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Abstract: Various phase transitions could have taken place in the early universe, and may occur in
the course of heavy-ion collisions and supernova explosions, in proto-neutron stars, in cold compact
stars, and in the condensed matter at terrestrial conditions. Most generally, the dynamics of the
density and temperature at first- and second-order phase transitions can be described with the
help of the equations of non-ideal hydrodynamics. In the given work, some novel solutions are
found describing the evolution of quasiperiodic structures that are formed in the course of the phase
transitions. Although this consideration is very general, particular examples of quark-hadron and
nuclear liquid-gas first-order phase transitions to the uniform k0 = 0 state and of a pion-condensate
second-order phase transition to a non-uniform k0 6= 0 state in dense baryon matter are considered.
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1. Introduction

Cosmological observations of the two last decades [1] have supplied us with some extraordinary
results and puzzles. Particularly important is the fact that the universe undergoes an accelerated
expansion and the fact that only 5% of its mass is contained in baryons, 26% is in dark matter, and the
remaining part is in dark energy. It is commonly believed that at least two cosmic phase transitions
occurred in the early universe, the electro-weak and the QCD phase transitions [2,3]. The standard
model of particle physics predicts that, after the inflation, the hot expanding universe was filled with
deconfined quarks in the state of quark-gluon plasma [4]. The quark-gluon plasma in baryon-poor
matter persists down to a temperature of T ' 160 MeV. Whether the quark-hadron transition is a
first-order phase transition, a second-order transition, or a crossover is still not completely settled. This
view on the early universe is supported by simulations done in various cosmological and relativistic
heavy-ion collision models [5,6] and by the lattice calculations. The latter calculations support the
QCD crossover transition obtained by the HotQCD Collaboration [7,8]. Nucleosynthesis is affected
by remnant inhomogeneities in the baryon-to-entropy ratio and in isospin [9]. These problems can
be considered within the standard model. However, the standard model does not account for the
presence of the dark matter with which additional cosmic phase transitions may be associated during
the cooling of the expanding universe to its present temperature T ' 2.7 K, cf. [10].

Another piece of important information about strongly interacting matter can be extracted from
neutrino and photon radiation of compact stars formed in supernova events [11,12] and from analysis
of gravitational waves in gamma ray bursts. A strong phase transition may result in a second neutrino
burst occurring during a supernova explosion and a hot neutron star formation with a typical minute
time delay. It might be also associated with a larger time delay related to the slow heat transport to the
neutron-star surface, if the system is close to the pion-condensate phase transition [12,13]. Recently,
new arguments have been expressed showing that indeed two neutrino bursts were measured during
the 1987A explosion, and that one delayed respectively the other by 4.7 h, cf. [14]. The second burst
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and a blowing of some amount of matter could then be related to the phase transition of the neutron
star to the pion-condensate state. A first-order deconfinement transition can serve as an explosion
mechanism for massive blue supergiant stars of M ∼ 50M�, for which so far no explosion mechanism
is known [15]. In old neutron stars, the first-order phase transition, if it occurs, could result in a
blowing of matter or in a strong star-quake [12,16]. The detection of merging compact stars in the
gravitational wave spectra [17] and the detection of massive compact stars [18–21] provide constraints
on the equation of state of strongly interacting dense matter and strong phase transitions in it. The
dominant postmerger gravitational-wave frequency fpeak may exhibit a significant deviation from an
empirical relation between fpeak and the tidal deformability, if a strong first-order phase transition leads
to the formation of a gravitationally stable extended quark matter core in the postmerger remnant [22].
Thus, one may feasibly identify observable imprints of a first-order hadron-quark phase transition at
supranuclear densities on the gravitational-wave emission of neutron star mergers.

An experimental study of the ultrarelativistic heavy-ion collisions helps to simulate at the
terrestrial conditions the processes that have occurred in the very early universe, in supernova
explosions and in gamma ray bursts. Experimental data and lattice calculations [7,8] indicate that the
hadron-quark transition in heavy-ion collisions at RHIC and LHC collision energies is the crossover
transition, cf. [23–25]. For lower collision energies relevant for NICA and FAIR facilities, one expects
to find signatures of the strong first-order quark-hadron phase transition [26]. There are experimental
evidences that, in the very low-energetic heavy-ion collisions of approximately isospin-symmetrical
nuclei, there is a first-order nuclear liquid-gas phase transition (for temperatures T <∼ 20 MeV and
baryon densities n <∼ 0.7n0, where n0 is the nuclear saturation density) [27–29].

In a many-component system, a mechanical instability is accompanied by a chemical instability,
see [30,31]. The inclusion of the Coulomb interaction, see [32,33], leads to a possibility of the pasta
phase in the neutron star crusts for densities 0.3n0

<∼ n <∼ 0.7n0. For higher densities in dense neutron
star interiors, there may be phase transitions to the pion [12,34], kaon [35,36], and charged rho [37]
condensate states and to the quark matter [35,38–41]. The quark-hadron, pion, kaon, and charged
rho-meson condensate phase transitions may occur during the iso-entropical falling of the baryon-rich
matter in supernova explosions [11], in proto-neutron stars, and in cold compact stars, cf. [12]. In some
models, these phase transitions are considered first-order phase transitions leading to mixed phases
in dense matter. The formation of the pasta non-uniform phases is one of the possibilities [36,40,41].
We can add here the possibilities of the phase transitions between various superfluid [42,43] and
ferromagnetic-superfluid [44] phases in the cold neutron stars and in the color-superconducting hybrid
compact stars [45], as well as numerous possibilities of the phase transitions in the condensed matter
physics at terrestrial conditions, such as liquid-gas, liquid-glass, and glass-metal transitions.

The liquid-gas phase transition, the transition to the superfluid state in quantum liquids, and
many other transitions occur in a uniform state characterized by the wave number k0 = 0. Other phase
transitions, such as the transitions in solids and liquid crystals, are transitions to inhomogeneous states
characterized by the non-zero wave-vectors,~k0,i 6= 0, cf. [46,47]. In glasses, the order, characterized by
k0 6= 0, appears at rather short distances but disappears at long distances [47]. The phase transition to
the pion-condensate state [12,34] possible in the interiors of neutron stars may occur due to a strong
p-wave pion-baryon attraction, which increases with the increase of the baryon density. Thereby, the
pion-condensation occurs in a non-uniform state, k0 6= 0. Chiral condensate, which is constant in
a vacuum, may also become spatially modulated at high densities, where, in the traditional picture
of the QCD phase diagram, a first-order chiral phase transition occurs. Examples of inhomogeneous
phases are the chiral density wave, the Skyrme crystal, and crystalline color superconductors, cf. [48].
Perhaps the antikaon condensation in dense baryon matter also occurs in the non-uniform state, k0 6= 0,
cf. [49].

Some of the mentioned phase transitions, such as the transition of the normal matter to superfluid
in metals and in 4He, are transitions of the second order [50]. Other phase transitions mentioned above,
such as the liquid-gas phase transition, are transitions of the first order. The search for the critical
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endpoint separating the crossover and first-order quark-hadron transitions is one of the benchmarks
for future experiments at NICA and FAIR.

Finite size structures are important in the context of the general relativistic evolution of density
perturbations in the early universe [10]. Even the simple case of dust baryon matter gives the right
order of magnitude for globular star clusters with the corresponding Jeans mass and wavelength.
The presence of a substantial amount of homogeneous scalar field energy density at low redshifts
inhibits the growth of perturbations in the baryonic fluid [51]. For example, dark matter may result
from the transition of a non-minimally coupled scalar field from radiation to collision-less matter.
Dynamical instabilities of the field fluctuations, which are typical for oscillatory scalar field regimes,
can be amplified and transmitted by the coupling to dark matter perturbations, cf. [52]. The presence
of the dark matter may also trigger strong electro-weak phase transition in the early universe [53].

In the early universe, at the processes of the formation of compact stars in supernova explosions,
collisions of compact binary stars, and in heavy-ion collisions, one deals with a rapid thermalization
of a strongly interacting quark-gluon matter and then the hadronic matter. These processes can be
described within non-ideal hydrodynamics, where viscosity and thermal conductivity effects are of
crucial importance. The dynamics of the phase transitions can also be considered within non-ideal
hydrodynamics, cf. [47,54–56].

Below, some novel solutions will be found describing the evolution of periodic structures at
second-order phase transitions to the non-uniform state with the wave number k0 6= 0. Quasiperiodic
time-dependent structures appear in the course of the spinodal instabilities at the first-order phase
transitions to the uniform state with k0 = 0 and in the dynamics of the second-order phase transitions
occurring in the uniform state. Although consideration is very general, quark-hadron and nuclear
liquid-gas first-order phase transitions and the pion condensation second-order transition will be
considered as examples.

The presentation is organized as follows. In Section 2, the main features of the van der Waals-like
equation of state are reviewed. In Section 3, a hydrodynamical description of the first- and second-order
phase transitions to the uniform, k0 = 0 state and for the second-order phase transition to the
nonuniform, k0 6= 0 state is formulated assuming a small overcriticality. The dynamics of seeds at
the first-order phase transition from a metastable to the stable state is considered in Section 4. The
dynamics of fluctuations in the unstable region is studied in Section 5. Some novel solutions describing
the time evolution of quasiperiodic and periodic structures are found. Section 6 contains concluding
remarks.

2. Van Der Waals-Like Equation of State for a Description of First-Order Phase Transitions

The dynamical trajectories of the expanding baryon-rich matter in the heavy-ion collisions and
of the falling matter in supernova explosions before phase transition can be characterized by an
approximately constant entropy, while the volume V and the temperature T are time-dependent. A
description of the first-order phase transition is more involved. In the simplest case of one-component
matter, e.g., of the baryon matter, the pressure–baryon number density isotherms P(n)|T describing the
liquid-like (with a higher density) or gas-like (with a smaller density) states demonstrate a monotonous
behavior for the values of temperature T above the critical temperature of the first-order phase
transition of the liquid-gas type. However, for T values below the critical temperature, P(n)|T
isotherms acquire a convex-concave form [47], see Figure 1. The horizontal dashed line connecting
points A and D shows the Maxwell construction (MC) describing thermal equilibrium of phases. At
equilibrium, the baryon chemical potentials are µA = µD. The interval AB corresponds to a metastable
supercooled vapor (SV) and the interval CD relates to a metastable overheated liquid (OL). The interval
BC shows an unstable spinodal region.
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Figure 1. Schematic pressure isotherms as functions of the number density n at a liquid-gas-like phase
transition. Pcr, ncr, and Tcr are the pressure, density, and temperature at the critical point.

Adiabatic trajectories s̃cr and s̃m, where s̃ ≡ s/n ' const, and s is the entropy density, are shown in
Figure 2 on the plot of T/Tcr = f (n/ncr) by the short dashed lines. The upper convex curve, MC, the
bold solid line, demonstrates the boundary of the MC, the bold dashed line, ITS, shows the boundary
of the isothermal spinodal region, and the bold dash-dotted curve, AS, indicates the boundary of the
adiabatic spinodal region. At the ITS line, u2

T = (∂P/∂ρ)T = 0; at the AS line, u2
s̃ = (∂P/∂ρ)s̃ = 0,

where uT and us̃ have the meaning of the isothermal and adiabatic sound velocities, respectively,
ρ = m∗n, and m∗ is the baryon quasiparticle mass. The supercooled vapor (SV) and the overheated
liquid (OL) regions are situated between the MC and the ITS curves, on the left and on the right,
respectively. For s̃cr > s̃ > s̃MC2, where s̃cr is the value of the specific entropy s̃ at the critical point and
the line with s̃MC2 in the example shown in Figure 2 passes through the point n/ncr = 3 at T = 0, the
system traverses the OL state (the region OL in Figure 2), the ITS region (below the ITS line), and the
AS region (below the AS line). For s̃ > s̃cr, the system trajectory passes through the SV state (the region
SV in Figure 2) and the ITS region.

~~

Figure 2. The phase diagram of the van der Waals equation of state on the T(n)-plane. The bold solid,
dashed, and dash-dotted curves show the boundaries of the MC, the spinodal region at T =const, and
s̃ =const, respectively. The short dashed lines show two adiabatic trajectories of the system evolution:
the curve labeled s̃cr passes through the critical point; s̃max passes through the maximum pressure
point P(nP,max) on the P(n) plane, cf. [56].

Note that, in reality, for the quark-hadron first-order phase transition, the phase diagram looks
slightly different, since then Tcr increases with a decrease of the baryon density [57,58]. However, this
peculiarity does not change a general analysis given here.

When the adiabatic trajectory s̃ = const enters the region of the first-order phase transition (the
region below the solid curve in Figure 2), the approximation of the constant entropy fails, and a
further description of the dynamics of the system requires a solution of non-ideal hydrodynamical
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equations [54–56]. Similarly, the description of the dynamics of the second-order phase transition
requires a solution of non-ideal hydrodynamical equations in the case where the density and the
temperature (or entropy) can be considered appropriate order parameters.

3. Hydrodynamical Description of First- and Second-Order Phase Transitions at Small Overcriticality

Assume that the dynamics of a second-order phase transition and of a first-order phase transition
can be described by the variables n and s (or T), cf. [54–56]. Moreover, assume that the system is rather
close to the critical point of the phase transition. Since all the processes in the vicinity of the critical
point are slowed down, the velocity of a seed of a new phase prepared in the old phase, ~u, is much
less than the mean thermal velocity, and thereby we may use equations of non-relativistic non-ideal
hydrodynamics: the Navier-Stokes equation, the continuity equation, and the equation for the heat
transport, even if we deal with violent heavy-ion collisions:

m∗n [∂tui + (~u∇)ui] = −∇iP +∇k

[
η

(
∇kui +∇iuk −

2
ν

δikdiv~u
)
+ ζδikdiv~u

]
, (1)

∂tn + div(n~u) = 0, (2)

T
[

∂s
∂t

+ div(s~u)
]

= div(κ∇T) + η

(
∇kui +∇iuk −

2
ν

δikdiv~u
)2

+ ζ(div~u)2 . (3)

Here, as above, n is the number density of the conserving charge, to be specific, the baryon density,
m∗ is the baryon quasiparticle mass, and P is the pressure. The quantities η and ζ are the shear and
bulk viscosities, ν = 3, 2, 1 shows the geometry of the seed under consideration (droplets, rods, and
slabs), and κ is the thermal conductivity. The treatment of the evolution of seeds within relativistic
hydrodynamics is more involved, but this is beyond our scope, cf. [55,59].

All thermodynamical quantities can be expanded near a reference point (nr, Tr), which we
assume to be close to the critical point but still outside the fluctuation region, which we assume to be
narrow. This circumstance is important for the determination of the specific heat density cV,r and, m.b.,
transport coefficients, which may diverge in the critical point, whereas other quantities are smooth
functions of n, T, and, by calculating them, one can have that nr = ncr, Tr = Tcr.

The Landau free energy, δFL, counted from the value at nr ' ncr, Tr ' Tcr in the variables
δn = n− ncr, δT = T − Tcr, and δ(δFL)/δ(δn) = P− Pf + PMC, can be presented as [54–56]

δFL =
∫ d3x

ncr

{
cm∗[∇(δn)]2

2
+

λm∗ 3(δn)4

4
− λv2m∗(δn)2

2
− εδn

}
+ δFL(k0), (4)

where ε = Pf − PMC ' ncr(µi − µ f ) is expressed through the (final) value of the pressure after the
first-order phase transition has occurred, and the pressures at the MC, µi and µ f , are the chemical
potentials of the initial and final configurations (at fixed P and T). The quantity ε 6= 0 if one deals with
a first-order phase transition, and ε = 0 if a transition is of the second order. The maximum of the
quantity ε is εm = 4λv3/(3

√
3). For the description of phase transitions to the uniform state, k = 0,

one may retain only the term ∝ c[∇(δn)]2 in the expansion of the free energy in the density gradients
using c > 0. For the description of phase transitions to the non-uniform state, k0 6= 0, one should
perform expansion retaining terms at least up to ∝ d[∆(δn)]2 assuming c < 0 and d > 0. Therefore, the
last term in Equation (4) appears only if k = k0 6= 0 [47], as is the case for the phase transition to the
solid state, liquid crystal state, or pion-condensate state in dense nuclear matter. Thus, for k0 6= 0 and
c < 0, d > 0, we have

δFL(k0) =
∫ d3x

ncr

{
dm∗

2
(∆δn)2 −

(
cm∗k2

0
2

+
dm∗k4

0
2

)
(δn)2

}
, (5)
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where k2
0 = − c

2d > 0 follows from the minimization of δFL(k0). In the case of the phase transition
to the uniform state, one should have k0 = 0, d = 0 (then δFL(k0) = 0), and c > 0. Thus, the first term
∝ c in Equation (4) is associated with the positive surface tension, δFsurf

L = σS, where S is the surface
of the seed.

The Landau free energy density and pressure as functions of the order parameter δρ/v for the
equation of state determined by Equation (4) are shown in Figure 3. For ε = 0, two minima of the
Landau free energy coincide and correspond to the MC on the curve δP(1/ρ) (shown by horizontal
lines in the plot δP(δρ) in the right panel). If, in the initial state, (δρ)i = ρi − ρcr = 0, we deal with
the spontaneous symmetry breaking and the second-order phase transition. For (δρ)i = ρi − ρcr 6= 0,
ε > 0, or ε < 0, we deal either with the first-order phase transition from the metastable to the stable
state, if ρi corresponds to the metastable state, or with the second-order phase transition either to the
metastable state or to the stable state. For ε > 0 (solid lines), the liquid state is stable and the gas state
is metastable (SV); for ε < 0 (dash-dotted lines), the liquid state is metastable (OL), whereas the gas
state is stable. The dynamics of the transition starting from a point within the spinodal region for ε 6= 0
(but small) is described similarly to that for the second-order phase transition for ε = 0.
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Figure 3. The Landau free energy density δFrel = δFL/FL(Tcr, ρcr) and the value δPrel =

ρcr
δ[FL(T,δρ)]

δ(δρ)
|T/P(Tcr, ρcr), as functions of the order parameter δρ = m∗δn for the EoS determined

by Eq. (4), at T < Tcr. Dash horizontal line (ε = 0) in the right panel shows MC, cf. [55].
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For the purely van der Waals equation of state (in this case, k0 = 0), one obtains [55]:

v2(T) = −4
δTn2

crm∗ 2

Tcr
, σ = σ0

|δT|3/2

T3/2
cr

, σ2
0 = 32m∗n2

crTcrc. (6)

Applying operator div to Equation (1) and replacing div~u from Equation (2) for small δρ and u,
keeping only linear terms in u, which is legitimate, since near the critical point processes develop
slowly (v2 ∝ −δT), we rewrite Equation (1) as

−∂2δn
∂t2 = ∆

[
c∆δn + λv2δn− λm∗2(δn)3 + ε/m∗ − (m∗ncr)−1 (ν̃ηcr + ζcr)

∂δn
∂t

]
(7)

−∆
[
d∆2δn + (ck2

0 + dk4
0)δn

]
,

ν̃ = 2(ν− 1)/ν, cf. [12,47,55]. The second line in Equation (7) yields a non-zero term only for the
description of the condensation to the inhomogeneous state.
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Consider T < Tcr. In the dimensionless variables m∗δn = vψ, τ = t/t0, ξi = xi/l, i = 1, · · · , ν,
ν = 3 for seeds of spherical geometry, Equation (7) is presented as

−β
∂2ψ

∂τ2 = ∆ξ

(
∆ξ ψ + 2ψ(1− ψ2) + ε̃− ∂ψ

∂τ
− λv2d

2c2 ∆2
ξ ψ +

2(ck2
0 + dk4

0)

λv2 ψ

)
, (8)

l =
(

2c
λv2

)1/2
, t0 =

2η̃r

λv2 , ε̃ =
2ε

λv3 , β =
c

η̃2
r

, η̃r =
(ν̃ηr + ζr)

m∗ncr
.

It is important to notice that, even for k0 = 0, Equation (8) differs in form from the standard
Ginzburg-Landau equation broadly exploited in the condensed matter physics, since Equation (8)
is of the second order in time derivatives, whereas the standard Ginzburg-Landau equation is of
the first order in time derivatives. The difference disappears if one sets the bracketed-term in the
r.h.s. of Equation (8) to zero. Such a procedure is, however, not legitimate at least for a description
of the order parameter on an initial time-stage, since two initial conditions, such as δn(t = 0,~r) = 0
and ∂tδn(t,~r)|t=0 ' 0, should be fulfilled to describe the evolution of an initially formed fluctuation
(seed). Thereby, there exists at least an initial stage of the dynamics of seeds (for t <∼ tinit), which is
not described by the standard Ginzburg-Landau equation [54,55]. The bracketed term in the r.h.s. of
Equation (8) can indeed be set to zero, see below, if one considers an effectively very viscous medium
at τ � 1. Note also that Equation (8), with the bracketed term in the r.h.s. equal to zero, can be derived
from the first-gradient order kinetic equation of Kadanoff-Baym [60].

Equation (8) should be supplemented by Equation (3) for the heat transport, which, owing to
Equation (2) after its linearization, reads as

Tcr

[
∂tδs− scr(ncr)

−1∂tδn
]
= κr∆δT . (9)

The variation of the temperature is related to the variation of the entropy density s[n, T] by

δT ' Tcr(cV,r)
−1 (δs− (∂s/∂n)T,crδn) , (10)

where cV is the density of the heat capacity.

3.1. Typical Time Scales

Let us perform some rough dimensional estimates of typical time scales in the problem. The
evolution of a seed of one phase in another phase is governed by the slowest mode (δρ or δs,
respectively). The time scale for the relaxation of the density following Equation (8) is t0 ∝ η̃. Thus,
the non-zero viscosity plays the role of the driving force managing the time evolution of the density
mode. Moreover, t0 ∝ 1/(Tcr − T). Thereby, the processes are slowed down near the critical point of
the phase transition. The time scale for the relaxation of the entropy/temperature mode, following
Equation (9), is

tT = R2
seedcV,r/κr ∝ R2

seed, (11)

i.e., the relaxation time of the temperature/entropy is proportional to the surface of the seed. Thus,
for tT(Rseed) < t0, i.e for Rseed < Rfog =

√
κrt0/cV,r, where Rfog is the typical size of the seed at

t ∼ t0 = tT , the dynamics of the seeds is controlled by Equation (8) for the density mode. For seeds
with sizes Rseed > Rfog, the quantity tT ∝ R2

seed exceeds t0, and the growth of seeds is slowed down.
Thereby, the number of seeds with the typical size Rseed ∼ Rfog is increased with the passage of time,
and a state of fog is formed. For the quark-hadron phase transition in energetic heavy-ion collisions,
one [55] estimates Rfog ∼ (0.1 − 1) fm and, for the nuclear liquid-gas transition at low energies,
Rfog ∼ (1− 10) fm <∼ R(tf.o.), where R(tf.o.) is the size of the fireball at the freeze-out, and tf.o. is the
fireball evolution time until freeze-out.



Universe 2020, 6, 42 8 of 15

There are only two dimensionless parameters in Equation (8): ε̃ and β. The parameter ε̃ is
responsible for a difference between the Landau free energies of the metastable and stable states. For
t0 � tT (the isothermal stage), ε̃ ' const and the dependence on this quantity disappears because of
∆ξ ε̃ ' 0. Then, the dynamics is controlled by the parameter β, which characterizes the inertia. It is
expressed in terms of the surface tension and the viscosity as

β = (32Tcr)
−1[ν̃ηr + ζr]

−2σ2
0 m∗. (12)

The larger viscosity and the smaller surface tension, the effectively more viscous (inertial) is the fluidity
of seeds. For β� 1, one deals with the regime of effectively viscous (inertial) fluidity and at β� 1,
one deals with the regime of almost perfect fluidity. Estimates [55] show that, for the nuclear liquid-gas
phase transition, typically β ∼ 0.01. For the quark-hadron transition, β ∼ 0.02− 0.2, even for a very
low value of the η/s ' 1/(4π) ratio. The latter quantity characterizes the fluidity of the matter at
ultra-relativistic heavy-ion collisions [25]. Thus, as we argued, in the case of baryon-rich matter, one
effectively deals with a very viscous (inertial) evolution of density fluctuations, in cases of nuclear
liquid-gas and quark-hadron phase transitions.

In neutron stars, an overcritical pion-condensate drop reaches a size R ∼ 0.1 km for t ∼ 10−3 s
by the growth of the density mode. Then, it may reach R ∼ (1− 10) km for typical time tT varying
from ∼ 10 s for up to several hours (rather than for a typical collapse time ∼ 10−3 s). A delay appears
owing to neutrino heat transport to the surface (an effect of neutrino thermal conductivity), and
this delay strongly depends on the value of the pion softening, which is stronger for most massive
neutron stars [12]. One should also take into account that the bulk viscosity is significantly increased
in the presence of soft modes [61,62], e.g., near the pion condensation critical point [63]. Notice also
that the description of the dynamics of the pion-condensate phase transition is specific, since the
transition occurs to the inhomogeneous liquid-crystal-like state characterized by~k 6= 0. The seeds of
the liquid-crystal-like state prove to be elongated in the process of their growth [47]. A similar effect is
observed in liquid crystals.

Thus, the interplay between viscosity, surface tension, and thermal conductivity effects is
responsible for the typical time and size scales of fluctuations.

3.2. Stationary Solutions

Now let us find stationary solutions of Equation (7). For the condensation in the state k 6= 0, we
find a solution in the form

m∗δn = a[sin(kx + χ) +
c1ω̃2(k2)

ω̃2(9k2)
sin(3kx + χ) + ...] + O(ε) , (13)

where χ is a constant phase,

ω̃2(k2) = −λv2 + ck2 + dk4 − ck2
0 − dk4

0 . (14)

For the condensation in the uniform state k0 6= 0, c < 0, and d > 0, the gap ω̃2(k2) has a minimum
for k = k0. The phase transition arises for ω̃2(k2

0) < 0. Setting Equation (13) in Equation (7), we find

a2 = −4
3

ω̃2(k2
0)/λ > 0, c1 = −1/3 . (15)

Minimization of the free energy in k yields k = k0. ω̃2(k2
0) = −λv2, and ω̃2(k2

0) > 0 for T > Tcr.
ω̃2(k2

0) < 0 for T < Tcr. ω̃2(9k2
0) = −λv2 + 16c2/d � |ω̃2(k2

0)|. Thereby, with appropriate accuracy,
we may use δn ' a[sin(k0x + χ), which yields δFL(k0) ' −λv4V/(6m∗n) + O(ε2), where V is the
volume of the system. Thus, the solution expressed in Equation (13) describes the stationary state at
the second-order phase transition.
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For the condensation in the uniform state k0 = 0, we have [55]

ω̃2(k2) = −λv2 + ck2 , k2 < λv2/c , c > 0 . (16)

Two spatially constant stationary solutions minimizing the free energy for T < Tcr correspond to k = 0.
They describe metastable and stable states:

δnst ' ±v/m∗ + ε/(2λv2m∗) . (17)

The free energy corresponding to these solutions is given by

δFL(k = 0, k0 = 0) ' − λv4V
4m∗ncr

(
1± 4ε

λv3

)
. (18)

For k 6= 0, solutions in the form of Equation (13) are valid for |ω̃2(k2)| � ω̃2(9k2). For k0 = 0,
they yield

δFL(k 6= 0, k0 = 0) ' −λv4(1− ck2/(λv2))V
6m∗ncr

. (19)

Although the minimum of the free energy for k0 = 0 is given by Equation (18), corresponding
to solutions expressed in Equation (17) obtained for k = 0 rather than by solutions expressed in
Equation (13) corresponding to the free energy expressed in Equation (19), as we will demonstrate
below, solutions expressed in Equation (13) characterized by k 6= 0 have a physical meaning.

4. Dynamics of Seeds at a First-Order Phase Transition from a Metastable State to a Stable State

The rate of the formation of seeds in fluctuations has been extensively studied in the literature,
e.g., [9,59,64–66]. Let us assume that an initial seed of the new phase has been formed in a fluctuation
and consider its subsequent time evolution. Consider the limit of a high thermal conductivity, when, in
Equation (7), the temperature can be made constant. The solution expressed in Equation (7) describing
the dynamics of the initial density fluctuation developing from the metastable state to the stable state
is then presented in the form [56]

δn(t, r) ' v(T)
m

[
±th

r− Rseed(t)
l

+
ε

2λv3(T)

]
+ (δn)cor, (20)

where the upper sign corresponds to the evolution of bubbles of the gas, the lower sign solution
describes the evolution of droplets of liquid for ν = 3, and the solution is valid for |ε/(λv3(T))| � 1.
Compensating correction (δn)cor is introduced to fulfill the baryon number conservation. Considering
spatial coordinate r in the vicinity of a bubble/droplet boundary, we obtain an equation describing the
evolution of the seed size [55,56]:

m∗2βt2
0

2l
d2Rseed

dt2 = m∗2
[

3ε

2λv3(T)
− 2l

Rseed

]
− m∗2t0

l
dRseed

dt
. (21)

This equation reminds us of Newton’s second law for a one-dimensional system, where the quantity

M =
m∗2βt2

0
2l ∝ (Tcr − T)−3/2 has the meaning of the mass, m∗2[ 3ε

2λv3(T) −
2l

Rseed
] is an external force,

and −m∗2t0
l

dRseed
dt is the friction force, with a viscous-friction coefficient that is proportional to an

effective viscosity and inversely proportional to
√

Tcr − T. Following Equation (21), a bubble of
an overcritical size Rseed > Rcr = 4lλv3(T)/(3ε) of the stable gas phase, or respectively a droplet
of the stable liquid phase, is initially prepared in a fluctuation inside a metastable phase and then
grows. In an early stage of the evolution, the size of the overcritical bubble/droplet Rseed(t) (for
Rseed > Rcr) grows with acceleration. Thus, it reaches a steady growth regime with a constant velocity
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uas = 3εl
λv3(T)t0

∝ |(Tcr − T)/Tcr|1/2. In the interior of the seed δn ' ∓v(T)/m∗. The correction

(δn)cor ' v(T)R3
seed(t)/(m

∗R3) is very small for Rseed(t) � R, where R is the radius of the whole
system. In cases of the quark-hadron and nuclear liquid-gas phase transitions in heavy-ion collisions,
R(t) is the radius of the expanding fireball. Usage of the isothermal approximation in Equation (20)
needs the fulfillment of inequality tρ ∼ Rseed(tf.o.)

uas
� tT . For Rseed ∼ Rcr and for ε ∼ εm, we obtain

tρ ∼ t0, and the isothermal approximation is valid for Rseed < Rfog. For ε � εm, we obtain tρ � t0,
and the isothermal approximation remains correct for seeds of the size Rseed < Rfogεm/ε.

Substituting Equation (20) in Equation (9) for T ' const (which is correct in linear approximation),
we obtain

δs =
(

∂s
∂n

)
T

{
v(T)

m

[
±th

r− Rseed(t)
l

+
ε

2λcrv3(T)

]
+ (δn)cor

}
. (22)

Note that, for the description of the expanding fireball formed in heavy-ion collisions, the
approximation of a quasi-adiabatic expansion can be used even in the presence of a weak first-order
phase transition (for δs� s and δn� n). The evolution of droplets/bubbles in the metastable region
can be considered at a fixed size of the fireball, provided an expansion time lasting until freeze-out
tf.o. � (tρ, tT).

5. Dynamics of Fluctuations in Unstable Region

5.1. Growth of Fluctuations of Small Amplitude. Linear Regime

In this section, the “r” reference point can be taken as arbitrary, so we suppress the subscript “r.”
To find solutions of the linearized hydrodynamical equations, we have, cf. [56],

δn = δn0exp[γt + i~k~r]− ε

m∗λv2 , , δs = δs0exp[γt + i~k~r], T = T> + δT0exp[γt + i~k~r], (23)

where T> is the temperature of the uniform matter. For |δn| � | ε
m∗λv2 |, i.e., for ε� εm, the description

of the fluctuation in the spinodal region at the first-order phase transition and the description of the
second-order phase transition are the same. We may set ε → 0. Thus, from linearized equations of
non-ideal hydrodynamics, expressed in Equations (7) and (9), we find the increment γ(k), cf. [56],

γ2 = −k2

[
ω̃2(k2) + η̃γ +

u2
s̃ − u2

T
1 + κk2/(cVγ)

]
, (24)

where η̃ = (ν̃η+ζ)
m∗n . This equation differs from that derived in [67] by the presence of an extra surface

tension term, and it differs from that in [59], which was based on other assumptions. Equation (24) has
three solutions corresponding to the growth of the density and thermal modes. For κk2/(cV |γ|)� 1,
the temperature in the seed can be made constant, and we may deal with only one equation for the
density mode expressed in Equation (7), which yields

γ2 = −k2
[
ω̃2(k2) + η̃γ

]
, (25)

from which we find two solutions for the density modes,

γ1,2 = − k2η̃

2
±
√

k4η̃2

4
− k2ω̃2(k2) . (26)
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For ˜ω2(k2) < 0, which corresponds to the region of the phase transition, the upper-sign solution,
γ1 > 0, describes the growing mode, and the lower sign solution, γ2 < 0, describes the damping mode.
For k2η̃2/|ω̃2(k2)| � 1, we have

γ1 '
√
−k2ω̃2(k2)− k2η̃

2
+ O(k3η̃2/|ω̃(k2)|) (27)

for the growing mode. In the opposite limit k2η̃2/|ω̃2(k2)| � 1, we obtain

γ1 ' −ω̃2(k2)/η̃ + O(ω̃4(k2)/(k2η̃3)) . (28)

Note that, in condensed matter physics, a transition from a liquid to a glass state can be interpreted as
a first-order phase transition occurring within a spinodal region at a very high viscosity [47]. Thus,
there is an order at a scale of several Å, which transforms in a disorder at larger distances.

For k0 = 0, c > 0, for the most rapidly growing mode (for γm = max{γ1} corresponding to
k = km), we find

γm '
λv2

(2
√

β + 1)η̃
, k2

m '
λv2√β

(2
√

β + 1)c
.

For k0 6= 0, c < 0, d > 0, the most rapidly growing mode corresponds to k = k0; thus, ω̃2(k2
0) < 0

and |ω̃2(k2
0)| as a function of k2 are the largest.

5.2. The Growth of Fluctuations of Arbitrary Amplitude: A Nonlinear Regime

Now we will find the solution to the non-linear Equation (7). We search the solution in the form

m∗δn = a f (t)
[

sin(kx + χ) +
c1ω̃2(k2)

ω̃2(9k2)
sin(3kx + χ) + ...

]
+ O(ε) , (29)

as Equation (13) with a2 = − 4ω̃2

3λ > 0, but now with f (t), satisfying

∂2
t f = −k2ω̃2(k2) f (1− f 2)− k2η̃∂t f . (30)

For k2η̃2/|ω̃2(k2)| � 1, i.e., for β � 1 or η̃ � √c, the term ∂2
t f on the l.h.s. of Equation (30) can be

dropped, and the amplitude

f (t) =
f0eγt√

1 + f 2
0 e2γt

(31)

fulfills the resulting Equation (30). f0/
√

1 + f 2
0 shows the amplitude of the fluctuation at t = 0, and

f0 is an arbitrary constant. For k ∼ km at k0 = 0, this solution holds for k2
mη̃2/|ω̃2(k2

m)| � 1. For
k = k0 6= 0, the criterion of applicability renders as k2

0η̃2/|ω̃2(k2
0)| � 1. In both cases k0 = 0 and

k0 6= 0, with the density distribution given by Equations (29) and (31), the free energy renders

δFL(t) = −
Vω̃4(k2)

6λm∗n
f 2(t)

(
2− f 2(t)

)
. (32)

For t → ∞, we have f (t → ∞) → 1, and δFL reaches the minimum. For k = k0, this value coincides
with Equation (19), which is given by the stationary solution.

In the general case, Equation (31) yields an interpolation between two approximate solutions that
are valid for the limit cases γt� 1 and γt� 1. Replacing Equation (31) in Equation (30), we obtain
then the same solutions expressed in Equation (26) as those in the linear case.
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Let first k0 = 0. For t→ ∞, using Equation (31) at γ = γm = γ(km), we find

δFL(t→ ∞) = − ω̃4(k2
m)V

6λm∗n
. (33)

For the case of a large effective viscosity/inertia, β � 1, we obtain δFL(t → ∞) ' − λv4V
6m∗n , which

coincides with Equation (19) but is still larger than the value given by Equation (18). For the case of a
small effective viscosity/inertia, β � 1, we find δFL(t → ∞) ' − λv4V

24m∗n , which is much higher than
the free energy given by both stationary solutions expressed in Equations (18) and (19). Thus, one may
expect that Equation (33) either describes a metastable state or a state that slowly varies on a time scale
tk � tγ ∼ 1/γm, reaching, for t� tk, the stationary state with the free energy given by Equation (18).
To show the latter possibility, consider the case β � 1 and assume k in Equation (29) to be a slow
function of time, i.e., k = k(t), for a typical time scale tk � tγ. One can see that, for Rseed � tk|uT |, the
quantity k(t) satisfies (d2k/dt2) = −k2η̃(dk/dt) with the solution

k(t) = k00[1 + η̃λv2t/(3c)]−1/2 (34)

such as k(t → ∞) → 0, and the free energy for t → ∞ indeed reaches the limit expressed in
Equation (18) provided we set sin χ '

√
3

2 −
√

3 m∗ ε̃
8 . From Equation (34), we easily find that the

typical time scale is tk ∼ βt0, and we confirm that indeed tk � tγ. For Rseed
>∼ tk|uT | ∼ l

√
β, the

solution expressed in Equation (29) with Equation (34) does not hold and should be modified.
For β� 1, k0 = 0, Equation (34) with a slowly varying k(t) does not hold. At realistic conditions,

convection and sticking processes (at sizes ∼ l) may be allowed, which destroy periodicity, and
owing to these processes the system may finally reach the ground state with the free energy given
by Equation (18). Thus, one possibility is that, for the typical time t ∼ tγ ∼ t0, the quasiperiodic
solution expressed in Equation (33) is formed with a typical k ' km, corresponding to a metastable
state with the free energy given by Equation (19). Such a distribution is formed most rapidly. Another
possibility is that, for the typical time scale tunif > tγ in a system of a large size, an approximately
uniform solution, expressed in Equation (35), is developed. In the latter case, to proceed, consider
the case k ∼ 1/R� km, where R is the typical size of the system (R = Rf.o. for the fireball formed in
heavy-ion collisions). The spatially uniform solution of

∆ξ ψ + 2ψ(1− ψ2) + ε̃ = ∂τψ,

which follows from Equation (8) in this case (as well as for seeds of a size Rseed � R at β� 1, as we
have argued above), is given by

ψ(t) = ±1/
√

1 + e−τ(1− ψ2
0)/ψ2

0 , (35)

where we, for simplicity, have ε̃→ 0. The typical time needed for the initial amplitude ψ0 � 1 to grow
to ψ(t→ ∞) ' ±1 is tunif ∼ t0 ln(1/ψ2

0)� tγ.
Thus, we found some novel solutions describing the evolution of fluctuations in the region of

instability in addition to the uniform solution expressed in Equation (35). For k =const 6= 0, we found
periodic solutions given by Equations (29) and (31). For k = k0 6= 0, the solution yields the minimum
of the free energy for t → ∞. For k0 = 0, β � 1, we found quasiperiodic solutions expressed in
Equations (29) and (31) with k = k(t) from Equation (34), yielding the minimum of the free energy for
t→ ∞.

6. Conclusions

According to our findings, signatures of QCD spinodal instabilities might in principle be observed
in experiments with heavy ions in a collision energy interval that corresponds to the first-order phase
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transition region of the QCD phase diagram. If the typical times of the growth of a fluctuation in
the unstable region tγ and of that of the fireball expansion tf.o. satisfy the condition tγ

<∼ tf.o., one of
the possible experimental signatures of the spinodal region would be a manifestation of a spatially
quasiperiodic structure with a typical period r ' 2π/km. If the parameter characterizing effective
viscosity/inertia β were� 1, cf. Equation (12), then for tγ � tf.o. one of the possible experimental
signatures of the spinodal region would be a manifestation of spatially quasiperiodic fluctuations with
a typical size r ∼ 2π/k(tf.o.) � 2π/km. However, rough estimates made for the quark-hadron and
nuclear gas-liquid first-order phase transitions in heavy-ion collisions [54–56] indicate that β � 1.
Future experimental programs at NICA and FAIR will scan the collision energy interval, in which
various manifestations of the first-order quark-hadron phase transition are expected, including possible
signatures of quasiperiodic structures. It would also be interesting to search for the consequences of
the possible formation of quasiperiodic structures during the quark-hadron phase transition in the
early universe.

Concluding, we note that viscosity and thermal conductivity are the driving forces of the
first-order liquid-gas and quark-hadron phase transitions to the state with k0 = 0, and the spinodal
instability occurs for T below the ITS line. The manifestation of a spatially quasiperiodic structure with
a typical period of 2π/km, cf. Equation (29), in the rapidity spectra of heavy-ion collisions in a collision
energy interval could be interpreted as a signature of the occurrence of the spinodal instability at the
first-order phase transition. For the second-order phase transition to the state with k0 6= 0, as for the
case of the pion condensation in dense nuclear matter, the periodic solution expressed in Equation (29)
holds for k = k0 6= 0, where k0 does not depend on time.
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