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Abstract: We consider the new horizon first law in f (R) theory. We derive the general formulas
to computed the entropy and energy for static spherically symmetric black hole. For applications,
some nontrivial solutions in some popular f (R) theories are investigated, the entropies and the
energies of static spherically symmetric black holes in these models are first calculated.
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1. Introduction

There is a deep connection between thermodynamics and gravity. For a black hole, its area can be
regarded as the entropy [1], and four laws for dynamics like in thermodynamics were suggested [2]. For
diffeomorphism invariance of gravitational theory, the entropy of a black hole can be seen as a Noether
charge [3,4]. The Einstein equations had been derived from the first law of thermodynamics [5],
which was generalized to the non-equilibrium thermodynamics of spacetime [6]. This connection was
also investigated in modified gravity theories—such as Lancos-Lovelock gravity [7], f (R) theory [8],
and the scalar-Gauss-Bonnet gravity [9]. It was shown that the equation of motion for generalized
gravity theory is equivalent to the thermodynamical relationship δQ = TδS [10]. In spherically
symmetric spacetime Padmanabhan presented a general form for understanding the thermodynamics
of the horizon [11]. For a time-dependent evolution horizon or a fixed axis-symmetric horizon,
the Einstein equations on horizon can be rewritten as a thermodynamic identity [12]. In cubic and
quartic quasi-topological gravity, the field equations on n + 1 dimensional topological black holes
horizon with constant curvature can be expressed like the form of the first thermodynamical law [13].
In References [14,15], one can obtain the thermal entropy density of any spacetime from Einstein
equations without assuming the temperature or the horizon.

In higher-order theories of gravity, issues about the entropy and energy of black hole are important.
Especially the problems related to the energy of black hole are problematic, some attempts have
been made to find a satisfactory answer to this question [16–20]. Using the first law of the horizon,
one can derived the entropy and energy of black hole in Einstein gravity [11]. Recently, as shown in
Reference [21], the entropy and energy of black hole in f (R) theories can be obtained simultaneously
though the new horizon first law which was proposed in Reference [22]. Here we will consider the
more complicated case: for the general spherically symmetric black hole we hope to obtain the energy
and the entropy of black hole in f (R) theory, which can reduce to the results in References [16,21] for
some special cases.
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The rest of this article is organized as follows. In Section 2, we briefly review the new horizon first
law. In Section 3, we investigate the entropy and energy of black holes in f (R) Theories. In Section 4,
we calculate the energies and entropies for black holes in some f (R) theories for applications.
Conclusion and discussion are given in Section 5.

2. The New Horizon First Law

Usually if the radial component of the stress-energy tensor acts as the thermodynamic pressure,
P = Tr

r|r+ , which is a special case of the assumption firstly proposed in Reference [15], and assume
an horizon equation of state P = P(V, T) with the temperature identified as the Hawking temperature
and a geometric volume V = V(r+) assigned to the horizon [23], then the radial Einstein equation
can be written as the first law of thermodynamics, which can be rewritten as a horizon first law by
considering a imaginary displacement of the horizon [11]

δE = TδS− PδV, (1)

where E is the quasilocal energy and S is the horizon entropy of the black hole. In Einstein gravity,
E proves to be the Misner-Sharp energy [24]. The horizon first law (1) is a special case of the ‘unified
first law’ [25].

There are two problems in this procedure that are needed to be further examined. The first
problem is that the thermodynamic variables was vague in the original derivation, which require
further determination. Secondly because both S and V are functions of only r+, which makes the
horizon first law (1) to be of a function only depending on r+. As a matter of fact, Equation (1) can
be rewritten as δE = (TS′ + PV′) δr+, where the primes stands for the derivative with respected to
r+. This makes the terms ‘heat’ and ‘work’ confused and results to a ‘vacuum interpretation’ of the
first law (1) [22]. To avoid the problems mentioned above, a new horizon first law was proposed in
Reference [22], by varying the horizon equation of state with the temperature T and the pressure P as
independent thermodynamic quantities

δG = −SδT + VδP, (2)

which obviously depends on both T and P, meaning that T and P can vary independently.
The energy, and therefore the standard horizon first law (1) can be obtained via a degenerate Legendre
transformation E = G + TS− PV. The Gibbs free energy G and the horizon entropy S are derived
concepts for specified volume. This new horizon first law has practical utility and provides further
evidence for the connection between gravity and thermodynamics.

In 4-dimensional Einstein gravity, we briefly review this approach to explain how it works [22].
Considering the geometry of a static spherically symmetric black hole, which is given by

ds2 = −N(r)dt2 +
dr2

N(r)
+ r2dΩ2, (3)

The horizon is local at r = r+ where N(r+) = 0 with N′(r+) 6= 0.
Supposing minimal coupling to the matter and that the thermal sources are also the gravitational

sources [15], we have P = Tr
r and identify the Hawking temperature as the thermal temperature T [11],

the (1
1) component of the Einstein equation can be written as at the horizon

P =
T

2r+
− 1

8πr2
+

, (4)

which is the horizon equation of state, where we take the units G = c = h̄ = 1.
Since the identification of the Hawking temperature as the thermal temperature does not fall

back on any gravitational field equations [22]. According to the conjecture suggested in Reference [15],
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the definition of the pressure is identified as the (r
r) component of the matter stress-energy, which is also

independent of any gravitational theories. So it is reasonable to speculate that the radial component of
the gravitational field equations under consideration takes the following form [22]

P = D(r+) + C(r+)T, (5)

where C and D are some functions of r+, generally depending on the gravitational theory under
consideration. Varying the generalized equation of state (5) and multiplying the volume V(r+) of
black hole, it is easy to get

VδP = SδT + δG, (6)

where

G =
∫ r+

V(r)D′(r) dr + T
∫ r+

V(r)C′(r)dr

= PV − ST −
∫ r+

V′(r)D(r)dr, (7)

and

S =
∫ r+

V′(r)C(r)dr, (8)

by using the integration by parts. Taking the degenerate Legendre transformation E = G + TS− PV,
we finally derive the energy as

E = −
∫ r+

V′(r)D(r)dr. (9)

Hypothesizing that T, P, and V can be identified as the temperature, the pressure, and the
volume, we can find that G, S, and E are the Gibbs free energy, the entropy, and the energy of the
black hole, respectively. For Einstein gravity in four dimensions, it is easily to have C(r+) = 1

2r+ and

D(r+) = − 1
8πr2

+
from (4), substituting them into Equations (8) and (9), we obtain S = πr2

+ and E = r+
2 .

It has been shown that the new horizon first law still works in f (R) theories [21].

3. The Entropy and Energy of Black Holes in f (R) Theories

We consider the general spherically symmetric and static black hole in f (R) theories, whose
geometry takes the form

ds2 = −W(r)dt2 +
dr2

N(r)
+ r2dΩ2, (10)

where W(r) and N(r) are general functions of the coordinate r. Taking the largest positive root of
N(r+) = 0, yields the event horizon which fulfils N′(r+) 6= 0. The surface gravity is given by [26]

κK =

√
W ′(r+)N′(r+)

2
, (11)

which gives the temperature of the black hole as

T =
κK
2π

=

√
W ′(r+)N′(r+)

4π
. (12)
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In four-dimensional spacetime, the general action of f (R) gravity theories with source is

I =
∫

d4x
√
−g
[

f (R)
2k2 + Lm

]
, (13)

where k2 = 8π, f (R) is a function only depending on the Ricci scalar R, and Lm is the matter
Lagrangian. Physically f (R) must fulfil stability conditions [27]: (a) no ghosts, d f /dR > 0; (b) no
tachyons, d2 f /dR2 > 0 [28]; (c) stable solutions, d f /dR/d2 f /dR2 > R [29]. Additionally f (R) must
also satisfy limR→∞( f (R)− R)/R = 0 for the existence of an effective cosmological constant at high
curvature and limR→∞ d( f (R)− R)/dR = 0 for recovering general relativity at early time. Varying
the action (13) with respect to the metric, yields the gravitational field equations

Gµν ≡ Rµν −
1
2

gµνR = k2
(

1
F

Tµν +
1
k2 Tµν

)
, (14)

where F = d f
dR and Tµν = −2√−g

δLm
δgµν is the energy-momentum tensor for the matter. The tress-energy

tensor for the effective curvature fluid, Tµν, is given as following

Tµν =
1

F(R)

[
1
2

gµν( f − RF) +∇µ∇νF− gµν2F
]

, (15)

where 2 = ∇γ∇γ. Taking the trace of Equation (13), gives the relation as follow

RF(R)− 2 f (R) + 32F(R) = k2T. (16)

For the general spherically symmetric and static black hole (10), the (1
1) components of the Einstein

tensor and the stress-energy tensor of the effective curvature fluid are respectively given by

G1
1 =

1
r2 (−1 +

rNW ′

W
+ N), (17)

and

T 1
1 =

1
F

[
1
2
(RF− f ) +

N
2W

W ′F′ +
2
r

NF′
]

, (18)

where the prime denotes the derivative with respected to r. Substituting Equations (17) and (18),
and T1

1 = P into Equation (14), we derive

k2P = −
[

F
r2 +

1
2
( f − RF)

]
+

√
N′

W ′

(
F
r
+

1
2

F′
)√

W ′N′ +
NF
r2 +

2NF′

r
. (19)

At the horizon, r = r+, thinking of the temperature (12) and N(r+) = 0, Equation (19) reduces to

P = − 1
8π

[
F

r2
+

+
1
2
( f − RF)

]
+

1
4

√
N′

W ′

(
2F
r+

+ F′
)

T. (20)

Comparing Equation (5) with Equation (20), we then have

D(r+) = −
1

8π

[
F

r2
+

+
1
2
( f − RF)

]
, (21)
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and

C(r+) =
1
4

√
N′

W ′

(
2F
r+

+ F′
)

. (22)

The volume V of the black hole (10) is given by [23]

V(r+) =
∫ r+

0

∫ π

0

∫ 2π

0

√
−g drdθdφ

= 4π
∫ r+

0

√
W ′

N′
r2dr. (23)

where we have used the relation N(r+)
W(r+)

= N′(r+)
W ′(r+)

[26]. Substituting Equations (23) and (19) into
Equation (8), we obtain the entropy as

S =
∫ r+

(2πrF + πr2F′)dr = πr2
+F, (24)

thought the black hole (10) has different temperature and volume, its entropy (24) has the same
form for the entropy of black hole with W(r) = N(r) obtained in Reference [21]. The formula (24)
can be obtained by using the Euclidean semiclassical approach or the Wald entropy formula [30–32].
Using the degenerate Legendre transformation E = G + TS− PV, inserting Equations (23) and (21)
into Equation (9), then the energy of the black hole is given as follow

E =
1
2

∫ r+
√

W ′

N′

[
F
r2 +

1
2
( f − RF)

]
r2dr. (25)

For W(r) = N(r)e2α(r), Equation (25) reduces to the results obtained in Reference [16] where the
entropy was obtained by using the Wald method. For W(r) = N(r), Equation (25) gives the result
obtained in Reference [21]. Equations (24) and (25) show that the new horizon first law still work in
f (R) theories for the general spherically symmetric and static black hole.

4. Applications

In this section, we will use Equations (24) and (25) to calculate the entropies and energies of black
holes (10) in some popular f (R) theories to illustrate the method described above. These models
allowe solutions with constant Ricci curvature (such as Schwarzschild-de Sitter or Schwarzschild
solutions) or solutions with non-constant Ricci curvature. For a Schwarzschild-de Sitter solution, we
have N(r+) = 1− 2M/r− R0r2/12 = 0 at the horizon [33], which gives

2M = r+ −
1
12

R0r3
+. (26)

This equation relates the mass M, the radius r+, and the Ricci curvature R0 together.
We firstly start with a f (R) model which unifies inflation and cosmic acceleration under the same

picture and was confirmed by the solar system tests [34]. This model takes the form

f (R) = R− f0

∫ R

0
e
−α

R2n
1

(x−R1)
2n − f0

x
Λi dx, (27)
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where R1 is a constant which is given by f0R1
∫ 1

0 e−α/x2
dx = Rnow with 0 < f0 < 1 and Rnow the Ricci

scalar at present. The effective cosmological constant is − f (−∞) = Λi in the early universe and is 2R0

in the present era. The stability condition, f ′′(R) > 0, gives

f0

Λi
>

2nR2n
1

(R− R1)
2n+1 . (28)

Due to the fact that f (0) = 0, this model allows a Schwarzschild solution. For a Schwarzschild-de
Sitter solution, we obtain from Equation (16),

R0 + f0R0e
−α

R2n
1

(R0−R1)
2n − f0

R0
Λi = 2 f0

∫ R

0
e
−α

R2n
1

(x−R1)
2n − f0

x
Λi dx. (29)

For the black hole (10), we calculate the entropy from Equation (24) as

S = πr2
+

1− f0e
−α

R2n
1

(R−R1)
2n − f0

R
Λi

 . (30)

The nonnegativity of the entropy gives additional limits on the parameters: 1 > f0e
−α

R2n
1

(R−R1)
2n − f0

R
Λi .

The entropy for Schwarzschild-de Sitter black hole is

S = πr2
+

1− f0e
−α

R2n
1

(R0−R1)
2n − f0

R0
Λi

 , (31)

where R0 must fulfil Equations (28) and (29).
For Schwarzschild black hole (R0 = 0), the stability condition (28) reduces to n < f0R1

2Λi
, and the

entropy (31) reduces to

S = πr2
+

(
1− f0e−α

)
. (32)

Computing the energy by using Equation (25), we have

E =
1
4

∫ r+
√

W ′

N′

2 + f0

(
Rr2 − 2

)
e
−α

R2n
1

(R−R1)
2n − f0

R
Λi − f0r2

∫ R

0
e
−α

R2n
1

(x−R1)
2n − f0

x
Λi dx

 dr. (33)

For the Schwarzschild-de Sitter black hole, Equation (33) reduces to

E =
r+
12

6 + f0

(
R0r2

+ − 6
)

e
−α

R2n
1

(R0−R1)
2n − f0

R0
Λi − f0r2

+

∫ R0

0
e
−α

R2n
1

(x−R1)
2n + f0

x
Λi dx

 (34)

=
r+
12

6− 1
2

R0r2
+ +

(
1
2

R0r2
+ − 6

)
f0e
−α

R2n
1

(R0−R1)
2n − f0

R0
Λi


=

1− f0e
−α

R2n
1

(R0−R1)
2n − f0

R0
Λi

M,
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where Equations (26) and (29) were used. For the Schwarzschild black hole, R0 = 0, Equation (34)
reduces to

E =
r+
2
(
1− f0e−α

)
. (35)

Since S ≥ 0 and E ≥ 0, Equations (32) and (35) give new constraints on the parameters: (a) 1 >

f0e
−α

R2n
1

(R0−R1)
2n − f0

R0
Λi for Schwarzschild-de Sitter black hole; and (b) 1 ≥ f0e−α for Schwarzschild

black hole.
The second f (R) model we consider here was recovered from the entropy of black holes [35]

f (R) = R− qRβ+1 αβ + α + βε

β + 1
+ qεRβ+1 ln

(
aβ

0 Rβ

c

)
, (36)

where 0 ≤ ε ≤ e
4 (1 + 4

e α) and q = 4aβ
0 /c(β + 1) with α ≥ 0, β > 0, a0 = l2

p and c a constant. Since
R 6= 0, this type of f (R) theory admits no Schwarzschild solution. Use Equation (16), we get the
condition for the Schwarzschild-de Sitter solution

1 + β− qαRβ
0 + qαβRβ

0 − 2qβεRβ
0 =

(
β2 − 1

)
qεRβ

0 ln

(
aβ

0 Rβ
0

c

)
. (37)

From the Equation (24), the entropy of the black hole (10) is computed as

S = πr2
+

[
1− (β + 1) qαRβ + (β + 1) qεRβ ln

(
aβ

0 Rβ

c

)]
, (38)

The nonnegativity of the entropy gives additional constraints on the parameters: 1 >

(β + 1) qαRβ + (β + 1) qεRβ ln
(

aβ
0 Rβ

c

)
. For Schwarzschild-de Sitter black hole, the entropy is

S = πr2
+

[
1− (β + 1) qαRβ

0 + (β + 1) qεRβ
0 ln

(
aβ

0 Rβ
0

c

)]

=
2β− qβ(αβ− α + 2ε)Rβ

0
β− 1

πr2
+

=
β
[
2− (αβ− α + 2ε)qRβ

0

]
β− 1

πr2
+, (39)

where the condition (37) was uesed. Since S ≥ 0, gives new limits on the parameters: 2 > (αβ− α +

2ε)qRβ
0 for β > 1 and 2 < (αβ− α + 2ε)qRβ

0 for β < 1.
The energy of the black hole (10) is derived from Equation (25) as

E =
1
4

∫ r+
√

W ′

N′

{
r2R

[
1− α + αβ + βε

β + 1
+ qεRβ ln

(
aβ

0 Rβ

c

)]

−
(

r2R− 2
) [

1− (β + 1) qαRβ + (β + 1) qεRβ ln

(
aβ

0 Rβ

c

)]}
dr (40)

=
1
4

∫ √W ′

N′

{
2− 2α(β + 1)qRβ − α + αβ + βε

β + 1
r2R

+qα(β + 1)r2Rβ+1 + qε
[
2(β + 1)− βr2R

]
Rβ ln

(
aβ

0 Rβ

c

)}
dr. (41)
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For Schwarzschild-de Sitter black hole, Equation (40) takes the form

E =
r+
12

{
qβRβ

0

(
r2
+R0 − 12

) [
α + αβ− ε− ε(β + 1) ln

(
aβ

0 Rβ
0

c

)]}
(42)

= −2qβRβ
0 M

[
α + αβ− ε− ε(β + 1) ln

(
aβ

0 Rβ
0

c

)]

=
2β
[
1 + β− (βε + αβ2 + ε− αβ)qRβ

0

]
β− 1

M

where Equations (37) and (26) were used. The nonnegativity of the energy gives new constraints on the
parameters: 1 + β > (βε + αβ2 + ε− αβ)qRβ

0 for β > 1 and 1 + β < (βε + αβ2 + ε− αβ)qRβ
0 for β < 1.

We thirdly investigate the following f (R) theory which allows black hole solutions with
non-constant Ricci curvature [36]

f (R) = 2a
√

R− α, (43)

where α is a parameter of the model which is related to an effective cosmological constant and a > 0 is
a parameter with units [distance]−1. This model admits a static spherically symmetric solution (10)
which takes the follow form [36]

N(r) = W(r) =
1
2

(
1− αr2

6
+

2Q
r2

)
, (44)

where Q is an integration constant. The event horizon of the black hole is located at: (a) r+ =√
3α + α

√
9 + 12αQ/α for α > 0 and Q > 0; (b) r+ =

√
3α− α

√
9 + 12αQ/α for α > 0, Q < 0 and

αQ > −3/4; (c) r+ =
√

3/α−
√

9 + 12αQ/α for α < 0 and Q < 0; and (d) r+ =
√

6/α for α > 0 and
Q = 0. The Ricci scalar evolves as

R = α +
1
r2 , (45)

Substituting W ′(r+) = N′(r+) into Equation (24), the entropy is calculated as

S =
aπ(3 +

√
9 + 12αQ)

α
, for r+ =

√
3α + α

√
9 + 12αQ

α
, (46)

S =
aπ(3−

√
9 + 12αQ)

α
, for r+ =

√
3α− α

√
9 + 12αQ

α
, (47)

S =
aπ(3−

√
9 + 12αQ)

α
, for r+ =

√
3
α
−
√

9 + 12αQ
α

, (48)

S =
6aπ

α
, for r+ =

√
6
α

. (49)

From Equation (25), the energy is given by

E = − a
12α

(3 +
√

9 + 12αQ)(
√

9 + 12αQ− 4), for r+ =

√
3α + α

√
9 + 12αQ

α
, (50)
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E =
a

12α
(3−

√
9 + 12αQ)(4 +

√
9 + 12αQ), for r+ =

√
3α− α

√
9 + 12αQ

α
, (51)

E =
a

12α
(3−

√
9 + 12αQ)(4 +

√
9 + 12αQ), for r+ =

√
3
α
−
√

9 + 12αQ
α

, (52)

E =
a

2α
, for r+ =

√
6
α

. (53)

For α > 0 and Q > 0, the nonnegativity of the energy gives additional constraints on the
parameters: αQ < 7/12.

We finally consider a power-law of F(r), for example: F = αra, with constants a and α.
The functions W(r) and N(r) in (10) are found to take forms [37]

W = r
2a(a−1)

a+2 N (54)

and

N = C1r−
2a2+2a+2

a+2 +
(a + 2)2

(2a2 + 2a + 2)(2 + 2a− a2)
. (55)

where C1 is a integration constant. The event horizon is local at r+ =
[
− (2+a)2

C1(2a2+2a+2)(2+2a−a2)

]− 2+a
2a2+2a+2 .

In this case, function f (R) is given by

f (R) = α1R1− a
2 , (56)

where α1 = 2α(2− a)
a
2−1

(
3a

2+2a+a2

) a
2 . The entropy (24) and the energy (25) respectively reads

S = απra+2
+

= απ

[
−C1(2a2 + 2a + 2)(2 + 2a− a2)

(2 + a)2

] (2+a)2

2a2+2a+2
, (57)

E =
π

1
2

8Γ( 3
2 )

α(a + 2)3r
2a2+2a+2

a+2
+

(a2 − 2a− 2)(2a2 + 2a + 2)

=
1
4

αC1(2 + a), (58)

For a = 0, we obtain the results in Einstein’s gravity. The nonnegativity of the entropy and the
energy give new constraints on the parameters: α ≥ 0 and C1(a− 2) ≥ 0.

5. Conclusions and Discussion

We investigated whether the new horizon first law still holds in f (R) theory with general
spherically symmetric black hole (10). We derived the general formulas to computed the entropy and
energy of the black hole. For black hole (10), its temperature, volume and entropy have different forms,
but its entropy (24) has the same form for the entropy of black hole (3) obtained in Reference [21].
For applications, some nontrivial black hole solutions in some popular f (R) theories are considered,
the entropies and the energies of black holes in these models are first calculated. The nonnegativity of
entropy or energy gives new constraints on the parameters of f (R) theories, which may be useful for
future researches. The formulas presented here can be used to calculate the energies and entropies of
black holes in other types f (R) theories, but cannot be used in the case discussed in Reference [38],
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where F(R) = 0. In Reference [39], a picture of equilibrium thermodynamics on the apparent
horizon in the expanding cosmological background was obtained for a wide class of modified gravity
theories. Whether this procedure can be applied to the apparent horizon in the expanding cosmological
background worths further study.
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