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Abstract: The nonlinear orbital dynamics of a class of the perturbed restricted three-body problem
is studied. The two primaries considered here refer to the binary system HD 191408. The third
particle moves under the gravity of the binary system, whose triaxial rate and radiation factor are
also considered. Based on the dynamic governing equation of the third particle in the binary HD
191408 system, the motion state manifold is given. By plotting bifurcation diagrams of the system,
the effects of various perturbation factors on the dynamic behavior of the third particle are discussed
in detail. In addition, the relationship between the geometric configuration and the Jacobian constant
is discussed by analyzing the zero-velocity surface and zero-velocity curve of the system. Then,
using the Poincaré–Lindsted method and numerical simulation, the second- and third-order periodic
orbits of the third particle around the collinear libration point in two- and three-dimensional spaces
are analytically and numerically presented. This paper complements the results by Singh et al.
[Singh et al., AMC, 2018]. It contains not only higher-order analytical periodic solutions in the vicinity
of the collinear equilibrium points but also conducts extensive numerical research on the bifurcation
of the binary system.
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1. Introduction

As we know, approximately two-thirds of the stars are part of the multistellar system in our
galaxy. Due to their diversity and the unpredictable characteristics of planets in our solar system,
exploring the planets in the multistellar system is of great interest for many scientists. The planets in a
multiplanetary system and celestial bodies constitute N-body problems.

Among the N-body problems, the three-body problem has been a hot research field because of its
obvious practical value, and the most widely used model is the classical restricted three-body problem
(RTBP). There are two important solutions in RTBP: Equilibrium points and periodic solutions. Several
analytical and numerical methods for searching periodic solutions of restricted three-body problems
can be found in the review article Musielak and Quarles [1]. Regarding the existence of periodic
solutions of a circular RTBP, Gao and Zhang [2] gave a rigorous proof and found that the periodic
solutions were mainly affected by factors such as the initial values and the masses of the two primaries.

When the restricted three-body problem is perturbed by some other factors (such as light pressure,
oblate spheroidal primaries, radiation, and albedo, etc.), it will become the restricted three-body
problem, which is closer to the natural system. Singh and his collaborators have done a lot of excellent
research in this field. For example, Singh et al. [3,4] studied the existence of equilibrium points
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and the periodic orbits around the triangular equilibrium points of the perturbed RTBP, where the
larger primary and smaller primary are considered triaxial and oblate spheroidal bodies, respectively.
Moreover, Tsirogiannis et al. [5] and Singh et al. [6] considered a modification of the RTBP with radiation
and oblateness and studied the periodic motions around the collinear equilibrium points. Furthermore,
semi-analytical solutions around these points for both planar and spatial cases were obtained using the
Lindstedt–Poincaré method by Singh et al. [6]. Kalantonis et al. [7] considered the asymptotic motion
to collinear equilibrium points of the RTBP with the oblateness and they computed an asymptotic orbit
by using a fourth-order local analysis, numerical integration, and standard differential corrections.

For the case of a planar circular RTBP, where the first primary is an oblate spheroid, and the
oblateness coefficients affect the character of the orbits, Zotos [8] reported three types of orbits: Bounded,
escaping, and collisional orbits. When the primaries are triaxial rigid bodies, Elshaboury et al. [9]
investigated the basic dynamical characteristics of the RTBP and obtained the equilibrium points
as well as some simple symmetric periodic orbits. For the RTBP with radiation and triaxiality,
Jain et al. [10] analyzed the effects of these perturbations on periodic orbits under different energy
constants. Furthermore, Idridi and Ullah [11] discussed the effects of the radiation and albedo on the
existence of the noncollinear libration points in the elliptic RTBP, in which the oblateness of the second
primary was considered.

In the past few decades, researchers have observed multiplanetary systems using space telescopes,
observational data, and statistics tools (see Chen [12] for details). The binary system consisting of two
stars moving around their common barycenter is particularly worth our attention. The periodic orbits
are important keys to understand the motion of the third particle in the binary system. When two
asteroids were approximated as triaxial ellipsoids, Hou et al. [13] studied the forced periodic orbits
around the triangular libration points in a binary asteroid system influenced by the solar radiation
pressure. Recently, a numerical method was proposed to search for three-dimensional periodic orbits
by Shi et al. [14]. After applying this method to binary asteroid 1999 KW4, they found five kinds
of periodic orbits of the binary system. By quantifying the detected set of planet masses and orbits,
Howard and Fulton [15] efficiently made planet discovery and characterization. Berardo et al. [16]
presented new observations of HIP 41378, and its possible orbital periods were obtained through
observation. Singh et al. [17] studied the collinear equilibrium points and periodic motion around
them in the RTBP for the binary HD 191408 system, where the two primaries are triaxial rigid bodies
and emit radiation. Moreover, the effects of different parameters on the collinear equilibrium points
were discussed. Das et al. [18] investigated the field of the radiating binary stellar system in the circular
RTBP. Singh et al. [19] found three-dimensional periodic orbits around the collinear equilibrium points
of the RTBP with oblate and radiating primaries. Singh and Umar [20] found that the positions of the
third particle depended on the oblateness, radiation coefficients of the primaries, and the eccentricity
of their orbits in the elliptic RTBP. They provided the numerical application of this problem in the
stellar-oblate binary system.

HD 191408 is a high-velocity star that belongs to the southern hemisphere main-sequence stars
with debris disks, and García and Gómez [21] studied their optical aperture polarimetry. The study of
high-resolution, high-signal-to-noise spectra of field stars of different metallicities becomes an effective
technique to tackle various problems related to the chemical evolution of the galaxy, and Abia et al. [22]
provided the atmospheric parameters, elemental abundance ratio, and signal-to-noise ratios for some
stars, including the parameters of HD 191408. Karaali et al. [23] investigated the metallicity calibration
of several dwarfs and metal-poor stars at different distances from the galactic plane, which contribute
to the implications for the galactic formation and evolution. In addition, Perrin [24] analyzed the
chemical composition for twelve K dwarfs, whose masses were estimated. However, few researchers
have studied the periodic solutions of this system.

Bifurcation refers to the motion of a system with suddenly changing parameters, e.g., the
equilibrium state or the number and stability of the periodic motion, when the parameters change and
become a certain value. Yumagulov et al. [25] studied the bifurcation in the planar elliptical RTBP, where
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the parameters of the system around the triangular equilibrium points were discussed. Perdomo [26]
observed the reduced periodic solutions of the spatial isosceles three-body problem, which contained
a bifurcation point and provided an explanation for the existence of this point. Maciejewski and
Rybicki [27] studied global bifurcation from the equilibrium points of the nonstationary periodic
solutions in the RTBP. There are also some other excellent related literatures [28–31], mainly including
the reports of a binary system with short-orbital-period, the spatial periodic orbits in various resonances,
and the periodic motions near a high mass ratio binary star system.

In this paper, we inherit the model of the perturbed restricted three-body problem of Singh et al. [17]
and Jain et al. [10] and continue to study the binary HD 191408 system. In Section 2, the dynamical
equations that involve the parameters of the third particle in the binary system are obtained. In Section 3,
the bifurcation diagrams of the system’s state variables in terms of different parameters are illustrated
and explained. In Section 4, the equilibrium points of the system are introduced by discussing
the geometric configurations. In Section 5, the 2- and 3-dimensional periodic orbits around the
collinear equilibrium points are computed using the Lindstedt–Poincaré method. Section 6 summarizes
the study.

2. Dynamical Equations

For the sake of convenience, we first introduce the normal rotating dimensionless coordinate
system oxyz, of which the origin is located in the centroid of two primary bodies with masses m1 = 1−µ
and m2 = µ, where µ = m2/(m1 + m2) ∈ (0, 1). Assuming that the coordinate of the third particle
is (x, y, z), the two primaries are located at (µ, 0, 0) and (µ− 1, 0, 0), respectively. According to
Singh et al. [17] and Jain et al. [10], the equations of motion of the third particle are

..
x− 2αn

.
y = Ωx,

..
y + 2αn

.
x = Ωy,

..
z = Ωz,

(1)

where α represents the modification of perturbation on the Coriolis force and the potential function
Ω(x, y, z) admits the following form

Ω(x, y, z) = n2β
2 (x2 + y2) +

(1−µ)q1
r1

+
µq2
r2

+
(1−µ)(2s1−s2)q1

2r1
3 +

µ(2s3−s4)q2
2r23

−
3(1−µ)(s1−s2)y2q1

2r1
5 −

3µ(s3−s4)y2q2
2r25 −

3(1−µ)s1z2q1
2r1

5 −
3µs3z2q2

2r25 ,
(2)

β denotes the modification of perturbation on the centrifugal force and q1 and q2 are the radiation factors

of the primaries. In addition, r1 =

√
(x− µ)2 + y2 + z2 and r2 =

√
(x + 1− µ)2 + y2 + z2 denote the

distances between the third particle and the first and second primaries, respectively. On account of the
triaxiality of the primaries, the mean perturbed motion n is defined by

n =

√
1 +

3
2
[(2s1 − s2) + (2s3 − s4)], (3)

s1 =
(a1

2
− a3

2)

5R2 , s2 =
(a2

2
− a3

2)

5R2 , s3 =
(a1
′2
− a3

′2)

5R2 , s4 =
(a2
′2
− a3

′2)

5R2 ,

where ai(i = 1, 2, 3) is the semi-axis of the first primary, ai
′(i = 1, 2, 3) is the semi-axis of the second

primary, and R is the dimensional distance between the two primaries. The physical parameters of the
binary HD 191408 system are shown in Table 1.
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Table 1. Physical parameters of the binary HD 191408 system [17].

Parameters µ s1 s2 s3 s4 q1 q2 α β

Values 0.1881 0.008 0.004 0.002 0.001 0.407761 0.991476 1.0003 1.0002

The first Jacobi-type function of the system (1) is

2Ω(x, y, z) −
( .
x2

+
.
y2

+
.
z2)

= C , (4)

where V2 =
.
x2

+
.
y2

+
.
z2 is the motion velocity of the third particle and C is the Jacobi constant.

3. Analysis of the Bifurcation and Chaos

In this section, the bifurcation diagrams of the state variables in terms of different parameters in the
binary HD 191408 system are illustrated, and the effects of each parameter on the system are analyzed.

For the given values of Table 1, we selected the iterative initial value x0 = (−0.08, 0.001, 0.2, 0, −1.6, 0)
and limit parameter µ in the interval (0, 1). By applying the ode45 numerical integration algorithm [32],
we obtain the results in Figure 1; namely, the bifurcation diagrams of three state variables, frames of
µxy, µyz, and µxz, in terms of mass parameter µ in the binary HD 191408 system. Figure 1a shows the
effect of µ in the µxy frame; for a given value of µ, the bifurcation diagram in the µxy frame in terms of
µ is obtained. Figure 1a also shows the bifurcation diagrams of variables x and y in terms of µ, i.e., the
projection from the three-dimensional diagram to the two-dimensional plane. The projections have
similar structure, which is inevitable in qualitative analysis by comparing the projections. Similarly,
the bifurcation diagrams in the µyz and µxz frames in terms of µ are shown in Figure 1b,c.
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Figure 1. (a,b,c). Bifurcation diagrams of the 𝜇𝜇𝑥𝑥𝑥𝑥, 𝜇𝜇𝑦𝑦𝑦𝑦, and 𝜇𝜇𝑥𝑥𝑥𝑥 frames in terms of mass parameter 
𝜇𝜇, respectively. 

Figure 1. (a–c). Bifurcation diagrams of the µxy, µyz, and µxz frames in terms of mass parameter
µ, respectively.
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For each different initial value, system (1) will admit different bifurcation diagrams, but for a
given initial value, we can analyze the influence of the change of perturbation parameters on the
dynamic behavior of the third particle by displaying a set of bifurcation diagrams. For example, we
can find clearly from Figure 1 that chaotic motion exists in the three directions of space for the third
particle when the mass parameter µ ∈ (0, 0.5]. Especially when µ = 0.5 or so, that is to say, when the
masses of two primaries are approximately equal, the dynamic behavior of the third particle changes
greatly. However, its dynamic behavior decreases significantly when µ ∈ (0.5, 1).

Similarly, we select x0 and restrict the triaxial coefficient si (i = 1, 2, 3, 4) to the interval [−0.5, 0.5].
The bifurcation diagrams of the state variables with respect to the triaxial coefficient si (i = 1, 2, 3, 4)
are shown in Figures 2 and 3. Figure 2a shows that the triaxial coefficient s1 of the first primary has
little effect on the motion amplitude of the third particle in the y direction, although it will cause the
overall displacement of the third particle in this direction. It has a great influence on the movement
of the third particle in the x direction, especially when s1 takes the threshold value around ±0.32,
the movement of the third particle in the x direction will be the opposite. Figure 2b shows that the
triaxial coefficient s2 of the first primary will cause the motion amplitude of the third particle to expand
gradually in the y direction, and when s2 takes the threshold value of −0.07 in the x direction, the
movement of the third particle in this direction will also be in the opposite direction. Figure 2c shows
that the combination of the triaxial coefficients s1 and s2 acts on the third particle in the x direction.
The result shows that the effect on the dynamic behavior of the third particle is greater when their
values pass the threshold s1 = −0.32 and s2 = −0.07.
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coefficient si (i = 1, 2), respectively.
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Figure 3. (a–c). Bifurcation diagrams in s3xy, s3xy, and s3s4x frames with respect to the triaxial
coefficient si (i = 3, 4), respectively.

Figure 3 reflects the effect of the three semi-axes perturbations of the second primary on the
dynamics of the third particle. Figure 3a shows that s3 has little effect on the movement amplitude
of the third particle in the y direction, except that the third particle will have an overall shift in this
direction. In the x direction, when the value of s3 passes the threshold value of −0.2, the movement of
the third particle will change greatly. Figure 3b shows that the effect of s4 on the movement of the third
particle in x and y directions is extremely complex, and obvious chaos has appeared. Figure 3c shows
that under the joint action of s3 and s4, with the increase of s3 and the decrease of s4, the dynamic
behavior of the third particle in the x direction tends to be stable.

Next we select x0 and restrict the radiation coefficient qi (i = 1, 2) to the interval [0, 1]. Figure 4
reflects the influence of the radiation factors qi (i = 1, 2) of the primaries on the dynamic behavior
of the third particle. Figure 4a shows that the effect on the third particle in the x and y directions is
the same basically, both of which are gradually reduced from large-scale movements as the radiation
factor q1 increases. It can be found from Figure 4b that the change of radiation factor q2 has little effect
on the dynamic behavior of the third particle, but under the combined effect of radiation factors q1 and
q2 (see Figure 4c), the third particle exhibits periodic motion in the x direction when q1 ∈ [0.7, 0.8].
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For the values of the Coriolis and centrifugal forces, which are restricted in the interval [1, 1.1].
The bifurcation diagram in Figure 5a shows that the modification in the Coriolis force α has a similar
effect on the third particle in the x and y directions, both of which tend to a certain range gradually
with the increase of α from large-scale motion. From Figure 5b, we find that the movement of the
third particle in the x and y directions appears divergent as the modification in the centrifugal force β
increases; that is, the movement amplitude in both directions increases. However, the third particle
shows periodic motion in the x direction with the increase of α and β.
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4. Equilibrium Points

For the Jacobi-type function (4) of the system, when the motion velocity of the third particle is
zero, the three-dimensional space of the system with the change of Jacobi constant C is shown in
Figures 6–10. When C decreases from C = 3, five equilibrium points A, B, D, E, and F can be obtained.
A smaller C value corresponds to the larger permissible regions of motion of the third particle. The
specific analysis is as follows:
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Figure 10. Zero-velocity surface of the third particle C = 1.

When C = 3, the zero-velocity surface of the third particle is shown in Figure 6. The third particle
can only skim over two primaries under the action of gravity but cannot pass through the forbidden
area around them. When C = 2.914, the forbidden area of one of the primaries and the outer forbidden
one will intersect at point A (see Figure 7). The third particle can fly to the outer space through the
channel A. In fact, this point A is the first equilibrium point.

When C is 2.1943, as shown in Figure 8, the prohibited region of the third particle decreases. The
“Channel B” appears, through which the third particle can fly from the permissible regions of one
primary to another. Meanwhile, the second equilibrium point can be obtained. When C drops to 1.9777
(see Figure 9), “Channel D” appears, where the third particle can fly into another outer space. Thus,
the third equilibrium point appears.

When C = 1 (see Figure 10), the last two equilibrium points E and F appear. With the decrease of
C, the third particle can remove the primaries to fly into outer space.

According to the discussion of zero velocity surface, when C takes 2.914, 2.1943, and 1.9777, the
related zero velocity curves are shown in Figure 11. Therefore, three collinear equilibrium points are
L1(−0.34630003, 0), L2(0.84584372, 0), and L3(−1, 23037223, 0), respectively.
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5. Periodic Orbits Around the Collinear Equilibrium Points

5.1. Expansion of The 2D Equations of Motion

In the plane, the motion equations of the third particle are (see [17])

..
x1 − 2αn

.
x2 = Ωx1 ,

..
x2 + 2αn

.
x1 = Ωx2 ,

(5)

where x1 = x, x2 = y and the potential function in Equation (5) is

Ω =
n2β

2 (x1
2 + x2

2) +
(1−µ)q1

ra
+

µq2
rb

+
(1−µ)(2s1−s2)q1

2ra3 +
µ(2s3−s4)q2

2rb
3

−
3(1−µ)(s1−s2)x2

2q1
2ra5 −

3µ(s3−s4)x2
2q2

2rb
5 .

(6)

Deriving the derivation with respect to x1 and x2 on the right side of Equation (6), we obtain

Ωx1 = n2βx1 −
(1−µ)q1(x1−µ)

ra3 −
µq2(x1+1−µ)

rb
3 −

3(1−µ)(2s1−s2)q1(x1−µ)
2ra5

−
3µ(2s3−s4)q2(x1+1−µ)

2rb
5 +

15(1−µ)(s1−s2)x2
2q1(x1−µ)

2ra7 +
15µ(s3−s4)x2

2q2(x1+1−µ)
2rb

7 ,

Ωx2 = n2βx2 −
(1−µ)q1x2

ra3 −
µq2x2

rb
3 −

3(1−µ)(4s1−3s2)q1x2
2ra5 −

3µ(4s3−3s4)q2x2
2rb

5

+
15(1−µ)(s1−s2)q1x2

3

2ra7 +
15µ(s3−s4)q2x2

3

2rb
7 ,

where ra =

√
(x1 − µ)

2 + x22, rb =

√
(x1 + 1− µ)2 + x22 are the distances between the third particle

and the primaries. By substituting the transformation of x1 = xLi + ξ and x2 = η into Equation (5), we
obtain the following equations of motion of the third particle

..
ξ− 2αn

.
η = Ωξ,

..
η+ 2αn

.
ξ = Ωη.

(7)

Expand the right side of Equation (7) to the second order and get

..
ξ− 2αn

.
η = K1ξ+ K2ξ2 + K3η2,

..
η+ 2αn

.
ξ = L1η+ L2ξη,

(8)

and to the third order, as follows

..
ξ− 2αn

.
η = K1ξ+ K2ξ2 + K3η2 + K4ξ3 + K5ξη2,

..
η+ 2αn

.
ξ = L1η+ L2ξη+ L3ξ2η+ L4η3,

(9)

where the coefficients as shown in Appendix A.
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5.2. Periodic Orbits in the Plane

Now, we examine the periodic solutions of system (5). Suppose that the periodic solutions of
system (8) has the following form in the powers of orbital parameter e (|e| � 1)

ξ = ξ1e + ξ2e2,
η = η1e + η2e2,

(10)

By substituting Equation (10) into (8) and the series expansion of periodic solution with respect to
e is as follows

ξ = ξ0 + cos(ωt)e + [$21 +$23 cos(2ωt)]e2,
η = v12 sin(ωt)e + v24 sin(2ωt)e2,

(11)

where (ξ0, 0) denotes the position of the collinear equilibrium points in the previous section.
Similarly, we suppose that the periodic solutions of system (9) in powers of e are

ξ = ξ1e + ξ2e2 + ξ3e3,
η = η1e + η2e2 + η3e3,

(12)

Thus, the periodic solution of system (5) into series expansions of e up to the third-order terms is

ξ = ξ0 + cos(ωt)e + [$21 +$23 cos(2ωt)]e2 +$34 cos(3ωt)e3,
η = v12 sin(ωt)e + v24 sin(2ωt)e2 + v36 sin(3ωt)e3,

(13)

where the coefficients are shown in Appendix B.
For the collinear equilibrium point L1(−0.34630003, 0) around which the periodic orbits are

obtained, as shown in Figure 12, the red curve is up to the second-order terms, and the blue curve is
about the third-order ones. By comparing these two orbits, we find that these two orbits are close to
each other.
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5.3. Expansions of the Three-Dimensional Equations of Motion

Substituting the transformations of x = xLi + ξ, y = η and z = ζ into Equation (1), we obtain the
motion equations of the third particle in the (ξ, η, ζ) coordinate system

..
ξ− 2αn

.
η = Ωξ,

..
η+ 2αn

.
ξ = Ωη,

..
ζ = Ωζ.

(14)

Using Taylor expansion, the RHSs of Equation (14) are expanded to the second-order terms
(see [17]); thus, the motion equations of the third particle become

..
ξ− 2αn

.
η = K1ξ+ K2ξ2 + K3η2 + K6ζ2,

..
η+ 2αn

.
ξ = L1η+ L2ξη,

ζ = M1ζ+ M2ξζ,
(15)

Here, we use Taylor expansion, and the RHSs of Equation (14) are expanded to the third-order
terms. Then, the motion equations of the third particle become

..
ξ− 2αn

.
η = K1ξ+ K2ξ2 + K3η2 + K6ζ2 + K7ξ3 + K8ξη2 + K9ξζ2,

..
η+ 2αn

.
ξ = L1η+ L2ξη+ L5η3 + L6ξ2η+ L7ηζ2,

ζ = M1ζ+ M2ξζ+ M3ζ3 + M4ξ2ζ+ M5η2ζ,
(16)

where the coefficients are shown in Appendix A.

5.4. Periodic Orbits in the Spatial Space

Using the method of successive approximations up to the second-order terms, the periodic
solutions of system (14) are in the following form (see [17])

ξ = ξ2e2,
η = η2e2,
ζ = ζ1e,

(17)

So, the periodic solutions in the form of e up to the second-order terms can be written as

ξ = ξ0 + [$02 +$03 cos(2ωt)]e2,
η = v05 sin(2ωt)e2,
ζ = sin(ωt)e.

(18)

Similarly, using the same method up to the third-order terms, the periodic solutions of the above
system are

ξ = ξ1e + ξ2e2 + ξ3e3,
η = η1e + η2e2 + η3e3,
ζ = ζ1e + ζ2e2 + ζ3e3,

(19)

The rationality of doing this is that the more theoretically expanded, the closer it is to the exact
solution. However, the problem is that the more we expand, the greater the challenge we will face
in obtaining the analytical solution, so we try our best to solve the approximate analytical solution
by semi-analytical method. The periodic solutions in the form of e up to the third-order terms can
be obtained

ξ = ξ0 + cos(ωt)e + [$20 +$24 cos(2ωt)]e2 +$32 cos(3ωt)e3,
η = v12 sin(ωt)e + v21 sin(2ωt)e2 + v34 sin(3ωt)e3,
ζ = sin(ωt)e + v32 sin(2ωt)e2 + v33 sin(3ωt)e3.

(20)
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where the coefficients can be found in Appendix B.
The periodic orbits around the collinear equilibrium point L1 are plotted in the spatial space as

shown in Figure 13. Figure 13a is a periodic orbit up to the second-order terms, and Figure 13b is a
periodic orbit up to the third-order terms. Because we selected different solutions in terms of e, i.e.,
effects of various of factors of deformation, orbital vibration, and motion, there are different forms
of orbits.
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6. Conclusions

In this paper, we focus on constructing the approximate analytical periodic solutions of the binary
HD 191408 system by using Lindstedt-Poincaré method. The obtained second- and third-order periodic
solutions in the plane and three-dimensional space generalized the corresponding ones in [17].

In addition, we perform extensive numerical research on the bifurcation of the system to discuss
the effects of nine perturbations on the third particle’s dynamic behavior. These nine parameters
include mass ratio µ, triaxial coefficients si (i = 1, 2, 3, 4), radiation factors q1 and q2, the modification
in the Coriolis force α, as well as the modification in the centrifugal force β. The results show that when
the mass ratio parameter µ < 0.5, it has a greater effect on the third particle’s dynamic behavior than
when µ > 0.5, and it has the strongest effect on the dynamic behavior of the third particle when µ = 0.5.
Furthermore, the triaxial coefficients s1 and s2 have a more significant impact on the system than s3 and
s4. This mainly reflects that the dynamic behavior of the third particle changes greatly when the system
is under the joint action of s1 and s2, but it gradually stabilizes under the combined action of s3 and s4.

Furthermore, compared with the corresponding radiation factor q2 and the modification in the
Coriolis force α, we also find that radiation factor q1 and the modification in the centrifugal force β
have a greater impact on the dynamic behavior of the third particle, but with the increase of q1 and q2,
the dynamic behavior of the third particle stabilizes gradually, and the same happens when α and β
increase together. It is hoped that the above results will help us to understand the dynamic evolution
of binary system.

Author Contributions: Formal analysis, R.W.; software, F.G.; writing—original draft, R.W.; writing—review and
editing, F.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC) though grant
No.11672259, the China Scholarship Council through grant No. 201908320086.

Acknowledgments: The authors thank the anonymous reviewers whose comments and suggestions helped
improve and clarify this manuscript.

Conflicts of Interest: The authors declare that there is no competing interests.

Appendix A
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2(1−µ)q1

r01
3 +
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7

]
− 6µq2

[
1

r025 +
15(4s3−s4)

4r027

]
,
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L1 = n2β−
(1−µ)q1

r01
3 −

µq2
r023 −

3(1−µ)q1(4s1−3s2)

2r01
5 −

3µq2(4s3−3s4)

2r025 ,

L2 = 3(1− µ)q1

[
1

r01
4 +

5(4s1−3s2)

2r01
6

]
V1 + 3µq2

[
1

r024 +
5(4s3−3s4)

2r026

]
V2,

L3 = −6(1− µ)q1

[
1

r01
5 +

15(4s1−3s2)

2r01
7

]
− 6µq2

[
1

r025 +
15(4s3−3s4)

2r027

]
,

L4 =
3(1−µ)q1

2

[
1

r01
5 +

15(6s1−5s2)

r01
7

]
+

3µq2
2

[
1

r025 +
15(6s3−5s4)

r027

]
,

L5 =
3(1−µ)q1

2

[
1

r01
5 +

5(6s1−5s2)

2r01
7

]
+

3µq2
2

[
1

r025 +
5(6s3−5s4)

2r027

]
,

L6 = −6(1− µ)q1

[
1

r01
5 +

15(4s1−3s2)

4r01
7

]
− 6µq2

[
1

r025 +
15(4s3−3s4)

4r027

]
,

L7 =
3(1−µ)q1

2

[
1

r01
5 +

15(2s1−s2)

2r01
7

]
+

3µq2
2

[
1

r025 +
15(2s3−s4)

2r027

]
,

V1 = sgn(ξ− µ), V2 = sgn(ξ+ 1− µ), r01 =
∣∣∣ξ− µ∣∣∣, r02 =

∣∣∣ξ+ 1− µ
∣∣∣,

M1 = −
(1−µ)q1

r01
3 −

µq2
r023 −

3(1−µ)q1(4s1−s2)

2r01
5 −

3µq2(4s3−s4)

2r025 ,

M2 = 3(1− µ)q1

[
1

r01
4 +

5(4s1−s2)

2r01
6

]
V1 + 3µq2

[
1

r024 +
5(4s3−s4)

2r026

]
V2,

M3 =
3(1−µ)q1

2

[
1

r01
5 +

5(6s1−s2)

2r01
7

]
+

3µq2
2

[
1

r025 +
5(6s3−s4)

2r027

]
,

M4 = −6(1− µ)q1

[
1

r01
5 +

15(4s1−s2)

4r01
7

]
− 6µq2

[
1

r025 +
15(4s3−s4)

4r027

]
,

M5 =
3(1−µ)q1

2

[
1

r01
5 +

15(2s1−s2)

r01
7

]
+

3µq2
2

[
1

r025 +
15(2s3−s4)

r027

]
.

Appendix B

v05 =
−2αnωK4

2(K1L1 + 4(K1 + L1 − 4α2n2)ω2 + 16ω4)
,

v12 = − 2αnω
L1+ω2 ,

v21 = −
(K1+4ω2)L2v12+4αnω(K2+K3v12

2+K4)
2(K1L1+4(K1+L1−4α2n2)ω2+16ω4)

,

v24 =
4αnωK2−v12[K1L2+4ω(αnK3v12+L2ω)]

2K1L1+8(K1+L1−4α2n2)ω2+32ω4 ,

v32 = − M2
6ω2 ,

v33 =
−2M2(v32+$21)+M3+M5v12

2
−M4

40ω2 ,

v34 = 1
4(K1L1+9(K1+L1−4α2n2)ω2+81ω4)

{
−

(
K1 + 9ω2

)[
2L2(v21 +$21v12) − L3v12

3 + (L4 − L5)v12
]

+6αnω[4(K2$21 −K3v12v21 −K4v32) + K5 −K6 −K7]
}
,

v36 =
−6αnω(K3v12v24−

1
4 K4+

1
4 K5v12

2)− 1
2 (L2v24+L2v12$23+

1
2 L3v12+

1
2 L4v12

3)(9ω2+K1)
K1L1+9(K1+L1−4α2n2)ω2+81ω4 ,
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$02 = − K4
2K1

,

$03 =
K4(L1+4ω2)

2(K1L1+4(K1+L1−4α2n2)ω2+16ω4)
,

$20 = −K2+K3v12
2+K4

2K1
,

$21 = −K1+K3v12
2

2K1
,

$23 =
−K2(L1+4ω2)+v12[4αnωL2+K3v12(L1+4ω2)]

2K1L1+8(K1+L1−4α2n2)ω2+32ω4 ,

$24 =
4αnωL2v12+(K2+K3v12

2+K4)(L1+4ω2)
2(K1L1+4(K1+L1−4α2n2)ω2+16ω4)

,

$32 = 1
4(K1L1+9(K1+L1−4α2n2)ω2+81ω4)

{
6αnω

[
2L2(v21 +$21v12) − L3v12

3 + (L4 − L5)v12
]

−[4(K2$21 −K3v12v21 −K4v32) + K5 −K6 −K7]
(
L1 + 9ω2

)}
,

$34 =
−

(
9ω2 + K1

)(
K3v12v24 −

1
4 K4 +

1
4 K5v12

2
)
+ 3αnω

(
L2v24 + L2v12$23 +

1
2 L3v12 +

1
2 L4v12

3
)

K1L1 + 9(K1 + L1 − 4α2n2)ω2 + 81ω4
.
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