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Abstract: At the second post-Newtonian (2PN) order, the secular pericenter precession ω̇2PN of either a
full two-body system made of well-detached non-rotating monopole masses of comparable size and
a restricted two-body system composed of a point particle orbiting a fixed central mass have been
analytically computed so far with a variety of approaches. We offer our contribution by analytically
computing ω̇2PN in a perturbative way with the method of variation of elliptical elements by explicitly
calculating both the direct contribution due to the 2PN acceleration A2PN, and also an indirect part
arising from the self-interaction of the 1PN acceleration A1PN in the orbital average accounting for
the instantaneous shifts induced by A1PN itself. Explicit formulas are straightforwardly obtained for
both the point particle and full two-body cases without recurring to simplifying assumptions on the
eccentricity e. Two different numerical integrations of the equations of motion confirm our analytical
results for both the direct and indirect precessions. The values of the resulting effects for Mercury
and some binary pulsars are confronted with the present-day level of experimental accuracies in
measuring/constraining their pericenter precessions. The supermassive binary black hole in the BL Lac
object OJ 287 is considered as well. A comparison with some of the results appeared in the literature is
made.

Keywords: general relativity and gravitation; celestial mechanics; experimental studies of gravity;
ephemerides

1. Introduction

The problem of calculating at the second post-Newtonian (2PN) order of general relativity [1]
the secular1 precession ω̇2PN of pericenter ω of a full two-body system made of a pair of detached,
non-rotating masses of comparable sizes and of a restricted two-body system characterized by a test
particle orbiting its massive primary has been analytically tackled several times so far with a variety
of calculational approaches [2–23]. Despite their formal elegance, it is not always easy to extract from
them quickly understandable formulas, ready to be read and used in practical calculations in view
of possible confrontation with actual data from astronomical and astrophysical scenarios of potential
experimental interest. Perhaps, it is so because, e.g., of continuous references nested one inside the
other to various papers pointing to a host of intermediate parameterizations, often of purely theoretical
relevance that tend somehow to confuse a little bit at least some readers. Sometimes, they may wonder
which numerical values of the parameters of the system under consideration out of those recorded in the
literature have to be inserted in the equations. For a recent discussion on some aspects of the approaches
followed in the literature so far, see Tucker & Will [19]; see also Klioner & Kopeikin [24] for a comparison
of some of the parameterizations used in the literature to the 1PN level.

Our aim is revisiting the issue of analytically calculating the 2PN pericenter precession by
straightforwardly computing it perturbatively with the widely known method of variation of the

1 For the sake of simplicity, we will omit the brackets denoting the average over one orbital revolution here and throughout the
paper.

Universe 2020, 6, 53; doi:10.3390/universe6040053 www.mdpi.com/journal/universe

http://www.mdpi.com/journal/universe
http://www.mdpi.com
http://dx.doi.org/10.3390/universe6040053
http://www.mdpi.com/journal/universe


Universe 2020, 6, 53 2 of 19

orbital elements [25–36] in order to provide quickly understandable formulas, ready to be used in
practical calculations in view of possible measurements in a not so far future, more likely in binary
pulsars than in our Solar system, or to better model the dynamics of peculiar systems like, e.g., tight
extrasolar planetary systems or the BL Lac object OJ 287 [37,38]. A similar strategy was adopted in
Kopeikin & Potapov [12]. Because the actual data analyses of astronomical and astrophysical systems are
performed by using the harmonic coordinates of PN theory, we will adopt them in our calculation (see
the discussion in Section 4 of [19]). We will, first, deal with the point particle case (Section 2) by starting
with the precession directly induced by the 2PN acceleration A2PN entering the equations of motion
(Section 2.1). Then, in Section 2.2, we will calculate the indirect 2PN precession arising from the fact
that, to the order O

(
c−4), where c is the speed of light in vacuum, also the instantaneous shifts of the

orbital elements occurring during an orbital revolution due to the 1PN acceleration A1PN itself should
be taken into account in the averaging procedure of the 1PN effects. Instead, neglecting such changes
gives rise to the usual, time-honored Einstein-like 1PN precession. In principle, also other general
relativistic precessions may be calculated, to the orderO

(
c−4), from the mutual interaction of some 1PN

accelerations induced by the bodies’ mass and spin moments [39–44] entering the equations of motion;
they will not be treated here because of their smallness. For some of them, see Iorio [45]. Section 2.3
contains numerical integrations of the equations of motion of some binary systems confirming our
analytical result of Section 2.1 for the direct effect, and of Section 2.2 for the indirect one. It turns out that
the direct 2PN perihelion precession of Mercury is smaller than the present-day observational accuracy
in constraining any unmodeled perihelion precession of Mercury by about an order of magnitude or so.
Currently, the 2PN equations of motion are not included in the dynamical models of the Solar system
dynamics employed by the teams of astronomers producing the planetary ephemerides [46–48]. In
Section 3 we repeat our calculation for a full two-body system by calculating both the direct (Section 3.1)
and the indirect (Section 3.2) contributions to the 2PN pericenter precession in the same fashion as in
Section 2. We compute them for the Hulse-Taylor binary pulsar PSR B1913+16 [49] and the double pulsar
PSR J07373039A/B [50,51] by comparing the resulting predictions with the current experimental accuracy
in determining their periastron precessions from timing measurements. While for PSR B1913+16 the
overall 2PN periastron precession is already potentially measurable today, for PSR J07373039A/B the
indirect contribution, which depends explicitly on the initial value of the orbital phase, may weaken or
even cancel out the direct effect for certain values of the initial position of the pulsar along its orbit. On
the other hand, for other initial positions the total 2PN periastron precession may be brought above the
measurability threshold. We look also at the supermassive binary black hole in OJ 287. In Section 4, we
compare our calculation with those in Kopeikin & Potapov [12] by disclosing an error in their results
for the indirect effects. A comparison is made also with the results by Damour & Schafer [5]. Section 5
summarizes our findings, and offers our conclusions.

2. The Point Particle Case

2.1. The Direct Pericenter Precession due to the 2PN Acceleration

The 2PN acceleration experienced by a test particle orbiting a fixed body of mass M at distance r,
written in harmonic coordinates, is (see, e.g., [23], Equation (2.3); [35], Equation (8.8.16), p. 332)

A2PN =
µ2

c4 r3

[(
2 v2

r −
9 µ

r

)
r̂− 2 vr v

]
. (1)

In Equation (1), µ
.
= GM is the gravitational parameter of the primary, G is the Newtonian

gravitational constant, and vr
.
= v · r̂ is the radial velocity of the test particle, i.e., the projection

of its velocity v onto the versor r̂ of its position vector r with respect to the primary. Equation (1) can be
obtained from the point particle limit of the 2PN equation of relative motion of a full two-body system
treated in Section 3.1. Equation (1) can also be inferred from the equation of motion of Equation (4.4.18)
of (Brumberg [27], p. 152) or Equation (1.5c) of (Damour & Schafer [5], p. 133) for the body 1 assumed as
test particle orbiting the body 2 taken as its primary, i.e., for M2 → M, v2 → 0, M1 → 0, v1 → v.
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Let us analytically work out the direct long-term, i.e., averaged one orbital period Pb, 2PN precession
of pericenter induced solely by Equation (1) by means of the Gauss equations (e.g. [29,32,35]), valid for
any additional acceleration A with respect to the Newtonian monopole AN = −µ/r2,

dΩ
dt

=
r Aν sin u

nb a2
√

1− e2 sin I
, (2)

dω

dt
=

√
1− e2

nb a e

[
−Ar cos f + Aτ

(
1 +

r
p

)
sin f

]
− cos I

dΩ
dt

, (3)

where a, e, I, Ω, ω, f are the semimajor axis, eccentricity, inclination, longitude of the ascending node,
argument of pericenter, and true anomaly, respectively, p .

= a
(
1− e2) is the semilatus rectum, u .

= ω + f
is the argument of latitude, nb

.
=
√

µ/a3 is the Keplerian mean motion, while Ar, Aτ , Aν are the radial,
transverse and out-of-plane components of the extra-acceleration A, respectively. It is appropriate to
remark that the Gauss equations are exact since the possible smallness of A with respect to AN is not
assumed in their derivation ([35], p. 108). In a perturbative calculation, which is fully adequate for the
2PN acceleration of Equation (1) in most of the situations in which a conceivable future detection could
be envisaged (our Solar system, exoplanets, binary pulsars), the right-hand sides of Equations (2)–(3)
have to be evaluated onto the Keplerian ellipse r = p/ (1 + e cos f ), assumed as unperturbed, reference
trajectory, and averaged out over one orbital period Pb

.
= 2π/nb by means of [26,27,32,52–55]

dt
d f

=
r2
√

µ p
1

1− r2√
µ p

(
dω
dt + cos I dΩ

dt

) ' r2
√

µ p

[
1 +

r2
√

µ p

(
dω

dt
+ cos I

dΩ
dt

)]
. (4)

In it, the derivatives of ω and Ω are given by Equations (2)–(3). To keep only terms of orderO
(
c−4)

when Equation (1) is used in Equations (2)–(3), only the first term of Equation (4) has to be retained
because of the presence of A itself in it through dΩ/dt, dω/dt. It is intended that in the following,
the right-hand-sides of Equations (2)–(4) are evaluated onto the constant Keplerian ellipse; in order to
avoid an excessively cumbersome notation, we avoid to append a subscript “K” to the orbital elements
entering them.

The radial, transverse, and out-of-plane components of Equation (1), evaluated onto the reference
Keplerian trajectory, turn out to be

A2PN
r = −

9 a5 n6
b (1 + e cos f )4

c4 (1− e2)
4 , (5)

A2PN
τ = −

2 e a5 n6
b (1 + e cos f )4 sin f

c4 (1− e2)
4 , (6)

A2PN
ν = 0. (7)

By inserting Equations (5)–(7) into Equations (2)–(3) and averaging with the first term of Equation (4)
yields, to order O

(
c−4), the direct 2PN pericenter precession

ω̇2PN
dir =

nb µ2 (28− e2)
4 c4 a2 (1− e2)

2 , (8)

corresponding to a shift per orbit

∆ω2PN
dir =

π µ2 (28− e2)
2 c4 a2 (1− e2)

2 . (9)
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The analytical result of Equation (8) will be numerically confirmed in Section 2.3 by numerically
integrating the equations of motion.

2.2. The Indirect Pericenter Precession due to the 1PN Acceleration

Equation (8), although directly inferred from the 2PN acceleration of Equation (1), does not exhaust
the issue of calculating the full pericenter precession to the order O

(
c−4). Indeed, there are also

other two contributions to it, which may be dubbed as “indirect", coming from the well-known 1PN
acceleration itself (e.g. [35], p. 332)

A1PN =
µ

c2 r2

[(
4 µ

r
− v2

)
r̂ + 4 vr v

]
. (10)

Basically, they arise because during an orbital revolution of the test particle under the perturbing
influence of A like Equation (10) all the orbital elements, in principle, undergo instantaneous variations
changing their values from their fixed Keplerian ones referred to some reference epoch t0. Moreover,
when the integration over f is performed in order to obtain the net change per orbit, the fact that f is
reckoned from a generally varying line of apsides because of A should be taken into account as well.
Such features yield additional corrections of the order of O

(
A2) which, in the present case, are just of

the order of O
(
c−4). We will implement such a strategy by following Iorio [45] in which the indirect

effects of order O
(

J2 c−2), where J2 is the primary’s oblateness, were computed in agreement with Will
[56,57].

One of the aforementioned indirect contributions to the 2PN pericenter precession, marked
conventionally with the superscript (I) in the following, is obtained from the orbital average of
Equations (2)–(3), calculated with Equation (10), by means of the second and third terms of Equation (4)
containing just Equation (10) itself which, among other things, shifts slowly the apsidal line from which
the true anomaly f is counted. By recalling that the radial, transverse, and out-of-plane components of
Equation (10) are ([35], Equation (8.8.5)–(8.8.6), p. 330)

A1PN
r =

µ2 (1 + e cos f )2 (3 + e2 + 2 e cos f − 2 e2 cos 2 f
)

c2 a3 (1− e2)
3 , (11)

A1PN
τ =

4 e µ2 (1 + e cos f )3 sin f

c2 a3 (1− e2)
3 , (12)

A1PN
ν = 0, (13)

the resulting indirect precession ω̇
2PN (I)
indir of order O

(
c−4) turns out to be

ω̇
2PN (I)
indir =

nb µ2 (9 + 37 e2 + e4)
2 c4 e2 a2 (1− e2)

2 . (14)

Please note that Equation (14) is formally singular in the limit e→ 0.
The second indirect contribution ω̇

2PN (II)
indir comes from the fact that in general, when an

extra-acceleration A like, e.g., Equation (10) enters the equations of motion, all its orbital parameters
undergo instantaneous changes during an orbital period. Usually, in standard first order calculations in
A, such generally slow variations are neglected by assuming the Keplerian elements as fixed to some
fiducial values at a reference epoch t0. Instead, accounting also for such changes yield further, indirect



Universe 2020, 6, 53 5 of 19

effects of the second order in A. The resulting indirect integrated shift over one orbit of any of the orbital
elements φi, i = 1, . . . 5, where φ1

.
= a, φ2

.
= e, φ3

.
= I, φ4

.
= Ω, φ5

.
= ω, can be calculated as

∆φ
(2)
i =

5

∑
j=1

∫ f0+2π

f0

{
∂(dφi/d f )

∂φj

}
K

∆φj ( f0, f )(1) d f , i = 1, . . . 5, (15)

where the superscript (2) indicates that the calculation is to the second order in A, {. . .}K denotes
that the content of the curly brackets has to be evaluated onto the unperturbed Keplerian ellipse, and
∆φj ( f0, f )(1) , j = 1, . . . 5 are the instantaneous shifts experienced by the orbital elements during the
orbital revolution. The latter ones are calculated as

∆φj ( f0, f )(1) =
∫ f

f0

{
dφj

d f ′

}
K

d f
′
, j = 1, . . . 5, (16)

where the superscript (1) indicates that the shifts of Equation (16) are to the first order in A. From
[26,53–55]

dω

d f
=

r2

µ e

{
− cos f Ar +

[
1 +

r
a (1− e2)

]
sin f Aτ

}
− cos I

dΩ
d f

+O
(

A2
)

, (17)

valid to the first order in A given, in the present case, by Equation (10), and Equations (11)–(13), it turns
out that in the case of pericenter, only the 1PN instantaneous shifts of a and e induced by Equation (10)
are required. By recalling that the Gauss equations for such orbital elements, to the first order in A, can
be written as [26,53–55]

da
d f

=
2 a r2

µ (1− e2)

[
e Ar sin f +

( p
r

)
Aτ

]
+O

(
A2
)

, (18)

de
d f

=
r2

µ

{
Ar sin f +

[
cos f +

1
e

(
1− r

a

)]
Aτ

}
+O

(
A2
)

, (19)

and that the radial, transverse, and out-of-plane components of Equation (10) are given by
Equations (11)–(13), it is straightforward to obtain

∆a ( f0, f )1PN = −
2 e µ (cos f − cos f0)

[
7 + 3 e2 + 5 e (cos f + cos f0)

]
c2 (1− e2)

2 , (20)

∆e ( f0, f )1PN =
µ (cos f0 − cos f )

[
3 + 7 e2 + 5 e (cos f + cos f0)

]
c2 a (1− e2)

. (21)

They agree with, e.g., Equation (8.8.8) of Soffel & Han [35, p. 331]. Their insertion in Equation (15),
calculated for i = 5 by means of Equation (17), yields

ω̇
2PN (II)
indir = −

nb µ2 {9− 87 e2 − 136 e4 + 19 e6 − 6 e3 [(34 + 26 e2) cos f0 + 15 e cos 2 f0
]}

2 c4 e2 a2 (1− e2)
3 . (22)

Please note that also Equation (22) is formally singular in e; moreover, it depends on the initial value of
the true anomaly f0.

The indirect total 2PN precession ω̇2PN
indir of order O

(
c−4) is the sum of Equation (14) and

Equation (22); it reads

ω̇2PN
indir =

nb µ2 {5
(
23 + 20 e2 − 4 e4)+ 6 e

[(
34 + 26 e2) cos f0 + 15 e cos 2 f0

]}
2 c4 a2 (1− e2)

3 . (23)
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It should be noticed that Equation (23) is not singular for e→ 0. On the other hand, Equation (23) is
not univocally determined because of the presence of f0. In Section 2.3, we will confirm Equation (23) by
numerically integrating the equations of motion for an arbitrary fictitious system.

2.3. A Numerical Confirmation of the Direct and Indirect 2PN Pericenter Precessions

The direct 2PN precession of Equation (8) was successfully confirmed by two numerical integrations
of the equations of motion of, say, Mercury in the field of the Sun over 1 century (cty).

It is worthwhile recalling that the present-day level of accuracy in constraining any anomalous
perihelion precession of such a planet with the most recent ephemerides, which all model the Solar
system dynamics only up to the 1PN level in harmonic coordinates, may be at the level of σω̇ '
8 microarcseconds per century

(
µas cty−1), or, perhaps, ' 10− 50 times worse; see the discussion in

Iorio [58], and references therein.
In the first run, we simultaneously integrated the Hermean equations of motion, including the

Newtonian monopole and the 2PN acceleration of Equation (1), in rectangular Cartesian coordinates
along with the Gauss equations for all the Keplerian orbital elements over a time span 1 cty long
starting from a set of initial conditions for the state vector of Mercury retrieved from the WEB interface
HORIZONS, maintained by the NASA Jet Propulsion Laboratory (JPL). The resulting time series of the
solution for ω (t), in blue, is displayed in Figure 1 along with a linear fit to it, in yellow.

Figure 1. Numerically produced time series, in blue, of the 2PN evolution of the perihelion ω of Mercury
over 1 cty calculated by numerically integrating the Hermean equations of motion, including the 2PN
acceleration of Equation (1) in addition to the Newtonian monopole, in Cartesian rectangular coordinates
along with the Gauss equations for all its Keplerian orbital elements. A superimposed linear fit, in yellow,
to the numerically integrated time series of ω is displayed as well. Its slope of 2.6 µas cty−1 agrees with
the value obtainable analytically by calculating Equation (8) with the orbital parameters of Mercury.
The initial conditions were retrieved from the WEB interface HORIZONS by the NASA Jet Propulsion
Laboratory (JPL) which employs the same harmonic coordinates used in obtaining Equation (1) and
Equation (10) to model the dynamics of the Solar system up to the 1PN level. The same plot, not displayed
here, was obtained in a second numerical integration in which the Gauss equations were not included
among the differential equations to be simultaneously solved.

The same plot was obtained in a second run in which the Gauss equations were not included in
the numerical integration which was limited just to the equations of motion of Mercury in rectangular



Universe 2020, 6, 53 7 of 19

Cartesian coordinates, all the rest being the same as in the first run. Then, a time series for ω (t) was
straightforwardly computed from the solutions obtained for the Cartesian coordinates x (t) , y (t) , z (t)
of the planet by means of the standard conversion formulas for the Keplerian orbital elements. The
resulting slope of the fitted linear trend amounts to 2.6 µas cty−1, in agreement with the first run and
Equation (8) calculated with the orbital parameters of Mercury. Interestingly, such a figure is only 3 times
smaller than the previously quoted value of σω̇ which, however, as already remarked, may be optimistic
by a factor of ' 10− 50.

It should be noted that at least in principle, the direct 2PN precession of Equation (8) should be
measurable since it is due to a distinct acceleration, i.e., Equation (1), which may be suitably expressed
in terms of a dedicated solve-for parameter to be estimated in a least-square sense in some covariance
analyses. Instead, the indirect precession of Equation (23), since it comes from the 1PN acceleration
of Equation (10) which is routinely modeled in the software of all the teams currently producing the
planetary ephemerides, may not be detectable as a separate effect with respect to the other 1PN features
of motion. Be that as it may, Equation (23) yields

16 µas cty−1 ≤ ω̇2PN
indir ≤ 33 µas cty−1 (24)

for 0 ≤ f0 < 360 deg.
It is possible to numerically confirm our analytical findings also for the indirect 2PN precession in

the following way. First of all, a straightforward numerical integration of the equations of motion of a
fictitious restricted two-body system to the 1PN level, i.e., by accounting only for the 1PN acceleration
of Equation (10), shows that the simple secular trend arising from the celebrated 1PN Einstein-like
pericenter precession

ω̇1PN =
3 nb µ

c2 a (1− e2)
(25)

does not match a linear fit to the time series obtained from the numerical integration. This is clearly
shown in the upper panel of Figure 2 obtained for, say, f0 = 0. It turns out that such a feature lingers
even by changing f0 from a run to another. It is crucial to note that our analytical result for the indirect
2PN precession of Equation (23), calculated with f0 = 0, is able to fully explain the discrepancy between
the slopes of the simple analytical 1PN trend due to Equation (25) (dashed green line) and of the linear fit
(dot-dashed orange line) to the numerically integrated overall signature (continuous blue curve) which,
indeed, should include both the direct 1PN and the indirect 2PN effects altogether. It may be shown
that it occurs for different values of f0 as well. Such a feature is further confirmed by a more refined
analysis, displayed in the lower panel of Figure 2, consisting of subtracting the well-known analytical
instantaneous time series of the 1PN change of ω, given by ([35], Equation (8.8.8), p. 331)

∆ω( f0, f )1PN =
µ

2 c2 e a (1− e2)

[
6 e ( f − f0) + 2

(
−3 + e2

)
sin f − 5 e sin 2 f−

−2
(
−3 + e2

)
sin f0 + 5 e sin 2 f0

]
, (26)

from the previously obtained numerical time series for the total (direct 1PN and indirect 2PN) time shift
of the pericenter induced by the 1PN acceleration of Equation (10). The resulting time series, obtained by
expressing the true anomaly f entering Equation (26) as a function of time t by means of ([26], p. 77)

f (t) =M (t) + 2
smax

∑
s=1

1
s

Js (se) +
jmax

∑
j=1

(
1−
√

1− e2
)j

ej

[
Js−j (se) + Js+j (se)

] sin sM (t) , (27)

whereM = nb (t− t0) +M0 is the mean anomaly, M0 is the mean anomaly at epoch, Jk (se) is the
Bessel function of the first kind of order k, and smax, jmax are some values of the summation indexes
s, j adequate for the desired accuracy level, is the continuous brown curve for δω depicted in the lower
panel of Figure 2. It can be noticed that it does not vanish, and a linear fit to it, represented by the dashed
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red line in the lower panel of Figure 2, returns just the same value as Equation (23). Also, in this case, it
occurs by varying f0.

Figure 2. Indirect 2PN pericenter precession in a fictitious scenario in which a test particle revolves
around a primary with M = 1010 M� in Pb = 2 cty around an elliptic orbit characterized by e = 0.095.
Upper panel: the continuous blue curve is the numerically produced time series of the overall (direct 1PN
and indirect 2PN) pericenter shift ∆ω(t) obtained by numerically integrating the equations of motion
of the test particle over 10 Pb by including only the 1PN acceleration of Equation (10). It was obtained
by taking the difference of the time series for ω computed from two integrations, with and without
Equation (10), sharing the same arbitrary initial conditions with, say, f0 = 0. The dot-dashed orange
straight line is a linear fit to ∆ω(t), whose slope is 0.752 deg cty−1. The dashed green straight line is
the analytical secular trend of the 1PN pericenter precession ω̇1PN = 0.730 deg cty−1. The difference
between both the slopes of 0.022 deg cty−1 agrees just with the analytical prediction for the indirect 2PN
precession of Equation (23) calculated with f0 = 0. Lower panel: the continuous brown curve is the
difference δω between the continuous blue curve of the upper panel and the analytical 1PN time series
for the pericenter of Equation (26), while the dashed red straight line is a linear fit to δω with a slope of
just 0.022 deg cty−1.
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3. The Case of a Two-Body System

3.1. The Direct Pericenter Precession due to the 2PN Acceleration

In the case of a two-body system made of two bodies A, B with masses MA, MB, the 2PN
acceleration of their relative motion is (see, e.g., [27], Equation (4.4.29), p. 154; [59], Equation (2.2d), p. 825;
[60], Equation (B11), p. 10)

A2PN =
µ

c4 r2

{[
η (−3 + 4 η) v4 +

15
8

η (−1 + 3 η) v4
r + η

(
9
2
− 6 η

)
v2 v2

r + η

(
13
2
− 2 η

)
µ

r
v2+

+
(

2 + 25 η + 2 η2
) µ

r
v2

r −
(

9 +
87
4

η

)
µ2

r2

]
r̂ +

[
η

(
15
2

+ 2 η

)
v2 − η

(
9
2
+ 3 η

)
v2

r−

−
(

2 +
41
2

η + 4 η2
)

µ

r

]
vr v

}
. (28)

where µ
.
= GM, M .

= MA + MB, and η
.
= MA MB/M2.

The direct 2PN precession ω̇2PN
dir of the pericenter of the relative motion of a two-body system can

be straightforwardly computed from Equation (28) in the same fashion as for the point particle treated in
Section 2.1. The radial, transverse, and out-of-plane components of Equation (28) are

64 c4 (1− e2)4

a5 n6
b (1 + e cos f )2 A2PN

r = e4 η (39 + 191 η) + 16 [−36 + η (−73 + 8 η)] +

+ 8 e2 [−36 + η (−13 + 72 η)] +

+ 8 e
{
−144 + η

[
−288 + 80 η + e2 (13 + 92 η)

]}
cos f+

+ e2
{

4
[
−72 + η

(
−298 + 144 η + e2 (−45 + 11 η)

)]
cos 2 f+

+e η [8 (−57 + 20 η) cos 3 f + 3 e (−17 + 7 η) cos 4 f ]} ,

A2PN
τ = −

a5 e n6
b (1 + e cos f )3 sin f

2 c4 (1− e2)
4

{
4 + η

[
26 + 4 η − e2 (15 + 4η)

]
+ (29)

+e (4 + 11 η) cos f + 3 e2 η (3 + 2η) sin2 f
}

, (30)

A2PN
ν = 0; (31)

they reduce to Equations (5)–(7) in the point particle limit, i.e., for η → 0. By averaging the right-hand
sides of Equations (2)–(3), calculated with Equations (29)–(31), with the first term of Equation (4) one
finally obtains

ω̇2PN
dir =

nb µ2 {e2 [−2 + 3 (7− 16 η) η] + 8 [7 + (5− 7 η) η]
}

8 c4 a2 (1− e2)
2 . (32)
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Equation (32) reduces to Equation (8) for η → 0.
For the double pulsar PSR J0737–3039A/B, characterized by [61] MA = 1.3381 M�, MB =

1.2489 M�, η = 0.249, M = 2.58708 M�, a = 878960 km, e = 0.0877, Pb = 0.10 d, Equation (32) yields

ω̇2PN
dir = 0.00019 deg yr−1. (33)

The current accuracy in measuring the periastron precession of the double pulsar is [61]

σω̇ = 0.00068 deg yr−1. (34)

An accuracy level of the order of Equation (33) should be reached in the forthcoming years thanks
to new telescopes [62]. For the historical binary pulsar PSR B1913+16, whose relevant physical and
orbital parameters are [63] MA = 1.4398 M�, MB = 1.3886 M�, η = 0.249, M = 2.8284 M�, a =
1.949× 106 km, e = 0.6171334, Pb = 0.32 d , Equation (32) returns

ω̇2PN
dir = 0.000038 deg yr−1, (35)

while the most recent determination of its periastron rate is accurate to [63]

σω̇ = 0.000005 deg yr−1. (36)

For the supermassive binary black hole in OJ 287, whose relevant orbital parameters are [38] MA =
18438× 106 M�, MB = 150.13× 106 M�, Pb = 12.06 yr, e = 0.657, Equation (32) predicts a direct 2PN
perinigricon2 precession as large as ω̇2PN

dir = 11.0 deg cty−1, a remarkable fraction of the 1PN rate of
change

ω̇1PN =
3 nb µ

c2 a (1− e2)
= 206.8 deg cty−1 (37)

corresponding to a shift per orbit
∆ω1PN = 24.9 deg. (38)

3.2. The Indirect Pericenter Precession due to the 1PN Acceleration

The indirect precession due to the 1PN acceleration (see, e.g., [27], Equation (4.4.28), p. 154; [34],
Equation (A2.6), p. 166; [35], Equation (10.3.7), p. 381)

A1PN =
µ

c2 r2

{[
(4 + 2 η)

µ

r
+

3
2

η v2
r − (1 + 3 η) v2

]
r̂ + (4− 2 η) vr v

}
(39)

can be calculated as in the point particle case treated in Section 2.2.
The radial, transverse, and out-of-plane components of Equation (39) are

A1PN
r =

µ2 (1 + e cos f )2 [e2 (4− 13 η)− 4 (−3 + η) + 8 e (1− 2 η) cos f + e2 (−8 + η) cos 2 f
]

4 c2 a3 (1− e2)
3 ,

(40)

A1PN
τ =

2 e µ2 (1 + e cos f )3 (2− η) sin f

c2 a3 (1− e2)
3 , (41)

2 It is one of the possible names which can be attributed to the pericenter when black holes are involved [64]. It comes from the
Latin word “niger", meaning “black".
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A1PN
ν = 0. (42)

Equations (40)–(42), which agree with Equations (A2.77a)-(A2.77c) of (Soffel [34], p. 178), reduce to
Equations (11)–(13) for η → 0.

The indirect precession ω̇
2PN (I)
indir due to the second and third terms of Equation (4) turns out to be

ω̇
2PN (I)
indir =

nb µ2
{

32 (−3 + η)2 + 8 e2 [148 + 5 η (−43 + 17 η)] + e4 [32 + 3 η (56 + 75 η)]
}

64 c4 e2 a2 (1− e2)
2 . (43)

Equation (43) reduces to Equation (14) in the point particle limit.
The 1PN instantaneous shifts of a and e induced by Equation (39) are

∆a ( f0, f )1PN =
e µ (cos f − cos f0)

2 c2 (1− e2)
2

{
4
[
−7 + 3 η + e2 (−3 + 4 η)

]
+

+e [e η cos 2 f + 4 (−5 + 4 η) cos f0 + 2 cos f (−10 + 8 η + e η cos f0) +

+e η cos 2 f0]} , (44)

∆e ( f0, f )1PN =
µ (cos f − cos f0)

4 c2 a (1− e2)

{
4
[
−3 + η + e2 (−7 + 6 η)

]
+

+e [e η cos 2 f + 4 (−5 + 4 η) cos f0 + 2 cos f (−10 + 8 η + e η cos f0) +

+e η cos 2 f0]} . (45)

They agree with Equations (A2.78b)–(A2.78c) of (Soffel [34], p. 178), and reduce to
Equations (20)–(21) in the limit η → 0. Equations (44)–(45) allow computation of the other indirect
contribution ω̇

2PN (II)
indir to the 2PN precession, which reads

−
64 c4 e2 a2 (1− e2)3

nb µ2 ω̇
2PN (II)
indir = 32 (−3 + η)2 − 8 e2 (−3 + η) (−116 + 47 η) +

+ e4 [−4352 + (10664− 4183 η) η] +

+ e6 [608 + 3 (304− 601 η) η] +

+ 48 e3
{[

8 (−17 + 7 η) + e2 (−104 + 109 η)
]

cos f0+

+3 e [4 (−5 + 4 η) cos 2 f0 + e η cos 3 f0]} . (46)

The sum of Equation (43) and Equation (46), which reduces to Equation (22) for η → 0, yields the
total indirect 2PN precession, which is

−
32 c4 a2 (1− e2)3

nb µ2 ω̇2PN
indir = e4

(
320 + 540 η − 789 η2

)
− 16 [115 + 16 η (−7 + 2 η)]−
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− 4 e2 [400 + η (−1097 + 466 η)] +

+ 24 e
{[

8 (−17 + 7 η) + e2 (−104 + 109 η)
]

cos f0+

+3 e [4 (−5 + 4 η) cos 2 f0 + e η cos 3 f0]} . (47)

Equation (47) agrees with Equation (23) in the point particle limit.
According to Equation (47), the indirect periastron precession of PSR J07373039A/B lies in the range

0.00092 deg yr−1 ≤ ω̇2PN
indir ≤ 0.00132 deg yr−1 (48)

for 0 ≤ f0 < 360 deg. If summed to the direct precession of Equation (33), such a result would bring the
total 2PN periastron precession of the double pulsar in the realm of measurability independently of f0.
For the binary pulsar PSR B1913+16, the indirect 2PN precession of Equation (47) is

− 0.000048 deg yr−1 ≤ ω̇2PN
indir ≤ 0.001052 deg yr−1 (49)

for 0 ≤ f0 < 360 deg. This implies that, for certain values of f0, Equation (49) may cancel the direct
precession of Equation (35), thus making a potential measurement of the 2PN orbital effect unmeasurable.
For OJ 287, Equation (47) yields an indirect 2PN perinigricon precession ranging from a maximum of
516 deg cty−1 to a minimum of 20 deg cty−1. It is a remarkable result in view of Equation (37).

4. A Comparison with Other Works

To the knowledge of the present author, the only other work in the literature making use of the
method of the variation of constants and the Gauss equations is Kopeikin & Potapov [12]. As we will
show, their result is incorrect because of the treatment of what are dubbed here as indirect effects.

Equation (5.2) of Kopeikin & Potapov [12], which we reproduce here to the benefit of the reader,
is their main result. It is the total 2PN pericenter shift per orbit, in units of 2π, written in terms of the
constants of integration k1, k2 of the solutions of the Gauss equations for the semimajor axis and the
eccentricity to the 1PN level. In our notation3, it is, in the test particle case,

∆ω2PN
tot

2π
=

3 µ

c2 k1
(
1− k2

2
) [1 +

3 µ

4 c2 k1
(
1− k2

2
) − µ

4 c2 k1

]
. (50)

Since the constants of integrations k1, k2 entering Equation (50) are determined with the initial
conditions at t = t0, they contain explicitly f0; thus, Equation (5.2) of Kopeikin & Potapov [12] actually
does depend on the latter one, contrary to what, at first glance, someone could argue, perhaps mislead
by the notation used by Kopeikin & Potapov [12] for k1, k2. By retrieving the explicit expression of k1, k2
from Equations (20)–(21)

k1 = a +
e µ
[(

14 + 6 e2) cos f0 + e (4 + 5 cos 2 f0)
]

c2 (1− e2)
2 , (51)

k2 = e +
µ
[(

6 + 14 e2) cos f0 + e (2 + 5 cos 2 f0)
]

2 c2 a (1− e2)
, (52)

3 In Kopeikin & Potapov [12], it is k1 → a0, k2 → e0.
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where a and e entering Equations (51)–(52) are intended as the Keplerian values of the unperturbed case,
Equation (5.2) of Kopeikin & Potapov [12] can be finally cast into the form

∆ω2PN
tot

2π
=

3 µ2 (2 + e2 − 32 e2 cos f0
)

4 c4 a2 (1− e2)
2 , (53)

which does not agree with the corresponding expression for ∆ω2PN
tot /2π obtainable from the sum of our

Equation (8) and Equation (23) by taking its ratio to nb.
From what can be deduced from the description of the method followed by Kopeikin & Potapov [12],

the indirect effect corresponding to our ω̇
2PN (II)
indir arises from the replacement a→ a + ∆a ( f0, f )1PN , e→

e + ∆e ( f0, f )1PN in4 Equation (17), in a series expansion of it in powers of c−1 to the order c−4, and in an
integration of the resulting expression from f0 to f0 + 2π. The result, not explicitly shown by Kopeikin
& Potapov [12], is

∆ω
2PN (II)
indir
2π

=
µ2 (−9− 48 e2 + e4 − 48 e3 cos f0

)
2 c4 a e2 (1− e2)

2 , (54)

which does not agree with the corresponding expression from our Equation (22) for ω̇
2PN (II)
indir . Instead,

it seems that the other two contributions arising from Equation (5.1) of Kopeikin & Potapov [12],
despite not explicitly displayed by Kopeikin & Potapov [12], agree with the corresponding shifts from
our Equation (8) and Equation (14) because their sum with Equation (54) yields just Equation (53). In
particular, the fractional 2PN advance per orbit, which should come from the first term of Equation (5.1)
of Kopeikin & Potapov [12] calculated with A2PN onto a reference Keplerian ellipse, is not shown;
nonetheless, from the description of the calculational method by Kopeikin & Potapov [12], one may
expect that it agrees with our Equation (8). Moreover, a direct calculation confirms that the second term
of Equation (5.1) of Kopeikin & Potapov [12] yields just the shift corresponding to our Equation (14) for
ω̇

2PN (I)
indir . Thus, it can be inferred that the total indirect 2PN pericenter precession of Kopeikin & Potapov

[12] can be cast into the form

ω̇2PN
indir =

nb µ2 (−11 + 2 e2 − 48 e cos f0
)

2 c4 a2 (1− e2)
2 . (55)

It neatly disagrees with our numerical results of Section 2.3 since, for the fictitious system treated in
Figure 2, Equation (55) provides a slope as little as −0.00255 deg cty−1.

It may be interesting to make a comparison of our results also with the seminal results by Damour &
Schafer [5], despite they did not use the Gauss equations. Damour & Schafer [5], following the example
by Landau & Lifshitz [65], started from the Hamiltonian of the binary system in Arnowitt–Deser–Misner
(ADM) coordinates [66] and adopted the Hamilton-Jacobi method. As far as the 2PN pericenter
precession of a system of two mass monopoles is concerned, their main result is Equation (3.12)

∆ω2PN
tot

2π
=

3
c2 h2

[
1 +

(
5
2
− η

)
E
c2 +

(
35
4
− 5

2
η

)
1

c2 h2 ,
]

, (56)

where h and E are the coordinate-invariant, reduced orbital angular momentum and energy, respectively.
Its translation in terms of the parameters of the Damour–Deruelle (DD) parametrization [67] is given by
Equation (5.18) of Damour & Schafer [5]

∆ω2PN
tot

2π
=

3 (µ n)2/3

c2
(
1− e2

t
) [1 +

(µ n)2/3

c2
(
1− e2

t
) (39

4
x2

A +
27
4

x2
B + 15 xA xB

)
−

4 It is done in the first term of Equation (5.1) of Kopeikin & Potapov [12] when Equation (3.6) of Kopeikin & Potapov [12] for
dω/dt is calculated to the 1PN level.
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− (µ n)2/3

c2

(
13
4

x2
A +

1
4

x2
B +

13
3

xA xB

)]
(57)

where n is the PN mean motion ([67], Equation (3.6d) )

n =
(−2 E)3/2

µ

[
1− E

4 c2 (η − 15)
]

, (58)

xA
.
=

MA

M
, xB

.
=

MB

M
= 1− xA, (59)

and et is one of the DD parameters [67]. Expressing Equation (56) in terms of the osculating Keplerian
orbital elements can be made in the following two steps. First, E, h are to be written in terms of the
DD parameters ar, er by inverting Equations (3.6a) and Equation (3.6b) of Damour & Deruelle [67]. The
result is

E = − µ

2 ar

1[
1 + µ

4 c2 ar
(7− η)

] , (60)

h2 =
ar
(
1− e2

r
)
+ µ

2 c2

[
19 + e2

r (−7 + η)− 3 η
]
− µ2

16 c4 ar

[
−577 + e2

r (−7 + η)2 + (246− 25 η) η
]

µ
[
1 + µ

2 c2 ar
(11− 3 η)

] .

(61)

Then, Equations (28) to (29) of Klioner & Kopeikin [24], which in general relativity, are

ar =
a
(
1− e2)2 − da0

(
1− e2)2 − µ

c2

[
−3 + η + e2 (−13 + e2 + 7 η + 2 e2 η

)]
(1− e2)

2 , (62)

er =
−2 a (de0 − e)

(
−1 + e2)+ e µ

c2

[
−17 + 6 η + e2 (2 + 4 η)

]
2 a (−1 + e2)

, (63)

with the aid of Equation (14) and Equation (16) of Klioner & Kopeikin [24], whose general relativistic
expressions are

da0 =
e µ
{[

8 (−7 + 3 η) + e2 (−24 + 31 η)
]

cos f0 + e [4 (−5 + 4 η) cos 2 f0 + e η cos 3 f0]
}

4 c2 (1− e2)
2 , (64)

de0 = −
µ
{[

8 (−3 + η) + e2 (−56 + 47 η)
]

cos f0 + e [4 (−5 + 4 η) cos 2 f0 + e η cos 3 f0]
}

8 c2 a (−1 + e2)
, (65)

are used to express ar, er as functions of the osculating Keplerian elements a, e. We obtain for
ar (a, e) , er (a, e)

4
(

1− e2
)2

ar = 4
{

a
(

1− e2
)2
− µ

c2

[
−3 + η + e4 (1 + 2 η) + e2 (−13 + 7 η)

]}
+

+ e
µ

c2

{[
56 + e2 (24− 31 η)− 24 η

]
cos f0+
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+ e [4 (5− 4 η) cos 2 f0 − e η cos 3 f0]} , (66)

8 a
(
−1 + e2

)
er = 4 e

{
2 a
(
−1 + e2

)
+

µ

c2

[
−17 + 6 η + e2 (2 + 4 η)

]}
+

+
µ

c2

{[
8 (−3 + η) + e2 (−56 + 47 η)

]
cos f0+

+ e [4 (−5 + 4 η) cos 2 f0 + e η cos 3 f0]} . (67)

Finally, an expansion of the obtained expression in powers of c−1 to the 2PN level yields, in the point
particle limit, Equation (53) which, as already noted, is incorrect. On the other hand, Equation (56) and
Equation (57) seem to be mutually inconsistent since their expressions in terms of a, e do not even agree
each other. Indeed, by using Equation (58) and Equations (66)–(67), Equation (30) of Klioner & Kopeikin
[24] , which, in general relativity, reads

et =
−2 a (de0 − e)

(
−1 + e2)+ e µ

c2

[
3 (−3 + η) + e2 (−6 + 7 η)

]
2 a (−1 + e2)

, (68)

and Equation (65) to express et in terms of a, e

8 a
(
−1 + e2

)
et = 4 e

{
2 a
(
−1 + e2

)
+

µ

c2

[
3 (−3 + η) + e2 (−6 + 7 η)

]}
+

+
µ

c2

{[
8 (−3 + η) + e2 (−56 + 47 η)

]
cos f0+

+ e [4 (−5 + 4 η) cos 2 f0 + e η cos 3 f0]} , (69)

one obtains, in the limit η → 0,

∆ω2PN
tot

2π
=

3 µ2 (2− 3 e2 − 32 e cos f0
)

4 c4 a2 (1− e2)
2 , (70)

which disagrees even with Equation (53) itself. By expanding Equation (53) and Equation (70) in powers
of e, it turns out that their disagreement is at the order O

(
e2).

5. Summary and Conclusions

We analytically worked out the 2PN secular pericenter precession ω̇2PN of both a test particle
orbiting a static central body and a full two-body system made of a pair of comparable non-rotating
monopole masses with the method of variation of orbital elements.

We, first, calculated the direct precession ω̇2PN
dir induced by the 2PN acceleration entering the

equations of motion written in harmonic coordinates. Two different numerical integrations of the
equations of motion of a point particle confirmed our analytical results. For Mercury moving in the
field of Sun, it is ω̇2PN

dir = 2.6 µas cty−1. It is just 3 times smaller than the present-day formal accuracy
σω̇ = 8 µas cty−1 in constraining any unmodeled effect in the Hermean perihelion rate with the latest
planetary ephemerides, although σω̇ may be realistically up to ' 10− 50 times worse. In the case of the
binary pulsar PSR B1913+16, the direct 2PN periastron rate is ω̇2PN

dir = 0.000038 deg yr−1, to be compared
with the most recent determination of its periastron rate σω̇ = 0.000005 deg yr−1, while for the double
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pulsar PSR J0737–3039A/B one has ω̇2PN
dir = 0.00019 deg yr−1 and σω̇ = 0.00068 deg yr−1. The direct 2PN

perinigricon precession of the supermassive binary black hole in OJ 287 amounts to 11 deg cty−1.
Then, we computed also the indirect 2PN pericenter precession ω̇2PN

indir arising from the fact that
the 1PN acceleration actually changes instantaneously the semimajor axis and the eccentricity, and
shifts the line of apsides instant by instant during one full orbital revolution. If properly accounted for
in the orbital average, such features, which are of the second order in the acceleration causing them,
gives rise to a further contribution of order O

(
c−4) to the 2PN pericenter precession which adds on

the direct one. The resulting expression turns out to be dependent on the initial position f0 along the
orbit. Numerical integrations of the equations of motion confirmed also such a result. Since the orbital
dynamics of our Solar system is routinely modeled up to the 1PN level in harmonic coordinates of PN
theory, it is unlikely that such an indirect precession can be measured separately because it does not
come from a distinct acceleration which, instead, could be suitably expressed in terms of a dedicated
solve-for parameter to be estimated in specific covariance analyses. For Mercury, its nominal size
amounts to 16− 33 µas cty−1, depending on f0. For the binary pulsars, the experimental approach is
different. It implies the determination, in a phenomenological, model-independent way, of several
post-Keplerian parameters, among which there is also the periastron precession, from a confrontation of
an analytical timing formula with the recorded pulses. Then, model-dependent analytical expressions
for the measured post-Keplerian effects are used to determine the masses of the system, and to perform
one or more tests of the model of gravitation considered. In the case of PSR B1913+16, the indirect
2PN precession ranges from −0.000048 deg yr−1 to 0.001052 deg yr−1, while for PSR J07373039A/B it is
0.00092− 0.00132 deg yr−1. This shows that the choice of f0 may enhance or even cancel out the overall
2PN periastron precession. For OJ 287, it ranges from 20 deg cty−1 to 516 deg cty−1; the 1PN perinigricon
precession amounts to 206.8 deg cty−1.

We compared our formulas to some other analytical results in the literature by showing that the
latter ones disagree with ours and with our numerical integrations of the equations of motion. It appears
that the source of discrepancy relies in the treatment of the indirect effects arising from the inclusion of
the instantaneous 1PN changes of the semimajor axis and eccentricity in the integration over one orbital
revolution of the pericenter shift due to the 1PN acceleration itself.
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