making use of its inbuilt procedures for numerical (differential) equation solving and
integration. The numerical effort was reduced by taking advantage of the fact that every causal
geodesic r(t) is restricted to the plane spanned by the vectors r(t0) and dr/dt(t0) at arbitrary time t0.
Therefore, all satellite orbits and signals (null geodesics) were calculated by choosing two orthonormal
basis vectors k and l in the plane spanned by the respective initial position and velocity vectors and
then solving the two-dimensional analogue of (A60). The working precision (maximum number of
digits for internal computations) was 105 for the satellite orbits and 65 for all other calculations.

5. Comparison with the Results of Lämmerzahl, Perlick, and Hasse

In the article by Lämmerzahl, Perlick, and Hasse [7] the effects of φ0, φ1, and φ2 on three known
phenomena (time delay of light rays, light deflection by the sun, perihelion precession of the planet
Mercury) are presented under the assumption that with regard to these effects the perturbation
functions can be approximated as (see (39) in [7])

φn = φn1
rS
r

, n = 0, 1, 2. (3)

These results were obtained by numerical treatment of integrals rather than by numerical
treatment of the geodesic equations. It is therefore an obvious approach, among other tests, to calculate
these effects also with the software described in the preceding section and to compare the results.

In general the calculations described in Section 4 confirm the results presented in [7], but we found
two discrepancies regarding light deflection and perihelion precession. Therefore, we additionally
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calculated these two effects on basis of the equations in Appendix A. These calculations were performed
again by one of us (I.A.) with Mathematica and independently by another of us (M.P.) with the software
MATLAB R©, version 5.3.0.10183 (R11). The MATLAB calculation made use of its available solver
functions for ordinary differential equations and were performed with the relative tolerance of the
solver output set to 10−12.

5.1. Time Delay of Light Rays

Consider a radio signal that is sent from Earth (r = 1 au), then passes the sun at r = 0.0074 au and
finally reaches a spacecraft at r = 8.43 au. According to Equation (82) in [7] the difference between the
perturbed one-way time delay δt and the unperturbed one-way time delay δt0 is

δt− δt0 = (6.6× 10−5 φ11 + 3.3× 10−6 φ21 − 7.5× 10−5 φ01)s. (4)

The calculations described in Section 4 exactly confirm this result.

5.2. Light Deflection

Consider a light ray from a distant star (r→ ∞) that grazes the sun at r = 0.0046 au and finally
reaches Earth (r = 1 au). According to Equation (73) in [7] the difference between the perturbed
deflection angle ∆ϕ and the unperturbed deflection angle ∆ϕ0 is

∆ϕ− ∆ϕ0 = 4.2× 10−6 φ11 + 5.1× 10−11 φ21 − 4.2× 10−6 φ01. (5)

Regarding the coefficients of φ01 and φ11 our calculations confirm Equation (5), with maximum
deviation ± 1 in the last reported digit. But for the coefficient of φ21 the results agree less well. For this
coefficient, both Mathematica programs give the value 3.6 × 10−11 (for e.g., 10−8 ≤ φ21 ≤ 10−2).
An exemplary calculation with MATLAB gives the value 2.9 × 10−11. We cannot explain this
discrepancy at the moment.

5.3. Perihelion Precession

Equation (107) in [7] for the perihelion motion of Mercury is

ω−ω0

ω0
= 3.3× 10−1 φ11 + 3.1× 10−1 φ21 + 2.5× 10−8 φ01. (6)

In this equation ω and ω0 denote the precession rate (“angular velocity”) of the perihelion in
the perturbed and unperturbed case, respectively. Whereas our calculations confirm the coefficients
of φ11 and φ21, with maximum deviation ± 1 in the last reported digit, for the coefficient of φ01 we
get the value of −0.5, which differs by more than seven powers of ten from the value in Equation (6).
We cannot uncover the cause of this discrepancy, but can only guess that it has to do with the orbital
period. Namely, since the perihelion motion is calculated with fixed apsidal distances, φ0, φ1, and φ2

cause a change ∆Ts of the sidereal period, whereby the effect of φ0 clearly dominates (on circular orbits
the effects of φ1 and φ2 even vanish, cf. Equation (30) in [7]). ∆Ts in turn makes the largest contribution
to the change ∆Ta of the anomalistic period. Ultimately, ∆Ta makes the dominating contribution to
∆ω. This contribution can be calculated analytically in the framework of the PPN formalism, which
also results in a value of approximately −0.5 for the coefficient of φ01.

6. The Iterative Procedure for Determining the Downlink Signals

In our model the satellite transmits a signal to the ground station every 2000 s with respect to its
proper time τ. Therefore, after the calculation of the satellite orbit rS(t), the next step is the calculation
of the coordinate transmit times tn corresponding to the proper transmit times τn by integration
of (A37). Then the null geodesics from the satellite positions rS(tn) to the rotating ground station with
position rB(t) are calculated by means of (A60). To this aim the main task is the iterative determination
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of the unknown emission directions d̃(tn). We will explain the procedure for a signal emitted at t0

with unknown emission direction d̃(t0).
The first approximation d1 of the emission direction is calculated according to the formula

d1 := rB

(
t0 +

|rB(t0)− rS(t0)|
c

)
− rS(t0). (7)

By making use of (A35) for the coordinate light speed c at the emission position in the emission
direction, the signal rL(t) emitted at the position rS(t0) in the direction d1 is then calculated, together
with its approach distance ∆ := |rL(t)− rB(t)|min from the ground station. Next the gradient of the
approach distance with respect to the emission direction is calculated, i.e.,

∂∆
∂d

(d1), (8)

and the emission direction is updated according to

d(s) := d1 − s
∂∆
∂d

(d1) (9)

for a series of steps of increasing width s, until the approach distance stops decreasing at a step width
smax. This defines the improved emission direction

d2 := d(smax). (10)

This strategy is repeated several times and after the calculation of typically about 40 null geodesics
the approach distance is typically only about 5 µm. The time ta of closest approach is used as coordinate
receive time tr of the signal at the ground station. By integration of (A37) the coordinate receive times
are converted to the proper receive times τr at the ground station. Finally, for every signal the receive
frequency shift is calculated according to (A67).

7. Hybrid Models

Since the perturbations influence both the orbital motion of the satellite and the signal propagation,
the interesting question arises which of the two influences predominates in typical cases. This is not at
all clear from the outset, as the following considerations show.

The orbital speeds are about five powers of ten smaller than the speed of light, so the satellites
“feel” the φ1- and the φ2-perturbations (affecting only the spatial geometry) much less than the signals.
One would therefore expect that the observable effects of the φ1- and the φ2-perturbations are quite
predominantly caused by perturbations of the signal propagation, while a φ0-perturbation should
affect the satellite orbit and the signals approximately equally. However, this expectation does not take
into account that the perturbations act on the signals only for a short time and that the null geodesics
describing the signals and the timelike geodesics describing the satellite orbits must fulfil significantly
different initial and boundary conditions. While for the satellite orbit the initial position and the initial
velocity are given, for the signals the initial position and the condition to reach the ground station
are given. Thus, in a certain sense the geodesic of the signal is “more closely tied” than that of the
satellite and therefore less “bent” by the perturbations. In addition, the effects of the perturbations on
the signals are never accumulative. The situation is different with orbital perturbations because even
if a disturbed orbit is compared with an undisturbed orbit with the same sidereal period, there is an
accumulative effect due to the generally different rates of perihelion precession.

Further consideration shows that the so far open question of the predominant effect is relevant
with regard to the separation of Finslerian effects from effects of other perturbations. In our class
of models, Finslerian (φ2-) perturbations do not affect satellites and signals in radial motion and
their effects are greatest in a certain angular range between radial and tangential motion. Therefore,
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if the orbit perturbations dominate, Finslerian effects would be greatest in certain sections of the orbit
between the apsides and would increase with the eccentricity of the orbit. Conversely, if the signal
perturbations dominate, Finslerian effects would be greatest when the satellite, seen from the ground
station, is in a certain middle range of altitude above the horizon.

In order to answer this question we additionally studied “hybrid models”, in which only the
satellite orbit is and is not, respectively, affected by the perturbations. These models are not intended
as a description of nature. Rather, they help to understand the results obtained with the actual model
and to identify those orbits, orbit segments, and constellations (relative positions) of the satellite and
the ground station that are most promising for the detection of possible genuine Finslerian effects.

8. Galileo 5 and 6

8.1. Simulation Parameters

We will now study the effects of the first order perturbations φn(ρ) = φn1 rS/ρ (n = 0, 1, 2)
on the time signals that are transmitted from the satellites Galileo 5 and 6 and received at a ground
station on Earth. To that aim we simulated the motion of two model satellites with the following
orbital parameters, that are similar to the parameters of the satellites Galileo 5 and 6: inclination
i = 50◦, perigee distance ρp = 23,500 km, and perigee speed vp = 4.436 km/s and thus apogee distance
ρa = 32,462 km, semi-major axis a = 27,981 km, and eccentricity e = 0.1601. As the arguments of
perigee ω of the satellites Galileo 5 and 6 (GSAT0201 and GSAT0202) change with a rate of 0.034◦/d [9]
the simulations were performed both for ω = 90◦ and ω = 180◦.

The signals from the satellites were received at two ground stations that followed the rotation
of the earth. For the description of the (spherical) earth we used the parameter values radius
ρE = 6371 km, angular speed ωE = dϕ/dt = 7.292115× 10−5 rad/s, standard gravitational parameter
GME = 398,600.44 km3/s2, and Schwarzschild radius rS = 2GME/c2. The first ground station was on
the equator and received the signals from the satellite with argument of perigee ω = 90◦. A second
ground station was at a latitude of 45◦ north and received the signals from the satellite with argument
of perigee ω = 180◦. The detailed simulation parameters are listed in Table 1.

As we will find out, each perturbation causes characteristic patterns in the received signals,
independent of the argument of perigee of the satellite and the latitude of the ground station.

To check the reliability of the results, the simulations were performed with two different values
of each parameter φn1. We will see, that all results linearly depend on the parameters φn1 in the time
range under study, to a very good approximation. This confirms both the assumed smallness of the
perturbations and the reliability of the results.

Table 1. Simulation parameters: argument of perigee ω and orbital state vectors r and v of satellite S
and ground station B at initial time t0. x̂, ŷ, and ẑ denote the unit vectors along the coordinate axes.

ω rB(t0) vB(t0) rS(t0) vS(t0) t0 [s]

90◦ ρE x̂ ρEωE ŷ ρp (cos i x̂ + sin i ẑ) vp ŷ 0

180◦
ρE√

2
(x̂ + ẑ)

ρE√
2

ωE ŷ ρp ŷ −vp (cos i x̂ + sin i ẑ) 250, 000

8.2. Sidereal Period

In the following sections we will compare the received signals at the ground stations in the
unperturbed spacetime and in the perturbed spacetimes. For the underlying satellite orbits we require
the same value of the “area coordinate” r at perigee (same value of ρp) and the same sidereal period,
measured with respect to the proper time of a stationary clock far away from the earth. The proper
time of such a clock can be sufficiently approximated by the coordinate time t. With respect to the
coordinate time the sidereal period in the unperturbed spacetime is T0 = 46,580.92981316189761 s.
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Keeping the orbital state vectors of the satellites at t0 fixed according to Table 1, the perturbation
functions φn result in shifts ∆T = T − T0 of the sidereal period that are listed in Table 2.

Table 2. Shifts ∆T of the sidereal periods of the model satellites, divided by T0, with orbital state
vectors at t0 fixed according to Table 1.

n φn1
∆T
T0

0 10−9 2.57 × 10−9

0 10−8 2.57 × 10−8

1 0.1 4.22 × 10−12

1 1 4.22 × 10−11

2 0.1 4.06 × 10−12

2 1 4.06 × 10−11

Table 2 shows, that in the parameter range under study and with orbital state vectors at t0 fixed
according to Table 1, the shift of the sidereal period linearly depends on the parameters φn1 according to

∆T
T0

= 2.6 φ01 + 4.2× 10−11 φ11 + 4.1× 10−11 φ21. (11)

Therefore, to fulfil the constraint of same sidereal periods in the unperturbed spacetime and in
the perturbed spacetimes, the simulations were performed with a slightly reduced satellite speed at t0

in the perturbed spacetimes according to Table 3.

Table 3. Residual shifts ∆T of the sidereal periods of the model satellites, divided by T0, with reduced
satellite speeds vp + ∆vp at t0.

n φn1
∆vp

vp

∆T
T0

0 10−9 −6.20653150 × 10−10 1.49 × 10−18

0 10−8 −6.20653152 × 10−9 −1.11 × 10−17

1 0.1 −1.01973 × 10−12 2.53 × 10−18

1 1 −1.01973 × 10−11 2.53 × 10−17

2 0.1 −9.800645 × 10−13 −4.19 × 10−20

2 1 −9.800645 × 10−12 −4.15 × 10−19

8.3. Satellite Orbits

In this section we report about the effects of the perturbation functions on the satellite orbits.
To start with, Figure 1 shows the coordinate distance between the satellite and the ground station in
the unperturbed spacetime as function of the coordinate time.

In comparison, Figures 2–4 show the shifts of the satellite positions due to the perturbation
functions φn, divided by the magnitudes φn1 of the perturbations. In combination with the values of
the parameters φn1 listed in Table 3 it can be seen from these figures, that in the depicted time span the
maximum shifts of the satellite positions caused by the perturbations are 20 cm (φ01 = 10−8) and 7 cm
(φ11 = φ21 = 1), respectively.
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Figure 1. Coordinate distance rSB := |rS − rB| between the satellite and the ground station in the
Schwarzschild spacetime, left (right) curve ω = 90◦ (180◦).
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Figure 2. Shift ∆rS := |rS(φ01 6= 0) − rS(φ0 = 0)| of the satellite position rS, divided by φ01.
Black dashes φ01 = 10−9, red dashes φ01 = 10−8, left (right) curves ω = 90◦ (180◦).
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Figure 3. Shift ∆rS := |rS(φ11 6= 0) − rS(φ1 = 0)| of the satellite position rS, divided by φ11.
Black dashes φ11 = 0.1, red dashes φ11 = 1, left (right) curves ω = 90◦ (180◦).
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Figure 4. Shift ∆rS := |rS(φ21 6= 0) − rS(φ2 = 0)| of the satellite position rS, divided by φ21.
Black dashes φ21 = 0.1, red dashes φ21 = 1, left (right) curves ω = 90◦ (180◦).

φ0, φ1, and φ2 shift the satellite positions qualitatively different. φ0 causes an almost periodic
pattern with almost constant amplitude. In contrast, φ1 and φ2 cause patterns with increasing
amplitudes, that are very similar to each other (the maximum shift of the satellite position is 72
and 69 mm, respectively). From the satellite orbits, subject to perturbations φ11 = 1 and φ21 = 1,
respectively, it can be calculated that the distance between the two satellites increases in time, similar
to Figures 3 and 4, up to a maximum distance of 2.8 mm at the end of the depicted time span.

The root of the very similar effects of the two perturbations can be read from (A60) and (A41).
According to these equations, the differences between the accelerations caused by the perturbations
φ11 = 1 and φ21 = 1 depend on the factors f = (r · v)2/(r · r v · v) and f 2. But along the satellite orbits
defined in Table 1, the angle between r and v is always between 80.8◦ and 99.2◦. Therefore, the peak
values of f and f 2 are only 2.6% and 0.066%, respectively. Only for orbits of higher eccentricity these
factors become significant.

As our model is based on a point-like Earth, the signals reach the ground station both when the
satellite is above the horizon and when it is below the horizon. The latter is not possible in reality.
In the figures below, the regions in which the satellite is under the horizon are therefore shaded,
since comparison with observational data is not possible there.

8.4. Receive Times

We assume that the satellite transmits signals at a constant rate with respect to its proper time
τt. The zero points of the time axes are fixed by the assumption that one signal is transmitted at
coordinate time t0, corresponding to τt = 0, and received at the ground station at its proper time τr = 0.
This applies to both the unperturbed and the perturbed scenarios. With the time axes fixed that way,
the shift of the receive times τr caused by the perturbations is calculated according to

∆τr := τr(φn 6= 0)− τr(φn = 0). (12)

The results are shown in Figures 5–7. We see that φ0, φ1, and φ2 affect the receive times qualitatively
different. φ0 causes a simple and almost periodic pattern with ∆τr < 0 for the most part, whereas φ1

and φ2 cause rich and irregular patterns with varying amplitudes.
Accordingly, φ0-perturbations can easily be distinguished from φ1- and φ2-perturbations by

analysing the shifts of the receive times. But it seems that φ1- and φ2-perturbations cannot be easily
separated this way, at least not in the case of the satellites Galileo 5 and 6.



Universe 2020, 6, 57 11 of 28

0 100,000 200,000 300,000 400,000

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

τt [s]

Δ
τ r
/
ϕ
01

[s
]

Figure 5. Receive time shift ∆τr divided by φ01. Black dashes φ01 = 10−9, red dashes φ01 = 10−8,
left (right) curves ω = 90◦ (180◦).
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Figure 6. Receive time shift ∆τr divided by φ11. Black dashes φ11 = 0.1, red dashes φ11 = 1, left (right)
curves ω = 90◦ (180◦).
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Figure 7. Receive time shift ∆τr divided by φ21. Black dashes φ21 = 0.1, red dashes φ21 = 1, left (right)
curves ω = 90◦ (180◦).

To get more information and to find out how to possibly achieve complete separation,
we calculated the receive time shifts in two hybrid models with the same orbit parameters as above,
as introduced in Section 7. In the first model the perturbations affect only the satellite orbit. In the
second model the perturbations affect everything but the satellite orbit, i.e., the signal propagation and
the proper times of the satellite and the ground station. Figures 8–10 show the results.
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Figure 8. Receive time shift ∆τr divided by φ01. Black dashes φ01 = 10−8 only for the satellite
orbit calculation, red lines φ01 = 10−8 except for the satellite orbit calculation, left (right) curves
ω = 90◦ (180◦).
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Figure 9. Receive time shift ∆τr divided by φ11. Black dashes φ11 = 1 only for the satellite orbit
calculation, red lines φ11 = 1 except for the satellite orbit calculation, left (right) curves ω = 90◦ (180◦).
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Figure 10. Receive time shift ∆τr divided by φ21. Black dashes φ21 = 1 only for the satellite orbit
calculation, red lines φ21 = 1 except for the satellite orbit calculation, left (right) curves ω = 90◦ (180◦).

In the case of a pure φ0-perturbation the receive time shift caused by the perturbation of the orbit
(“orbit contribution”) completely dominates the receive time shift caused by the perturbation of the
signals and the proper times (“signal contribution”), as can be seen from Figure 8. In contrast, in the
case of a pure φ1-perturbation both contributions are of about the same size, see Figure 9. In addition,
there is a characteristic pattern: sharp positive peaks in the signal contribution tend to coincide with
negative extrema in the orbit contribution. Thus, Figure 9 reveals the hidden compensating effects in
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Figure 6. Finally, according to Figure 10, in the case of a pure φ2-perturbation the orbit contribution
dominates already during the first revolutions of the satellite, although less than with a φ0-perturbation.
However, the receive time shift (red dashes in Figure 7) is well approximated by the orbit contribution
(black dashes in Figure 10). It is also notable that the signal contributions of φ1 and φ2 tend to have the
same sign in the shaded regions and to have opposite signs in the middles of the unshaded regions.

The following considerations make plausible that φ0, φ1, and φ2 give qualitatively different results.
Under the constraint of same sidereal period in the unperturbed and in the perturbed models (cf.

Section 8.2), a φ0-perturbation results in a considerable change of the satellite orbit’s semi-major axis
(this follows from a simple consideration similar to that in the last paragraph of Section 5). That change
is in turn associated with a considerable shift of the receive times and receive frequencies. In contrast,
φ1 and φ2 affect the semi-major axis and hence the orbital motion of the satellite only slightly (cf.
Figures 2–4 for the effect of φ0, φ1, and φ2 on the satellite orbit).

The relatively sharp and strong peaks in the receive time shift that occur only with φ1 and only in
the shaded regions (one peak every time the satellite is near the nadir) can be understood as the results
of fictitious experiments of light deflection at a point mass, and it is already known from Section 5.2
that the effect is much stronger with φ1 than with φ2.

As mentioned at the end of Section 2, φ2 does not affect pure radial velocities. This makes plausible
that the signal contributions of φ1 and φ2 (red lines in Figures 9 and 10) differ significantly also in the
middles of the unshaded regions, i.e., where the satellite is near its maximum height above the horizon
seen from the ground station and the signal velocity has the largest radial component.

In summary, Figures 9 and 10 demonstrate that in the case of the satellites Galileo 5 and 6 the
signal contributions of φ1 and φ2 differ more than the orbit contributions. But in the solely accessible
unshaded regions the orbit contributions dominate and hamper the reliable separation. However,
in Section 9 we will demonstrate that for highly eccentric orbits the separation is possible and in this
case the different effect of φ1 and φ2 on almost radial signals is crucial. Therefore, one has to conclude
that the possibility of the separation of the receive time shifts caused by φ1 and φ2 depends on the orbit
of the satellite.

8.5. Receive Frequencies

Next we consider the receive frequency shift at the ground station caused by φ0, φ1, and φ2.
For comparison, Figure 11 shows the relative shift between transmit frequency ft and receive frequency
fr in the Schwarzschild spacetime. In the Schwarzschild spacetime the frequency shift is dominated by
the Doppler effect resulting from the relative motion of the satellite and the ground station.
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Figure 11. Relative frequency shift fr/ ft − 1 at the ground station in the Schwarzschild spacetime,
left (right) curve ω = 90◦ (180◦).
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To analyse the effects of the perturbation functions on the frequency shift we use the equation

∆ fr

ft
:=

fr(φn 6= 0)− fr(φn = 0)
ft

=

(
fr(φn 6= 0)

ft
− 1
)
−
(

fr(φn = 0)
ft

− 1
)
= ∆

(
fr

ft
− 1
)

. (13)

Since ∆ fr/ ft as defined by (13) is essentially given by −d∆τr/dτt, analogous patterns as with ∆τr

are to be expected. Indeed, the graphical representation of our results in Figures 12–14 confirms this
expectation.
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Figure 12. Relative receive frequency shift ∆ fr/ ft divided by φ01. Black dashes φ01 = 10−9, red dashes
φ01 = 10−8, left (right) curves ω = 90◦ (180◦).
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Figure 13. Relative receive frequency shift ∆ fr/ ft divided by φ11. Black dashes φ11 = 0.1, red dashes
φ11 = 1, left (right) curves ω = 90◦ (180◦).

As with ∆τr, we see that φ0, φ1, and φ2 affect the received signals qualitatively different. Again φ0

causes a simple, almost periodic pattern with almost constant amplitude, whereas φ1 and φ2 cause
patterns with varying amplitudes, and again only φ1 causes sharp peaks in ∆ fr/ ft which are located
in the shaded regions of Figure 13. However, unlike with ∆τr, these peaks come in pairs oriented
downward and upward, as is expected from the explanation following (13).

Figures 15–17 show the corresponding results of our hybrid model calculations.
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Figure 14. Relative receive frequency shift ∆ fr/ ft divided by φ21. Black dashes φ21 = 0.1, red dashes
φ21 = 1, left (right) curves ω = 90◦ (180◦).
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Figure 15. Relative receive frequency shift ∆ fr/ ft divided by φ01. Black dashes φ01 = 10−8 only for
the satellite orbit calculation, red lines φ01 = 10−8 except for the satellite orbit calculation, left (right)
curves ω = 90◦ (180◦).
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Figure 16. Relative receive frequency shift ∆ fr/ ft divided by φ11. Black dashes φ11 = 1 only for the
satellite orbit calculation, red lines φ11 = 1 except for the satellite orbit calculation, left (right) curves
ω = 90◦ (180◦).
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Figure 17. Relative receive frequency shift ∆ fr/ ft divided by φ21. Black dashes φ21 = 1 only for the
satellite orbit calculation, red lines φ21 = 1 except for the satellite orbit calculation, left (right) curves
ω = 90◦ (180◦).

As with ∆τr, we see that only φ1 perturbs the signal propagation to an extend that contributes
significantly to the whole effect (and again only in the shaded regions).

Finally we observe that φ2 causes a clearly increasing amplitude of ∆ fr/ ft (see Figure 14) and
that φ1 should also cause this effect. Namely, the black dashes in Figure 16 indicate that the “orbit
contribution” of ∆ fr/ ft also increases in time and will eventually dominate the non-increasing (or at
least much less increasing) “signal contribution”. Simulations of ∆τr and ∆ fr/ ft over time spans of up
to 107 seconds confirm this expectation (and show no new features).

As expected, for the frequency shifts the situation regarding the desired separation of the effects
of φ1 and φ2 is very similar to that for the receive time shifts.

In summary we have to state that at least in the examples considered here, based on the Galileo
5 and 6 satellites, the effects of a genuine Finslerian (φ2-) perturbation and of a φ1-perturbation can
hardly be separated. This assessment takes into account that noise and additional gravitational or
non-gravitational perturbations may cover or distort the specific structures in the signals.

9. High-Eccentricity Orbit Simulation

This section deals with a model satellite in a prograde equatorial Earth orbit with perigee distance
ρp = 23,500 km and perigee speed vp = 5.370 km/s and thus apogee distance ρa = 133,227 km,
semi-major axis a = 78,364 km, and high eccentricity e = 0.7001. The ground station is on the equator
and we assume ϕstation = ϕsatellite + π/2 at t = 0.

This choice of parameter values is justified as follows. On the one hand, the perigee distance
should not be significantly smaller than in the case of the Galileo 5 and 6 satellites since the satellite
should not enter the inner Van Allen radiation belt. On the other hand, our analytical calculations
(these are too extensive to be presented here) show that at an angle α (describing the direction of the
satellite’s velocity and defined by Equation (A10)) of about 0.86 the absolute value of the α-dependent
factor of the φ2-part of ϕ̈ is maximal, see Equation (A16) (whereas φ1 does not enter the expression for
ϕ̈). It turns out that for α to be about 0.86 somewhere on the trajectory, the eccentricity must be at least
about 0.7. This explains the relatively great apogee distance. (When comparing the following figures
with the respective figures in the previous section please note that now the semi-major axis is larger
than the radius of the geostationary orbit. Seen from the ground station the high eccentricity satellite is
thus moving from east to west whereas the Galileo 5 and 6 satellites are moving from west to east).
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As in Section 8 the initial values of the perigee speed are so adjusted that the sidereal period is the
same with and without perturbation (absolute value of relative shift <10−17).

Since with regard to φ0 there are no substantially different patterns than in Section 8, we will
discuss here only the disentanglement of the effects of φ1 and φ2.

Figures 18 and 19 show that the effects of φ1 and φ2 on the receive times are significantly different,
even in the unshaded regions (please note the different scaling of the ordinate axes). Especially, unlike
with the Galileo satellites, there are periods of time in which φ1 and φ2 shift the receive times in
opposite directions.
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Figure 18. Receive time shift ∆τr divided by φ11. Black dashes φ11 = 0.1, red dashes φ11 = 1, e = 0.7001.
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Figure 19. Receive time shift ∆τr divided by φ21. Black dashes φ21 = 0.1, red dashes φ21 = 1, e = 0.7001.

Remarkably, in Figures 20 and 21 the “orbit” and the “signal” contributions to the shifts calculated
with the hybrid models are of the same order of magnitude (whereas with the Galileo satellites the orbit
contributions clearly dominate, except in the shaded regions in the case of a φ1-perturbation). It is also
noteworthy that the mentioned shifts in opposite directions present in some periods of time are solely
caused by the signal contributions because again, as with the Galileo satellites, the orbit contributions
of φ1 and φ2 to the shifts run in parallel (but unlike with these satellites the orbit contribution of φ2

amounts to only about half the orbit contribution of φ1).
As mentioned in Section 8.5, ∆ fr/ ft as defined by (13) is essentially given by −d∆τr/dτt.

Accordingly, we expect φ1 and φ2 to cause distinguishable structures also in ∆ fr/ ft. Figures 22
and 23 confirm our expectation, although the differences are slightly less obvious as with ∆τr.
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Figure 20. Receive time shift ∆τr divided by φ11. Black dashes φ11 = 1 only for the satellite orbit
calculation, red lines φ11 = 1 except for the satellite orbit calculation, e = 0.7001.
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Figure 21. Receive time shift ∆τr divided by φ21. Black dashes φ21 = 1 only for the satellite orbit
calculation, red lines φ21 = 1 except for the satellite orbit calculation, e = 0.7001.
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Figure 22. Relative receive frequency shift ∆ fr/ ft divided by φ11. Black dashes φ11 = 0.1, red dashes
φ11 = 1, e = 0.7001.
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Figure 23. Relative receive frequency shift ∆ fr/ ft divided by φ21. Black dashes φ21 = 0.1, red dashes
φ21 = 1, e = 0.7001.

10. Conclusions

While purely analytical methods quickly reach their limits in the treatment of the problems
considered in this paper, as can be seen from Section IV of the recent article of Hasse and Perlick [8],
it is demonstrated here that valuable information about Finslerian effects can be obtained by means
of numerical methods, even with today’s standard computing systems. Assuming first order
perturbations φn(ρ) = φn1 rS/ρ (n = 0, 1, 2) in the considered class of spherical symmetric Finsler
spacetimes, our numerical simulations in combination with our hybrid models allow us to draw
conclusions about the optimal types of orbits for testing models of Finsler gravity.

As can be seen in Section 8, the most difficult task is to separate the effects of φ1 and φ2. In the
case of the Galileo 5 and 6 satellites the “orbit contributions” to the receive time and frequency shifts
caused by φ1 and φ2 are practically indistinguishable and dominate the “signal contributions” when
the satellites are above the horizon, even within the first revolution of the satellite. The “signal
contribution” is significant only when the satellites are below the horizon (i.e., in situations of fictitious
experiments of light deflection at a point mass) and only with φ1.

However, for highly eccentric orbits genuine Finslerian effects can be separated from effects of
perturbations of the Schwarzschild spacetime within the Lorentzian geometry. This is one of the
main results and important for the planning of possible future dedicated missions. Although in the
illustrating example of Section 9 the “orbit contributions” to the receive time and frequency shifts
caused by φ1 and φ2 run in parallel too (but with different heights, unlike with the Galileo satellites),
the superimposed “signal contributions” differ significantly even when the satellite is above the
horizon and make both effects separable.

Unfortunately, the orbit eccentricity of the Galileo 5 and 6 satellites is too small to allow this
separation (see our conclusions at the end of Sections 8.4 and 8.5). Nevertheless, these two already
available and appropriately equipped satellites in principle allow the determination of the sum of
φ11 and φ21 as a valuable first step. Although, as stated above, along highly eccentric orbits the
contributions of φ1 and φ2 to the receive time and frequency shifts differ to an extent that φ11 and φ21

can be separately determined, it helps with the analysis of such an experiment if the sum of φ11 and
φ21 is additionally known from another experiment (the Galileo satellites).

We like to conclude with a few remarks that go beyond the work presented here.
In principle, non-gravitational perturbations (see our remarks in Section 1) may be present that

are unknown or insufficiently understood and therefore cannot be modelled. Nevertheless, one can
assume that such perturbations cause no “Finsler-like” effects in the receive times and frequencies
of the signals. The reason is that the various (non-Finslerian) perturbations typically show either a
nearly diurnal or semidiurnal variation (if they are not of terrestrial origin, e.g., if they are caused by
the sun or the moon) or a variation with a leading period that corresponds to the satellite’s orbital
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period (if they are of terrestrial origin). In the latter case, it is not expected that minima of the
non-Finslerian perturbations occur just in the apsides, especially in the perigee, unlike with Finslerian
(φ2-) perturbations, regarded as additional “forces”, that are very weak in the apsides and strongest
somewhere between the apsides.

In view of tests of Finsler gravity, an obvious idea is to extend our approach, in particular the
method for determining the signals between satellite and ground station and the concept of hybrid
models, to the analysis of other situations of communication. So one could first think of a two-way
time transfer procedure, i.e., signals that travel both ways between two clocks that are being compared.

Finally, the methods presented here may also be adapted to similar tests of other alternatives
to general relativity. In principle, this should be possible at least for theories with well-defined
second-order equations of motion for spinless test bodies and light signals in which one can consider a
parametrized class of models that includes the Schwarzschild spacetime or other suitable reference
solutions of Einstein’s field equations. Examples are the Brans–Dicke theory, Einstein-Cartan models
of gravity, and Weyl manifolds as spacetime models.
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Appendix A. Equations of Motion in Schwarzschild Coordinates in the Plane ϑ = π/2

In this section we briefly describe the derivation of the second order equations of motion in
Schwarzschild coordinates in the plane ϑ = π/2, with the coordinate time as the independent variable.
The first steps are the elimination of the affine parameter by means of the constants of motion L,
E = −∂L/∂ṫ, and L = ∂L/∂ϕ̇ (cf. Equations (16)–(19) in [7]) and the linearisation of the resulting
equations with respect to the perturbation functions. As we are only interested in causal geodesics,
we will only consider geodesics with ṫ 6= 0.

The elimination of the affine parameter is based on the constant of motion

E := −∂L
∂ṫ

= −(1 + φ0)htt ṫ (A1)

and the resulting identity

− E
htt

1
1 + φ0

1
ṫ
= 1. (A2)

Restricted to the plane ϑ = π/2 the Lagrangian (1) reads

2L = (1 + φ0)htt ṫ2 + (1 + φ1)hrr ṙ2 + r2 ϕ̇2 + φ2
hrr ṙ2r2 ϕ̇2

hrr ṙ2 + r2 ϕ̇2 , (A3)

and the affine parameter can be eliminated by multiplying the right side of (A3) with the square of the
left side of (A2). This leads to

2L =
E2

h2
tt

1
(1 + φ0)2

{
(1 + φ0)htt + (1 + φ1)hrr

(
dr
dt

)2

+ r2
(

dϕ

dt

)2

+ φ2

hrr

(
dr
dt

)2

r2
(

dϕ

dt

)2

hrr

(
dr
dt

)2

+ r2
(

dϕ

dt

)2

}
. (A4)
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Linearising (A4) with respect to the perturbation functions (especially, replacing (1 + φ0)
−2 with

its linear approximation 1− 2φ0) then results in

2L =
E2

h2
tt

{
htt + hrr

(
dr
dt

)2

+ r2
(

dϕ

dt

)2

− φ0

(
htt + 2hrr

(
dr
dt

)2

+ 2r2
(

dϕ

dt

)2)

+ φ1hrr

(
dr
dt

)2

+ φ2

hrr

(
dr
dt

)2

r2
(

dϕ

dt

)2

hrr

(
dr
dt

)2

+ r2
(

dϕ

dt

)2

}
.

(A5)

Restricted to the plane ϑ = π/2 the constant of motion L = ∂L/∂ϕ̇ reads

L :=
∂L
∂ϕ̇

= r2 ϕ̇

(
1 + φ2

h2
rr ṙ4

(hrr ṙ2 + r2 ϕ̇2)2

)
, (A6)

and the affine parameter can be eliminated by multiplying the right side of (A6) with the left side
of (A2). This leads to

L = − E
htt

1
1 + φ0

r2 dϕ

dt

(
1 + φ2

h2
rr

(
dr
dt

)4

(
hrr

(
dr
dt

)2

+ r2
(

dϕ

dt

)2)2

)
. (A7)

Linearising (A7) with respect to the perturbation functions (especially, replacing (1 + φ0)
−1 with

its linear approximation 1− φ0) then results in

L = − E
htt

r2 dϕ

dt

(
1− φ0 + φ2

h2
rr

(
dr
dt

)4

(
hrr

(
dr
dt

)2

+ r2
(

dϕ

dt

)2)2

)
. (A8)

Since there are no derivatives with respect to the affine parameter in (A5) and (A8), from now
on we will designate derivatives with respect to t by an overdot. Derivatives with respect to r will be
designated by a prime. Furthermore, with this we define the “speed”

u :=
√

hrr ṙ2 + r2 ϕ̇2, (A9)

the angle α uniquely determined by

cos α =
√

hrr
ṙ
u

and sin α = r
ϕ̇

u
(A10)

and the coefficients
pik := cosi α sink α (i, k ∈ N0). (A11)

Equations (A5) and (A8) then read

2
L
E2 =

1
htt

+
u2

h2
tt
− φ0

(
1

htt
+ 2

u2

h2
tt

)
+ φ1

hrr

h2
tt

ṙ2 + φ2
u2

h2
tt

p22 =: H(r, ṙ, ϕ̇) (A12)

and

− L
E
=

r2

htt
ϕ̇

(
1− φ0 + φ2 p40

)
=: Λ(r, ṙ, ϕ̇). (A13)
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By differentiation of (A12) and (A13) with respect to t we get rid of the constants of motion and
obtain the linear (in the algebraic sense) system of equations

∂H
∂ṙ

r̈ +
∂H
∂ϕ̇

ϕ̈ =− ∂H
∂r

ṙ,

∂Λ
∂ṙ

r̈ +
∂Λ
∂ϕ̇

ϕ̈ =− ∂Λ
∂r

ṙ,
(A14)

that is to be solved for r̈ and ϕ̈.
After a very involved but elementary calculation we arrive at the following equations of motion,

again linearized with respect to the φn:

r̈ =
−c2

2

(
rS
r2 −

r2
S

r3

)
+

3
2r

rS
r− rS

ṙ2 + (r− rS)ϕ̇2 − c2

2

(
rS
r2 −

r2
S

r3

)
φ0

+

(
ṙ2 − c2

2

(
1− rS

r

)2)
φ′0+

(
c2

2

(
rS
r2 −

r2
S

r3

)
− (r− rS)ϕ̇2

)
φ1 −

ṙ2

2
φ′1

+

{
− c2

2

(
rS
r2 −

r2
S

r3

)(
4p24 − p04

)
+ u̇2

((
1
r
− rS

r2

)(
2p22 − p02

)
+

(
4
r
− 9

2
rS
r2

)
p24

+
rS

2r2 p24
)}

φ2 +
1
2

(
1− rS

r

)
u2
(

p42 − p24
)

φ′2,

(A15)

ϕ̈ =
3rS − 2r

r− rS

ṙϕ̇

r
+ ṙϕ̇φ′0 −

(
4
r
− 2

rS
r2

c2

u2

)
ṙϕ̇p22φ2 − ṙϕ̇p40φ′2. (A16)

Appendix B. Equations for the Three-Dimensional Simulations

Appendix B.1. Lagrangian in Isotropic Coordinates

For the numerical study of observable effects of Finslerian perturbations on earth-bound satellites
in the general geometry, without a common orbital plane of the satellite and the ground station,
we used isotropic coordinates t, x, y, and z. These coordinates treat all directions in space and all
orbital planes on an equal footing and are routinely used in orbit calculation programs. Schwarzschild
coordinates and isotropic coordinates are related by the equations

x = ρ sin ϑ cos ϕ, y = ρ sin ϑ sin ϕ, z = ρ cos ϑ, r = ρ

(
1 +

rS
4ρ

)2

. (A17)

In the following a prime denotes a derivative with respect to ρ (e.g., r′ := dr/dρ), an overdot
denotes a derivative with respect to the affine parameter s (e.g., ṙ := dr/ds), and a dot between two
three-vectors denotes their Euclidean inner product (e.g., r · ṙ := xẋ + yẏ + zż). Latin indices take on
values 1, 2 or 3. Greek indices take on values 0, 1, 2 or 3. From (A17) and with the definitions

x0 := t, x1 := x, x2 := y, x3 := z, r := (xk) (A18)

it follows
ρ =
√

r · r, ρ̇ =
r · ṙ

ρ
, (A19)

r′ =
(

1 +
rS
4ρ

)(
1− rS

4ρ

)
, (A20)

ṙ = r′ρ̇ =

(
1 +

rS
4ρ

)(
1− rS

4ρ

)
r · ṙ

ρ
. (A21)



Universe 2020, 6, 57 23 of 28

From the metric coefficients of the Schwarzschild coordinates and of the isotropic coordinates

hrr :=
(

1− rS
r

)−1

=

(
1 +

rS
4ρ

)2(
1− rS

4ρ

)−2

, (A22)

htt :=
−c2

hrr
, (A23)

hρρ :=
(

1 +
rS
4ρ

)4

(A24)

and (A17) it follows
hrr ṙ2 = hρρρ̇2, (A25)

r2 = hρρρ2. (A26)

If we restrict the analysis for a moment to geodesics in the plane ϑ = π/2, the following equations
for ϕ̇ can be derived from (A17):

ϕ̇ =
xẏ− yẋ
x2 + y2 , ϕ̇2 =

(x2 + y2)(ẋ2 + ẏ2)− (xẋ + yẏ)2

(x2 + y2)2 =
ṙ · ṙ
ρ2 −

(r · ṙ)2

ρ4 . (A27)

With the above results we are now prepared to transform the Lagrangian (1), restricted to the
plane ϑ = π/2, to isotropic coordinates:

2L = (1 + φ0)htt ṫ2 + (1 + φ1)hρρρ̇2 + hρρρ2 ϕ̇2 +
φ2ρ2hρρρ̇2 ϕ̇2

ρ̇2 + ρ2 ϕ̇2

= (1 + φ0)htt ṫ2 + hρρ

(
ρ2 ϕ̇2 + (1 + φ1)ρ̇

2 +
φ2ρ2ρ̇2 ϕ̇2

ρ̇2 + ρ2 ϕ̇2

)
= (1 + φ0)htt ṫ2 + hρρ

(
ṙ · ṙ− (r · ṙ)2

ρ2 + (1 + φ1)
(r · ṙ)2

ρ2 +
φ2ρ2ρ̇2 ϕ̇2

ρ̇2 + ρ2 ϕ̇2

)
= (1 + φ0)htt ṫ2 + hρρ

(
ṙ · ṙ + (r · ṙ)2

ρ2 φ1 +
ρ2ρ̇2 ϕ̇2

ρ̇2 + ρ2 ϕ̇2 φ2

)
= (1 + φ0)htt ṫ2 + hρρ

(
ṙ · ṙ + (r · ṙ)2

ρ2 φ1 +
ρ2ρ̇2 ϕ̇2

ṙ · ṙ φ2

)
= (1 + φ0)htt ṫ2 + hρρ

(
ṙ · ṙ + (r · ṙ)2

ρ2 φ1 +
ρ2

ṙ · ṙ
(r · ṙ)2

ρ2

(
ṙ · ṙ
ρ2 −

(r · ṙ)2

ρ4

)
φ2

)
= (1 + φ0)htt ṫ2 + hρρ

(
ṙ · ṙ + (r · ṙ)2

ρ2 (φ1 + φ2)−
(r · ṙ)4

ρ4 ṙ · ṙ φ2

)
= (1 + φ0)htt ṫ2 + hρρ ṙ · ṙ

(
1 +

(r · ṙ)2

ρ2 ṙ · ṙ (φ1 + φ2)−
(r · ṙ)4

ρ4(ṙ · ṙ)2 φ2

)
.

(A28)

By use of the definitions

f :=
(r · ṙ)2

(r · r)(ṙ · ṙ) , (A29)

φ3 := φ1 + φ2 (A30)

the last line of (A28) can be written in the more compact form

2L = htt(1 + φ0)ṫ2 + hρρ(1 + f φ3 − f 2φ2)ṙ · ṙ. (A31)
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By use of Lagrange’s identity (a× b) · (c× d) = (a · c)(b · d)− (b · c)(a · d) the last line of (A28)
can also be written as

2L = htt ṫ2(1 + φ0) + hρρ ṙ · ṙ
(

1 + f φ1 + f
(r× ṙ) · (r× ṙ)
(r · r)(ṙ · ṙ) φ2

)
. (A32)

Equations (A31) and (A32) have been derived for geodesics in the plane ϑ = π/2, but due to their
spherical symmetry they are invariant under spatial rotations of the isotropic coordinate system and
therefore valid for arbitrary geodesics.

To determine the equation for the coordinate light speed c(r, d) at the position r in the direction
d, we first note for the Lagrangian (A31) and geodesics with ṫ 6= 0 (e.g., causal geodesics) the identity

L(t, r, ṫ, ṙ) = ṫ2L(t, r, 1,
dr
dt
). (A33)

A null geodesic crossing the position r = |r|r̂ in the direction d = |d|d̂ thus fulfils the equation

0 = L(t, r, 1, c(r, d)d̂). (A34)

Inserting the Lagrangian (A31) into (A34) and solving the resulting equation for the coordinate
light speed c(r, d) then gives

c(r, d) =

√
−htt

hρρ

1 + φ0

1 + φ3(r̂ · d̂)2 − φ2(r̂ · d̂)4
. (A35)

Using (A33) for a timelike geodesic with proper time τ as the affine parameter results in

− c2

2
= L(t, r,

dt
dτ

,
dr
dτ

) =

(
dt
dτ

)2

L(t, r, 1,
dr
dt
). (A36)

Inserting the Lagrangian (A31) into (A36) results in the following equation for the proper times
of the ground station and the satellite:

dτ

dt
=

1
c

√
−htt(1 + φ0)− hρρv2(1 + f φ3 − f 2φ2). (A37)

Appendix B.2. Equations of Motion in Isotropic Coordinates

The further analysis is based on the Lagrangian (A31). As we are only interested in causal
geodesics, we will only consider geodesics with ṫ 6= 0. We continue with several definitions.

For scalar functions b(..., s, ...) and vector functions b(..., s, ...) with a vector argument s we will
use the notations

∂b
∂s

:=
(

∂b
∂sl

)
,

∂b
∂s

:=
(

∂bk

∂sl

)
. (A38)

Furthermore, we define

vk :=
dxk

dt
, v := (vk), ak :=

dvk

dt
, a := (ak), (A39)

v :=
√

v · v, ξ := r · v, (A40)

and note that the affine parameter s can be eliminated from the function f in the following way:

f =
ξ2

ρ2v2 . (A41)
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From the Euler-Lagrange equation
d
ds

∂L
∂ṫ

=
∂L
∂t

(A42)

and
∂L
∂t

= 0, (A43)

− E :=
∂L
∂ṫ

= htt(1 + φ0)ṫ, (A44)

we get

0 = −Ė = ḣtt(1 + φ0)ṫ + httφ̇0 ṫ + htt(1 + φ0)ẗ

= h′tt
dρ

dt
(1 + φ0)ṫ2 + httφ

′
0

dρ

dt
ṫ2 + htt(1 + φ0)ẗ

(A45)

and therefore

w :=
ẗ
ṫ2 = −

(
h′tt
htt

+
φ′0

1 + φ0

)
dρ

dt
= −

(
h′tt
htt

+
φ′0

1 + φ0

)
ξ

ρ
. (A46)

By use of
∂ f
∂r

= 2 f
(

v
ξ
− r

ρ2

)
(A47)

we get

u :=
∂L
∂r

ṫ−2

=
r

2ρ
(h′tt(1 + φ0) + httφ

′
0) +

r
2ρ

h′ρρv2(1 + f φ3 − f 2φ2)

+
r

2ρ
hρρv2( f φ′3 − f 2φ′2) +

1
2

hρρv2 ∂ f
∂r

(φ3 − 2 f φ2)

=
r

2ρ
(h′tt(1 + φ0) + httφ

′
0) +

r
2ρ

h′ρρv2(1 + f φ3 − f 2φ2)

+
r

2ρ
hρρv2( f φ′3 − f 2φ′2) + hρρ

ξ

ρ2

(
v− ξ

ρ2 r
)
(φ3 − 2 f φ2)

= (h′tt(1 + φ0) + httφ
′
0 + h′ρρv2(1 + f φ3 − f 2φ2) + hρρv2( f φ′3 − f 2φ′2))

r
2ρ

+ hρρ(φ3 − 2 f φ2)
ξ

ρ2

(
v− ξ

ρ2 r
)

.

(A48)

By use of
∂ f
∂ṙ

= 2 f
(

r
ξ
− v

v2

)
ṫ−1 (A49)

we get
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w :=
∂L
∂ṙ

ṫ−1

= hρρ ṙ(1 + f φ3 − f 2φ2)ṫ−1 +
1
2

hρρ ṙ · ṙ(φ3 − 2 f φ2)
∂ f
∂ṙ

ṫ−1

= hρρ ṙ(1 + f φ3 − f 2φ2)ṫ−1 + hρρ ṙ · ṙ(φ3 − 2 f φ2) f
(

r
ξ
− v

v2

)
ṫ−2

= hρρv(1 + f φ3 − f 2φ2) + hρρ(φ3 − 2 f φ2)

(
ξ

ρ2 r− f v
)

= hρρv(1 + f φ3 − f 2φ2) + hρρ(φ3 − 2 f φ2)
ξ

ρ2 r− hρρ(φ3 − 2 f φ2) f v

= hρρv(1 + f φ3 − f 2φ2)− hρρ(φ3 − 2 f φ2) f v + hρρ(φ3 − 2 f φ2)
ξ

ρ2 r

= hρρ(1 + f 2φ2)v + hρρ(φ3 − 2 f φ2)
ξ

ρ2 r

= hρρ

(
(φ3 − 2 f φ2)

ξ

ρ2 r + (1 + f 2φ2)v
)

.

(A50)

In the following we will make use of the definitions

Mkl :=
∂wk

∂vl , M := (Mkl), Nkl :=
∂wk

∂xl , N := (Nkl). (A51)

From the Euler-Lagrange equations and (A46), (A48), (A50) and (A51) we get

0 = ṫ−2
(

d
ds

∂L
∂ṙ
− ∂L

∂r

)
= ṫ−2

(
d
ds

(ṫw)− ∂L
∂r

)
=

ẗ
ṫ2 w +

dw
dt
− ṫ−2 ∂L

∂r

=
ẗ
ṫ2 w +

∂w
∂r

v +
∂w
∂v

a− ṫ−2 ∂L
∂r

= ww + Nv + Ma− u.

(A52)

From (A52) the acceleration vector a can be calculated as

a = M−1(u− ww− Nv). (A53)

In the next step we need to calculate M and N:

Mkl = hρρ

(
(1 + f 2φ2)δ

kl + (φ3 − 6 f φ2)
xkxl

ρ2 + 4 f 2φ2

(
xkvl + vkxl

ξ
− vkvl

v2

))
, (A54)

Nkl =
hρρ

ρ2

(
(φ3 − 2 f φ2)ξδkl +

(
8 f

φ2

ρ
− 2

φ3

ρ
+ φ′3 − 2 f φ′2

)
ξ

xkxl

ρ
+ (φ3 − 6 f φ2)xkvl

)
+ hρρ f 2

((
φ′2 − 4

φ2

ρ

)
vkxl

ρ
+ 4φ2

vkvl

ξ

)
+

h′ρρ

ρ

(
(φ3 − 2 f φ2)ξ

xkxl

ρ2 + (1 + f 2φ2)vkxl
)

.

(A55)

As we assume the Finslerian perturbations to be small in the physical situations that are considered
in this study, it suffices to calculate the right side of (A53) only to the first order of the φk and their
derivatives. The result is

(M−1)kl =
1

hρρ

(
(1− f 2φ2)δ

kl + (6 f φ2 − φ3)
xkxl

ρ2 + 4 f 2φ2

(
vkvl

v2 −
xkvl + vkxl

ξ

))
, (A56)
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M−1u =

{ h′ρρ

hρρ
v2(1 + ( f − 1)φ3 + 6( f − f 2)φ2) +

h′tt
hρρ

(1 + φ0 − φ3 + (6 f − 5 f 2)φ2)

+
htt

hρρ
φ′0 + 2

ξ2

ρ3 (2 f φ2 − φ3) + v2 f (φ′3 − f φ′2)

}
r

2ρ

+ φ3
ξ

ρ2 v + 2 f
{

f − 1
hρρ

(
h′tt
v2 + h′ρρ

)
− 1

ρ

}
φ2

ξ

ρ
v,

(A57)

M−1Nv =

{
(1− 2 f )

φ3

ρ
+ (8 f 2 − 6 f )

φ2

ρ
+ f φ′3 − 2 f 2φ′2

}
v2

ρ
r

+

{h′ρρ

hρρ
+

φ3

ρ
+ (2 f − 4 f 2)

φ2

ρ
+ f 2φ′2

}
ξ

ρ
v,

(A58)

M−1ww = −
(

h′tt
htt

+ φ′0

)
ξ

ρ
v. (A59)

From (A53) and (A57)–(A59) the acceleration vector a is calculated as

a =

{ h′ρρ

hρρ
v2 +

h′tt
hρρ

(1 + φ0 − φ3 + (6 f − 5 f 2)φ2)

+

(h′ρρ

hρρ
+

2
ρ

)
v2( f − 1)(φ3 − 6 f φ2) +

htt

hρρ
φ′0 + v2(3 f 2φ′2 − f φ′3)

}
r

2ρ

+

{
h′tt
htt
−

h′ρρ

hρρ
+ 2
(

h′tt
v2hρρ

+
h′ρρ

hρρ
+

2
ρ

)
( f 2 − f )φ2 + φ′0 − f 2φ′2

}
ξ

ρ
v.

(A60)

Appendix B.3. Frequency Shift of the Signals

We consider a general Finsler spacetime with a LagrangianL(x, ẋ) that is positively homogeneous
of degree two with respect to ẋ for all ẋ 6= 0, i.e.,

L(x, kẋ) = k2L(x, ẋ) for all k > 0 and all ẋ 6= 0. (A61)

This homogeneity condition of the Lagrangian implies that the Finsler metric

gµν(x, ẋ) :=
∂2L(x, ẋ)

∂ẋµ∂ẋν
(A62)

is positively homogeneous of degree zero with respect to ẋ for all ẋ 6= 0, i.e.,

gµν(x, kẋ) = gµν(x, ẋ) for all k > 0 and all ẋ 6= 0. (A63)

In this Finsler spacetime we consider an emitter with worldline α and proper time τα, a receiver
with worldline σ and proper time τσ, and a light ray λ (which describes the signal from the satellite to
the ground station) with affine parameter s, connecting α and σ. The light ray is emitted at event 1 and
received at event 2. Then, according to [8], Equation (33), the relative frequency shift of the light ray is

f2

f1
=

gκν(λ(s2), λ̇(s2))λ̇
ν(s2)σ̇

κ(τσ2)

gκν(λ(s1), λ̇(s1))λ̇ν(s1)α̇κ(τα1)
. (A64)

Now the general formula (A64) is applied to the Lagrangian (A31) and the derivative with respect
to the affine parameter s is replaced by the derivative with respect to the coordinate time t. We first
note the equation

dλ0

ds
=

−Eλ

htt(1 + φ0)
(A65)
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that follows from (A44). Eλ denotes the constant “energy” of the light ray. To make use of the
homogeneity property (A63) of the Finsler metric, the light ray is assumed to fulfil the condition

dλ0

ds
> 0. (A66)

Combining (A63), (A64), (A65) and (A66) gives for the frequency shift the equation

f2

f1
=

gκν

(
λ(s2),

dλ0

ds
(s2)

dλ

dt
(t2)

)
dλ0

ds
(s2)

dλν

dt
(t2)

dσ0

dτσ
(τσ2)

dσκ

dt
(t2)

gκν

(
λ(s1),

dλ0

ds
(s1)

dλ

dt
(t1)

)
dλ0

ds
(s1)

dλν

dt
(t1)

dα0

dτα
(τα1)

dακ

dt
(t1)

=

gκν

(
λ(s2),

dλ

dt
(t2)

)
dλ0

ds
(s2)

dλν

dt
(t2)

dτα

dt
(t1)

dσκ

dt
(t2)

gκν

(
λ(s1),

dλ

dt
(t1)

)
dλ0

ds
(s1)

dλν

dt
(t1)

dτσ

dt
(t2)

dακ

dt
(t1)

=

gκν

(
λ(s2),

dλ

dt
(t2)

)
−Eλ

htt(ρ2)(1 + φ0(ρ2))

dλν

dt
(t2)

dτα

dt
(t1)

dσκ

dt
(t2)

gκν

(
λ(s1),

dλ

dt
(t1)

)
−Eλ

htt(ρ1)(1 + φ0(ρ1))

dλν

dt
(t1)

dτσ

dt
(t2)

dακ

dt
(t1)

=
1 + φ0(ρ1)

1 + φ0(ρ2)

htt(ρ1)

htt(ρ2)

dτα

dt
(t1)

dτσ

dt
(t2)

gκν

(
λ(t2),

dλ

dt
(t2)

)
dλν

dt
(t2)

dσκ

dt
(t2)

gκν

(
λ(t1),

dλ

dt
(t1)

)
dλν

dt
(t1)

dακ

dt
(t1)

.

(A67)
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