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Abstract: Neutrinoless double beta (0νββ) decay searches are currently among the major foci of
experimental physics. The observation of such a decay will have important implications in our
understanding of the intrinsic nature of neutrinos and shed light on the limitations of the Standard
Model. The rate of this process depends on both the unknown neutrino effective mass and the nuclear
matrix element (M0ν) associated with the given 0νββ transition. The latter can only be provided by
theoretical calculations, hence the need of accurate theoretical predictions of M0ν for the success of
the experimental programs. This need drives the theoretical nuclear physics community to provide
the most reliable calculations of M0ν. Among the various computational models adopted to solve
the many-body nuclear problem, the shell model is widely considered as the basic framework of the
microscopic description of the nucleus. Here, we review the most recent and advanced shell-model
calculations of M0ν considering the light-neutrino-exchange channel for nuclei of experimental
interest. We report the sensitivity of the theoretical calculations with respect to variations in the
model spaces and the shell-model nuclear Hamiltonians.

Keywords: nuclear shell model; effective interactions; nuclear forces; neutrinoless double-beta decay

1. Introduction

Neutrinoless double beta (0νββ) decay is a process in which two neutrons inside the nucleus
transform into two protons with the emission of two electrons and no neutrinos. With only two electrons
in the final state, lepton number conservation needs to be violated by two units for the process to occur.
The observation of 0νββ decay would imply that neutrinos are Majorana particles—that is, they are their
own antiparticles [1]—and give insight into leptogenesis scenarios for the generation of the observed
matter-antimatter asymmetry in the universe [2]. In fact, 0νββ decay is the most promising laboratory
probe of lepton number violation and it is, in fact, the subject of intense experimental activities [3–14].
The current reported 0νββ half-lives of 76Ge, 130Te, and 136Xe are larger than 8× 1025 year [13], 1.5× 1025

year [14], and 1.1× 1026 year [7], respectively, with next generation ton scale experiments expecting a two
orders of magnitude improvement in the half life sensitivity.

Since 0νββ decay measurements use atomic nuclei as a laboratory to test the extent of the
Standard Model, nuclear theory plays a crucial role in correctly interpreting the experimental data and
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disentangling nuclear physics effects from unknown lepton number violating mechanisms. The half-life
of the 0νββ decays is given by [

T0ν
1/2

]−1
= G0ν

∣∣∣M0ν
∣∣∣2 | f (mi, Uei)|2 , (1)

where G0ν is a phase-space (or kinematic) factor [15,16], M0ν is the nuclear matrix element (NME),
and f (mi, Uei) is a function of the neutrino masses mi and their mixing matrix elements Uei that
accounts for beyond-standard-model physics. Within the light-neutrino exchange mechanisms,
f (mi, Uei) has the following expression:

f (mi, Uei) = g2
A
〈mν〉
me

where gA is the axial coupling constant, me is the electron mass, and 〈mν〉 = ∑i(Uei)
2mi is the effective

neutrino mass. It is then clear that access to unknown neutrino properties is granted only if M0ν is
calculated with great accuracy.

Currently, the calculated matrix elements for nuclei of experimental interest are characterized by
large uncertainties. For nuclear systems with medium masses and beyond, the many-body nuclear
problem cannot be solved exactly with the available computational resources. For these systems,
one is inevitably forced to truncate the model spaces and reduce or neglect the effects of many-body
correlations and electroweak currents. As a result, different computational methods provide calculated
M0νs which differ by a factor of two [17]. On the above grounds, it is clear that reliable calculations of
M0νsare a prime goal of nuclear many-body investigations.

The ab initio framework for nuclei allows retaining the complexity of many-body correlations and
currents. Within this approach nuclei are described as systems made of nucleons interacting via two-
and three-body forces. Interactions with external probes, such as electrons, neutrinos, and photons,
are described using many-body current operators. One- and two-body current operators describe external
probes interacting with individual nucleons and pairs of correlated nucleons, respectively. This scheme
has been implemented successfully to study light to intermediate mass nuclei within several many-body
computational approaches. Due to their prohibitive computational cost, ab initio methods have been
used to study 0νββ transitions in light nuclei instead. While transitions in light nuclei do not have a direct
experimental interest, these studies provide us with an important benchmark to test other many-body
methods that can be used to calculate transition matrix elements for heavy-mass nuclei of experimental
interest. Further, they allow us to size the importance of the different lepton number violating mechanisms
leading to 0νββ decay processes, and to quantify the effect of the various approximations used in the
many-body methods for medium to large nuclear systems. Studies along this line have been carried out
(e.g., [18–20]). Only very recently, the ab initio community is venturing calculations of 0νββ decay matrix
element of experimental relevance, as reported, for example, by Yao et al. [21], who calculated the M0ν of
48Ca—the lightest system where the Q-value is compatible with the decay—combining the in-medium
similarity renormalization group with the generator-coordinate method [22].

Besides the exceptions mentioned above, the nuclear physics community has been primarily
focused on employing approximated many-body methods to access heavy open-shell nuclei of
experimental interest. These approximated methods generally invoke a truncation of the full Hilbert
space of configurations. To account for missing dynamics and degrees of freedom in the nuclear
wave functions, the nuclear Hamiltonian is then replaced by an effective or renormalized Hamiltonian,
i.e., Heff. This procedure is carried out, in general, by fitting parameters inherent the given nuclear
model to spectroscopic properties of the nuclei under investigation. Nuclear models adopted to study
0νββ decay of nuclei of experimental interest are: the interacting boson model [23–25], the quasiparticle
random-phase approximation (QRPA) [26–28], the energy density functional methods [29], the covariant
density-functional theory [30–36], and the shell model (SM) [37–41]. These models agree within a factor
of two (see, for example, Figure 5 of Ref. [17] and references therein) when calculating 0νββ decay matrix
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elements of A = 48–150 nuclei. The difference is mostly to be ascribed to the different renormalization
procedures adopted by the different models.

In addition to renormalizing the nuclear Hamiltonian, in this scheme, one has to renormalize
the free constants that appear in the definitions of the decay operators—e.g., proton and neutron
electric charges, spin and orbital gyromagnetic factors, etc. For example, the axial coupling constant
g f ree

A = 1.2723 [42] needs to be quenched by a factor of q [43], because all the aforementioned
models usually overestimate Gamow–Teller (GT) rates when compared to the experimental data [44].
The choice of q depends on the nuclear structure model, the dimensions of the reduced Hilbert space,
and the mass of the nuclei under investigation [45]. The common procedure to handle the quenching
of gA is to fit GT related data (e.g., single-β decay strengths, two-neutrino double-β decay rates, etc.),
and some authors argue that the value of q required to reach agreement between theoretical and
experimental values should be also employed to calculate M0ν (see, e.g. [45,46]). In passing, it is worth
mentioning that within the ab initio framework one can utilize the free nucleonic charges, magnetic
moments, and axial coupling constant without having to resort to quenching, provided that corrections
from two-body currents and two-body correlations are accounted for [47–54]. In this work, we review
the most recent and advanced SM results of M0ν for nuclei currently candidates for the detection of
the 0νββ decay in many laboratories around the world. We focus on the sensitivity of the calculations
with respect to variations in the model spaces and the shell-model nuclear Hamiltonians, as well as to
the variations in the “short-range correlations” which reveal the role of SM correlated wave functions.

The paper is organized as follows. In Section 2, we outline the basics theory of the nuclear SM
and short-range correlations, and provide the analytical expressions of the nuclear matrix elements,
for both neutrinoless and two-neutrino double beta decay. The latter are reported to assess the validity
of the adopted nuclear wave functions. In fact, a comparison with experimental data is clearly possible
for two-neutrino double beta decays. Section 3 is devoted to the results of the latest SM calculations
for 48Ca→ 48Ti, 76Ge→ 76Se, 82Se→ 82Kr, 130Te→ 130Xe, and 136Xe→ 136Ba 0νββ and 2νββ decays.
Comparisons between experimental and calculated M2νsare reported at the end of Section 3.2 with a
discussion on the gA quenching. Our conclusions are given in Section 4.

2. Theoretical Overview

2.1. The Nuclear Shell Model

The nuclear shell model allows for a microscopic description of the structure of the nucleus [55,56],
and it is the root of most current ab initio approaches (No-Core Shell Model, Coupled Cluster Method,
and In-Medium Similarity Renormalization Group). It is based on the ansatz that each nucleon
inside the nucleus moves independently in a spherically symmetric mean field generated by all other
constituents. The mean field is usually described by a Woods–Saxon or a harmonic oscillator (HO)
potential supplemented by a strong spin–orbit term.

This basic version of the shell model successfully explains the appearance of protons and/or
neutrons “magic numbers”—characterizing nuclei bounded more tightly with respect to their
neighbors—along with several nuclear properties [57], including angular momenta and parity for
ground-states of odd-mass nuclei. Within this framework, nucleons arrange themselves in well defined
and separated energy levels, i.e., the “shells”. It is worth emphasizing that shell-model wave functions
do not include correlations induced by the strong short-range two-nucleon interaction. We come back
to this point below when we discuss the “short-range correlations” (SRC).

The SM can be further improved, especially its description of low-energy nuclear structure,
introducing the “interacting shell model” (ISM) picture. In the ISM, the complex nuclear many-body
problem is reduced to a simplified one where only few valence nucleons interact in the reduced model
space spanned by a single major shell above an inert core. The valence nucleons interact via a two-body
“residual interaction”, that is the part of the interaction which is not already accounted for in the central
potential. The inclusion of the residual interaction removes the degeneracy of the states belonging to
the same configuration and produces a mixing of different configurations.
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The SM Hamiltonian consists of one- and two-body components and associated parameters,
namely the single-particle (SP) energies and the two-body matrix elements (TBMEs) of the residual
interaction. These parameters account for the degrees of freedom that are not explicitly included in
the truncated Hilbert space of configurations. As a matter of fact, SP energies and TBMEs should be
determined to include, in an effective way, the excitations of both the core and the valence nucleons
into the shells above the model space.

The construction of the effective SM Hamiltonian, Heff, can be carried out into two distinct ways.
In one approach, one starts from realistic two- and three-nucleon forces (see [58] and references therein
for a review on realistic two- and three-nucleon potentials) and derives the effective Hamiltonian from
them. The Heff will then have eigenvalues that belong to the set of eigenvalues of the full nuclear
Hamiltonian, defined in the whole Hilbert space. The alternative approach is phenomenological.
In this case, the SM Hamiltonian one- and two-body components are adjusted to reproduce a selected
set of experimental data. For the fitting procedure one could: (i) use adjustable parameters entering the
analytical expressions of the residual interaction; (ii) directly consider the Hamiltonian matrix elements
as free parameters (see, e.g., [59,60]); or (iii) fine tune the TBMEs of a realistic Heff to reproduce the
experimental results. The phenomenological approach has been widely utilized since its formulation
in the 1950s, and it successfully reproduces a huge amount of data and describes some of the most
fundamental properties of the structure of atomic nuclei [61].

The SM provides suitable and well tested nuclear wave functions for the initial and final states
entering the calculation of M0ν associated with 0νββ decays. SM results based on both the realistic
and phenomenological Heff are reported in Section 3.

2.2. Short-Range Correlations

Short-range correlations (SRCs) are required to account for physics that is missing in all
models that expand nuclear wave functions in terms of a truncated non-correlated SP basis.
In particular, two-body decay operators—such as those entering 0νββ decays—acting on an
unperturbed (uncorrelated) wave function yield results that are intrinsically different from those
obtained acting the real (correlated) nuclear wave function [62,63]. Due to the highly repulsive nature
of the short-range two-nucleon interaction, and in order to carry out nuclear structure calculations,
one is forced to perform a consistent regularization of the two-nucleon potential, VNN , and of any
two-body transition operator [64].

In nuclear structure calculations based on realistic potentials, one has to deal with non-zero values of
the non-correlated wave function, Φ, at short distances. This can be appreciated in Figure 1. However,
because of the repulsive nature of the VNN interaction at small inter-particle distances (or, equivalently,
the repulsive VNN behavior at high-momentum) the correlated wave function, Ψ, has to approach zero as
the inter-nucleon distance diminishes, and as fast as the core repulsion increases, see Figure 1.

To remedy to this shortcoming, one has to renormalize the short-range (high-momentum)
components of the VNN potential whenever a perturbative approach to the many-body problem
is pursued. The most common way to soften the matrix elements of the 0νββ decay operator is to
include SRC given by Jastrow-type functions [65,66]. Recently, SRC have been modeled using the
Unitary Correlation Operator Method (UCOM) [38,63]. This approach prevents the overlap between
wave functions of a pair of nucleons [67].

Another approach was proposed by some of the present authors in [68,69], where the
renormalization of the the 0νββ two-body decay operator is carried out consistently with the
Vlow-k procedure [70] adopted to renormalize the repulsive high-momentum components of the
VNN potential. In particular, the renormalization of VNN occurs through a unitary transformation, Ω,
which decouples the full momentum space of the two-nucleon Hamiltonian, HNN , into two subspaces;
the first one is associated with the relative-momentum configurations below a cutoff Λ and is specified
by a projector operator P, while the second one is defined in terms of its complement Q = 1− P [68].
Being a unitary transformation, Ω preserves the physics of the original potential for the two-nucleon
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system, e.g., the calculated values of all nucleon–nucleon observables are the same as those reproduced
by solving the Schrödinger equation for two nucleons interacting via VNN .

(r)

r

V(r)
NN

Ψ(r)

Φ

Figure 1. Representation of a realistic potential VNN , as a function of the inter-nucleon distance r
(black line). The correlated, Ψ, and non-correlated, Φ, wave functions are represented by the blue and
red lines, respectively. See text for details.

The two-body 0νββ operator, Θ, is calculated in the momentum space and renormalized using Ω.
This ensure a consistency with the VNN potential, whose high-momentum (short range) components
are dumped by the introduction of the cutoff Λ. The Θ vertices appearing in the perturbative
expansion of the Θ̂ box are substituted with the renormalized Θlow-k operator. The latter is defined
as Θlow-k ≡ PΩΘΩ−1P for relative momenta k < Λ, and is set to zero for k > Λ. The magnitude of
the overall effect of this renormalization procedure is comparable to using the SRC modeled by the
Unitary Correlation Operator Method [38], which is a lighter softening of M0ν than the one provided
by Jastrow-type SRC [68].

2.3. The 0νββ-Decay Operator for the Light-Neutrino Exchange

We now turn our attention to the vertices of the bare 0νββ operator, Θ, for the light-neutrino-
exchange channel [17].

We recall that the formal expression of M0ν
α —where α stands for Fermi (F), Gamow–Teller

(GT), or tensor (T) decay channels—is written in terms of the one-body transition-density matrix
elements between the daughter and parent nuclei (grand-daughter and daughter nuclei) 〈k|a†

p′ an′ |i〉
(〈 f |a†

pan|k〉). Here, p and n denote proton and neutron states, and i, k, f refer to the parent, daughter,
and grand-daughter nuclei, respectively, while M0ν

α reads [71,72]:

M0ν
α =∑

kJ
∑

jp jp′ jn jn′
(−1)jn+jn′+J Ĵ

{
jp jn Jκ

jn′ jp′ J

}〈
jp jp′ ;J || τ−1 τ−2 Θk

α || jn jn′ ;J
〉
〈k||[a†

p ⊗ ãn]Jk ||i〉

〈k||[a†
n′ ⊗ ãp′ ]Jk || f 〉

∗ = ∑
k

∑
jp jp′ jn jn′

〈 f |a†
pan|k〉〈k|a†

p′ an′ |i〉 ×
〈

jp jp′ | τ−1 τ−2 Θk
α | jn jn′

〉
, (2)

where the tilde denotes a time-conjugated state, ãjm = (−1)j+maj−m.
The operators Θα given by [17]:

Θk
GT = ~σ1 ·~σ2Hk

GT(r) , (3)

Θk
F = Hk

F(r) , (4)

Θk
T = [3 (~σ1 · r̂) (~σ1 · r̂)−~σ1 ·~σ2] Hk

T(r), (5)
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where Hα are the neutrino potentials defined as:

Hk
α(r) =

2R
π

∫ ∞

0

jnα(qr)hα(q2)qdq
q + Ek − (Ei + E f )/2

. (6)

In the equation above, R = 1.2A1/3 fm, jnα(qr) is the spherical Bessel function, nα = 0 for Fermi and
Gamow–Teller components, while nα = 2 for the tensor component. For the sake of clarity, the explicit
expressions [17] of neutrino form functions, hα(q), for light-neutrino exchange are reported below:

hF(q2) = g2
V(q

2) ,

hGT(q2) =
g2

A(q
2)

g2
A

[
1− 2

3
q2

q2 + m2
π
+

1
3
(

q2

q2 + m2
π
)2
]

+
2
3

g2
M(q2)

g2
A

q2

4m2
p

,

hT(q2) =
g2

A(q
2)

g2
A

[
2
3

q2

q2 + m2
π
− 1

3
(

q2

q2 + m2
π
)2
]

+
1
3

g2
M(q2)

g2
A

q2

4m2
p

, (7)

For the vector, gV(q2), axial-vector, gA(q2), and weak-magnetism, gM(q2), form factors, we use the
dipole approximation:

gV(q2) =
gV

(1 + q2/Λ2
V)

2
,

gM(q2) = (µp − µn)gV(q2),

gA(q2) =
gA

(1 + q2/Λ2
A)

2
, (8)

where gV = 1, gA ≡ g f ree
A = 1.2723, (µp − µn) = 4.7, and the cutoff parameters ΛV = 850 MeV and

ΛA = 1086 MeV.
The total nuclear matrix element M0ν can be then written as

M0ν = M0ν
GT −

g2
V

g2
A

M0ν
F + M0ν

T . (9)

Equation (2) can be easily calculated within the QRPA computational approach, while all other
models—including most of the SMs—have to resort to the closure approximation. This approximation
is based on the observation that the relative momentum q of the neutrino, appearing in the propagator
of Equation (6), is of the order of 100–200 MeV [17], while the excitation energies of the nuclei involved
in the transition are of the order of 10 MeV [71]. It is then customary to replace the energies of the
intermediate states, Ek, appearing in Equation (6), by an average value Ek − (Ei + E f )/2 → 〈E〉.
This allow us to simplify both Equations (2) and (6). In particular, M0ν

α can be re-written in terms of
the two-body transition-density matrix elements 〈 f |a†

pana†
p′ an′ |i〉 as

M0ν
α = ∑

jn jn′ jp jp′

〈 f |a†
pana†

p′ an′ |i〉

×
〈

jp jp′ | τ−1 τ−2 Θα | jn jn′
〉

, (10)
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and the neutrino potentials become

Hα(r) =
2R
π

∫ ∞

0

jnα(qr)hα(q2)qdq
q + 〈E〉 . (11)

Most SM calculations adopt the closure approximation to define the Θ operators given in Equations (3)–(5),
and take the average energies 〈E〉 from the evaluations of Haxton and Stephenson Jr. [73] and Tomoda [74].
It is important to point out that Sen’kov and Horoi [71] performed SM calculations of M0ν for 48Ca both
within and beyond the closure approximation, and found that in the second case the results are∼10% larger.

In most cases, short-range correlations are included when computing the radial matrix elements
of the neutrino potentials 〈ψnl(r)|Hα|ψn′ l′(r)〉. In particular, the HO wave functions ψnl(r) and ψn′ l′(r)
are corrected by a factor [1 + f (r)], which takes into account the short range correlations induced by
the nuclear interaction

ψnl(r)→ [1 + f (r)]ψnl(r) . (12)

The functional form of the correlation function f (r) is usually written using a Jastrow-like
parameterization as [66]

f (r) = −c · e−ar2
(

1− br2
)

, (13)

where a, b, and c are parameters whose values depend on the renormalization procedure adopted to
renormalize the non-correlated HO wave functions, (e.g., Jastrow or UCOM schemes, see Section 2.2
for details). In Table 1, we report the values of the a, b, and c constants commonly employed in SM
calculations. In addition to the values proposed by Miller and Spencer [65], we show those based on
the modern nucleon–nucleon interactions CD-Bonn and AV18 and derived by Sim [26].

Table 1. Values of the SRC parameters.

a b c

Miller-Spencer 1.10 0.68 1.00
CD-Bonn 1.52 1.88 0.46
AV18 1.59 1.45 0.92

2.4. The 2νββ-Decay Operator

As pointed out in the Introduction, because of the impossibility to compare the theoretical values
of M0ν with the experiment, one has to find another way to check the reliability of the computed
results. A viable route that is often considered in the literature is the calculation of the standard or
ordinary two-neutrinos double beta decay transitions where one observes the emission of two electrons
and two antineutrinos. Two-neutrino double beta decays are simply the occurrence of two single
beta decay transitions inside a nucleus. They differ from 0νββ decays in the characteristic value of
momentum transfer, which is negligible in ordinary decays and of the order of hundreds of MeVs
in 0νββ decay. Here, we list the expressions of the GT and Fermi components of the two-neutrinos
double beta decay matrix elements M2ν, namely

M2ν
GT = ∑

n

〈0+f ||~στ−||1+n 〉〈1+n ||~στ−||0+i 〉
En + E0

, (14)

M2ν
F = ∑

n

〈0+f ||τ
−||0+n 〉〈0+n ||τ−||0+i 〉

En + E0
. (15)

In the equation above, En is the excitation energy of the Jπ = 0+n , 1+n intermediate state,
and E0 = 1

2 Qββ(0+) + ∆M, with Qββ(0+) and ∆M the Q value of the transition and the mass difference
of the initial and final nuclear states, respectively. The index n runs over all possible intermediate
states induced by the given transition operator.
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It should be pointed out that the Fermi component is zero in Hamiltonians that conserve the
isospin, and most of the SM effective Hamiltonians do. It would play a marginal role only when isospin
violation mechanisms are introduced, for example, to account for the effects of the Coulomb force
acting between the valence protons [73,75]. In practice, in most calculations, the Fermi component is
neglected altogether.

An efficient way to calculate M2νis to resort to the Lanczos strength-function method [61],
which allows including the intermediate states required to obtain a given accuracy for the
calculated values.

The theoretical values are then compared with the experimental counterparts, which are extracted
from the observed half life T2ν

1/2 [
T2ν

1/2

]−1
= G2ν

∣∣∣M2ν
GT

∣∣∣2 . (16)

One can base the evaluation of the M2ν
GT on the closure approximation, commonly adopted to

study 0νββ-decay NMEs [73]. Within this approximation, one can avoid explicitly calculating the
intermediate Jπ = 1+n states. The drawback is that, in using the closure on the intermediate states,
the two one-body transition operators become a two-body operator.

This approximation is more adapt to evaluate M0ν where the neutrino’s momentum is about one
order of magnitude greater than the average excitation energy of the intermediate states. This allows
safely neglecting intermediate-state-dependent energies from the energy denominator appearing in
the neutrino potential (see discussion in Section 2.3). Conversely, the closure approximation has turned
out to be unsatisfactory when used to calculate M2ν, and that is because the momentum transfer in
2νββ process are much smaller. Theoretical calculations of M2νare discussed in the next session.

3. Shell-Model Results

In this section, we report SM results for M0ν based on both the phenomenological and realistic
Heffs. All the calculations are based on the light-neutrino-exchange hypothesis, and the values of all
the input parameters are the same as reported in Section 2.3. The only exception is the gA parameter,
whose adopted value is equal to 1.254 in some reported calculations. It is worth pointing out, however,
that, in [76], where a detailed analysis of the sensitivity of the M0ν results on the values of the input
parameters can be found, it is shown that the effects of such a tiny difference in gA are negligible.
We focus our attention on the 48Ca, 76Ge, 82Se, 128Te, 130Te, and 136Xe emitters. These results have
been obtained performing a complete diagonalizations of Heff. The latter has been defined in different
valence spaces tailored for the specific decay under investigation. All the calculations based on
phenomenological interactions are performed starting from Brueckner G-matrix elements “fine tuned”
to reproduce some specific set of spectroscopic data.

3.1. Results from Phenomenological Heffs

We test different phenomenological Heffs. All these interactions have been derived modifying
the matrix elements of a G-matrix so as to reproduce a chosen set of spectroscopic properties of some
nuclei belonging to the mass region of interest. With this procedure one can end up with results that
provide similar descriptions of the nuclei under consideration, nevertheless the phenomenological
TBMEs are quite different each other.

It is worth stressing that the calculated M0νs , reported in this section, are obtained using free
value of the axial coupling constant gA without any quenching factor.

The double-magic nucleus 48Ca is the lightest emitter investigated in regular ββ decay searches.
The SM calculation for M0ν is obtained using the model space spanned by four neutron and proton
single-particle orbitals 0f7/2, 1p3/2, 1p1/2, and 0f5/2. It is worth mentioning that the regular ββ decay
of 48Ca is a paradigm for shell-model calculations. Because within the p f model space all spin-orbit
partners are present, the Ikeda sum rule is satisfied [77].
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Several phenomenological SM effective interactions have been developed to describe p f -shell
nuclei. Among these are the GXPF1 [78], GXPF1A [79], KB3 [80], KB3G [81], and FPD6 [82] interactions.
In Table 2, we compare the most recent results for the M0ν of 48Ca obtained using the GXPF1A [71]
and KB3G interactions [83].

Table 2. M0ν of 48Ca. (a) and (b) denote AV18 and CD-Bonn SRC parameterizations, respectively.
The results are taken from [71,83].

GXPF1A (a) KB3G (a) KB3G (b)

M0ν
GT 0.68 0.85 0.93

M0ν
F −0.20 −0.23 −0.25

M0ν
T −0.08 −0.06 −0.06

M0ν 0.73 0.93 1.02

For the medium-mass emitters 76Ge and 82Se, the calculations adopt the valence space with the
four neutron and proton single-particle orbitals 0f5/2, 1p3/2, 1p1/2, and 0g9/2 outside doubly-magic
56Ni, as for instance in [83,84], where the effective interactions GCN2850 [38] and JUN45 [85] are
employed. These results are given in Tables 3 and 4.

Table 3. Same as Table 2, but for 76Ge. Results are from [83,84].

JUN45 (a) JUN45 (b) GCN2850 (a) GCN2850 (b)

M0ν
GT 2.98 3.15 2.56 2.73

M0ν
F −0.62 −0.67 −0.54 −0.59

M0ν
T −0.01 −0.01 −0.01 −0.01

M0ν 3.15 3.35 2.89 3.07

Table 4. Same as Table 2, but for 82Se. Results are from [83,84].

JUN45 (b) GCN2850 (a) GCN2850 (b)

M0ν
GT 2.75 2.41 2.56

M0ν
F −0.61 −0.51 −0.55

M0ν
T −0.01 −0.01 −0.01

M0ν 3.13 2.73 2.90

Finally, in Tables 5 and 6, we report and compare the calculated M0ν for 130Te and 136Xe. These are
based on two different effective interactions, namely the SVD [86] and GCN5082 [38] defined in the
jj55 valence space spanned by the neutron and proton orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2.
Results with the SVD and GCN5082 interactions are taken, respectively, from [40,83].

From the results shown above, it can be inferred that the effect associated with using different
SRCs does not exceed 10%, while different effective interactions can provide results differing up to
50%. The results reported in this section are based on the closure approximation. As discussed above,
Senkov and coworkers showed in a series of papers [71,84,87] that, in going beyond this approximation,
the 0νββ decay M0ν becomes about 10% larger.

Table 5. Same as Table 2, but for 130Te. Results are from [40,83].

SVD (a) SVD (b) GCN5082 (a) GCN5082 (b)

M0ν
GT 1.54 1.66 2.36 2.54

M0ν
F −0.40 −0.44 −0.62 −0.67

M0ν
T −0.01 −0.01 0.00 0.00

M0ν 1.80 1.94 2.76 2.96
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Table 6. Same as Table 2, but for 136Xe. Results are from [40,83].

SVD (a) SVD (b) GCN5082 (a) GCN5082 (b)

M0ν
GT 1.39 1.50 2.56 2.73

M0ν
F −0.37 −0.40 −0.50 −0.54

M0ν
T −0.01 −0.01 0.00 0.00

M0ν 1.63 1.76 2.28 2.45

We recall that the results reported in Tables 2–6 are obtained without quenching the axial coupling
constant. However, the calculations based on the empirical SM Hamiltonians so far considered need
a quenching factor q different from 1 to reproduce the experimental values of the nuclear matrix
elements of the corresponding 2νββ-decays M2νs. This can be appreciated in Table 7 where we list
the M2νscalculated with the empirical effective Hamiltonians GXPF1A, KB3G, JUN45, GCN2850 and
GCN5082 and compare them with the experimental data. In these calculations, which are performed
employing the Lanczos strength-function method [61], the unquenched value of gA (or equivalently a
quenching factor q = 1) has been used, and, as expected, the theory is systematically overpredicting
the experimental data.

Table 7. M2νsfor 48Ca, 76 Ge, 82Se, 130Te, and 136Xe 2νββ-decay calculated with GXPF1A, KB3G, JUN45,
GCN2850, and GCN5082 interactions and compared with data [88]; there are no published results
based on the SVD interaction. These calculations use a quenching factor q = 1. The values of M2νsare
reported in MeV−1.

48Ca→48Ti
GXPF1A KB3G Expt.

0.0511 [89] 0.088 [90] 0.035± 0.003

76Ge→76Se
JUN45 GCN2850 Expt.

0.333 [90] 0.322 [90] 0.106± 0.004

82Se→82Kr
JUN45 GCN2850 Expt.

0.344 [90] 0.350 [90] 0.085± 0.001

130Te→130Xe
GCN5082 Expt.
0.132 [90] 0.0293± 0.0009

136Xe→136Ba
GCN5082 Expt.
0.123 [90] 0.0181± 0.0006

3.2. Results from Realistic Heffs

In the realistic SM (RSM), Heff is constructed from realistic VNN potentials. This is achieved
via a similarity transformation utilized to constrain both the SM Hamiltonian and the SM transition
operators. More details on this procedure can be found in the papers by B. H. Brandow [91], T. T. S. Kuo
and coworkers [92,93], and K. Suzuki and S. Y. Lee [94,95]. Perturbative and non-perturbative
derivations of Heff were most recently reviewed by Coraggio et al. [96] and Stroberg et al. [97],
respectively. The derivation of effective SM decay operators carried out consistently with Heff is
discussed in [98,99]. Fundamental contributions to the field were made by I. S. Towner, who extensively
investigated the role of many-body correlations induced by the truncation of the Hilbert space,
especially for spin- and spin–isospin-dependent one-body decay operators [43,100].

The first calculations of M0ν starting from realistic VNN potentials and associated effective SM
decay operators, were made by Kuo and coworkers in the middle of 1980s for 48Ca [64]. In their work,
Heff and the associated transition operators were based on the Paris and the Reid potentials [101,102].
The short-range repulsive behavior was renormalized by calculating the corresponding Brueckner
reaction matrices [103]. Many-body perturbation theory was then implemented to derive both the
TBMEs of Heff and the effective 0νββ-decay operator. The effect of the SRC was embedded in the defect
wave function [104], consistently with the renormalization procedure from the Paris and Reid potentials.
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Finally, the authors calculated the half lives of 48Ca 0νββ-decay, for both light- and heavy-neutrino
exchange, as a function of the neutrino effective mass.

More recently, J. D. Holt and J. Engel calculated effective SM operators Θeffsfrom modern chiral
effective field theory VNN potentials. In particular, they started from the chiral VNN potential by Entem
and Machleidt [105] and cured its perturbative behavior using the Vlow-k procedure [70]. The Θeffwas
expanded up to third order in perturbation theory and used to calculate M0ν for 76Ge, 82Se [106],
and 48Ca [107]. The effects of SRC was included via an effective Jastrow function obtained from
Brueckner theory calculations [26]. For 76Ge and 82Se decays, the authors employed the empirical
GCN2850 [38] and JUN45 [85] SM interactions, respectively, and for the 0νββ decay of 48Ca they used
the GXPF1A Heff [79]. The values obtained by Holt and Engel in the light-neutrino exchange channel
are M0ν= 1.30 for 48Ca , M0ν= 3.77 for 76Ge, and M0ν= 3.62 for 82Se [106,107].

Holt and Engel [106] also calculated the 76Ge 2νββmatrix element. The calculation used the
closure approximation. However, as we discussed in Sessions 2.3 and 2.4, this approximation is not
robust when applied to study 2νββ processes where the values of momentum transfer are small. In fact,
the authors obtain a result for 76Ge M2ν

GT that is about two times larger than the one calculated with
the Lanczos strength-function method [41,108], and about five times larger than the experimental
value [88].

RSM calculations based on the high-precision CD-Bonn NN potential [109] were recently carried
out by Coraggio et al. [69], where the repulsive high-momentum components have been integrated
out through the Vlow-k technique with “hard cutoff” Λ = 2.6 fm−1 [70]. The M0νs have been calculated
within the SM using Heff, and effective decay operators Θeffsup to the third order in perturbation theory.
Two-body matrix elements entering the 0νββ-decay operator have been renormalized consistently within
the Vlow-k to account for short-range correlations (see Section 2.2 for more details) and Pauli-principle
violations in the effective SM operator. It should be pointed out that calculations of systems with a
number n of valence nucleons require the derivation of n-body effective operators, that take into account
the evolution of the number of valence particle in the model space P. The correlation between P-space
configurations and those belonging to Q space is affected by the filling of the model-space orbitals, and in
a perturbative expansion of SM operators this is considered by way of n-body diagrams. This is called the
“Pauli-blocking effect” and calculations in [69], where all SM parameters are consistently derived from the
realistic VNN potential without any empirical adjustments, take it into consideration by including the
contribution of three-body correlation diagrams to derive Θeff.

The results for 0νββ decay in the light-neutrino exchange channel of 48Ca, 76Ge, 82Se, 130Te,
and 136Xe are reported in Table 8.

Table 8. M0νs of 48Ca, 76Ge, 82Se, 130Te, and 136Xe decays obtained with the realistic effective
Hamiltonians and operators [69]. The tensor component has been neglected.

Decay M0ν
GT M0ν

F M0ν

48Ca→ 48Ti 0.22 −0.12 0.30
76Ge→ 76Se 2.25 −0.65 2.66
82Se→ 82Kr 2.31 −0.66 2.72
130Te→ 130Xe 2.66 −0.80 3.16
136Xe→ 136Ba 2.01 −0.61 2.39

It is worth pointing out that this approach to SM calculations has been successfully tested on
energy spectra, electromagnetic transition strengths, GT strength distributions, and nuclear matrix
elements for the two-neutrino ββ decay [110,111], without resorting to effective proton/neutron
charges and gyromagnetic factors, or quenching of gA. In Table 9, we report the the calculated values
of M2νfrom [111] and compare them with experimental data [88].
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Table 9. Same as in Table 7, but the calculated values [111] are obtained employing effective
Hamiltonians and decay operators derived starting from the CD-Bonn realistic potential (see text
for details) and compared with experiment [88].

48Ca→48Ti Theory Expt.
0.026 0.035± 0.003

76Ge→76Se Theory Expt.
0.104 0.106± 0.004

82Se→82Kr Theory Expt.
0.109 0.085± 0.001

130Te→130Xe Theory Expt.
0.061 0.0293± 0.0009

136Xe→136Ba Theory Expt.
0.0341 0.0181± 0.0006

A few comments are now in order. As pointed out in the Introduction, SM calculations
overestimate M2νand Gamow–Teller transition strengths. To remedy to this deficiency, one introduces
a quenching factor q that is multiplied to gA to reduce the values of the calculated matrix elements.
This factor depends on: (i) the mass region of the nuclei involved in the decay process; and (ii) the
dimension of the model space used in the calculation. The quenching factor has on average the
empirical value q ≈ 0.7 [45]).

The quenching factor accounts for missing correlations and missing many-body effects in the
transition operators. The truncation of the full Hilbert space to the reduced SM space has the effect of
excluding all correlations between the model-space configurations and the configurations belonging
to either the doubly-closed core or the shells placed in energies above the SM space. In addition, SM
calculations are based on the single-nucleon paradigm for the transition operators. However, two-body
electroweak currents [47–54,112–120] are found to play a role in several electroweak observables.
These involve the exchange of mesons and nucleonic excitations.

I. S. Towner extensively studied how to construct effective β-decay operators that account for the
degrees of freedom that are not explicitly included in the model space (see [43]). This is more recently
investigated in [110,111]. The results reported in Table 9 demonstrate a satisfactory agreement with the
data can be obtained without resorting to quenching factors q if one employs effective GT operators
within the SM.

Moreover, Coraggio et al. [69] showed that the renormalization procedure implemented to
account for missing configurations plays a marginal role in the calculated M0νs, while it is relevant
in 2νββ-decay induced by the one-body GT operator. This evidences that the mechanisms which
underlies the renormalization of the one-body single-β and the two-body 0νββ decay operators are
different.

In closing, we address the role of many-body electroweak currents in the redefinition of
single-β-decay and 0νββ-decay operators. Within the shell model, one can use nuclear potentials
derived within chiral perturbation theory [121,122], and include also the contributions of chiral
two-body electroweak currents. Studies along these lines have been recently carried out in [54,123,124],
where the authors found significant contributions from two-body axial currents in β-decay.
Concurrently, the study reported in [125] argues that many-body electroweak currents should play
a negligible role in standard GT transitions (namely, β- and 2νββ decays) due to the “chiral filter”
mechanism [125]. The chiral filter mechanism may be no longer valid for 0νββ decay since the
transferred momentum is ∼100 MeV, which will require further investigations to fully understand the
role of many-body currents in SM calculations of M0νs.



Universe 2020, 6, 233 13 of 19

3.3. Comparison between SM Calculations

In Figure 2, we group most of the SM results for 48Ca→ 48Ti, 76Ge → 76Se, 82Se → 82Kr,
130Te→ 130Xe, and 136Xe→ 136Ba. We have chosen the results according to the following criteria:

(a) All the SM calculations for a given transition are based on the same model space.
(b) All the calculations use the closure approximation.
(c) Whenever the calculations use different choices of SRCs, the average value and associated error

bar is reported.
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Figure 2. M0νs calculated using different Heff and 0νββ-decay operators. Blue squares represent the
results based on the Strasbourg–Madrid Heffs [83]. Green diamonds correspond to the calculations by
Horoi and coworkers [40,71,84]. Results by Holt and Engel are indicated by the red triangles [106,107].
Black dots indicate results by some of the present authors reported in [69].

The scale on the y-axis is consistent with the one employed in Figure 5 of [17]. We stress that our
criteria rule out, for the sake of consistency, results from SM calculations where alternative approaches
have been followed. For example, we recall that Horoi and coworkers have extensively performed
calculations beyond the closure approximation [71,84,87]. In particular, as already mentioned several
times, results for the M0ν of 48Ca calculated with and without the closure approximation differ by
∼10%. Likewise, we neglect the results of large-scale SM calculations, where model spaces larger than
a single major shell are used. This is the case, for instance, of the work by Horoi and Brown [39] and
by Iwata and coworkers [126]. In the former, the authors showed how the enlargement of the standard
g9/2dsh9/2 model space by the inclusion of the spin–orbit partners of g9/2 and h9/2 orbitals leads to
a 10–30% reduction of the calculated M0ν for the 136Xe emitter. In the latter, the authors reported
the results for the M0ν of 48Ca based on large-scale shell-model calculations including two harmonic
oscillator shells (sd and p f shells). They found that M0ν is enhanced by about 30% with respect to
p f -shell calculations when excitations up to 2h̄ω are explicitly included.

The spread among different results is rather narrow, except from the 130Te→ 130Xe 0νββ decay
since the results in [40] are more than 30% larger than those in [69,83]. We observe that the results
from [69,83] are close each other, and the M0νs calculated by Holt and Engel [106,107] are consistently
larger than those from other SM calculations. The computational methods reported in the figure use
substantially different SM effective Hamiltonians, yet they all lead to equally satisfactory results for a
large amount of structure data. This leads us to argue that the SM approach is reliable for the study of
0νββ decay.
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Finally, comparing Figure 2 with the compilation of results reported in Figure 5 of [17], we confirm
that also these more recent SM calculations provide values that are smaller than those obtained with
other nuclear models such as the Interacting Boson Model, the QRPA, and Energy Density Functional
methods. Since the advantage of the nuclear shell model with respect to other approaches is to include
a larger number of nuclear correlations, one may argue that by enlarging the dimension of the Hilbert
space of nuclear configurations it should be expected a reduction in magnitude of the predicted values
of M0νs, as found, e.g., in [39].

4. Conclusions

In this paper, we briefly review the present status of SM calculations of 0νββ-decay nuclear
matrix elements. More precisely, we focus our attention on the 48Ca→48Ti, 76Ge→76Se, 82Se→82Kr,
130Te→130Xe, and 136Xe→136Ba decays. These transitions are relevant to the current and planned
experimental programs. We consider calculations performed with phenomenological SM Hamiltonians,
as well as studies where SP energies, two-body matrix elements, and effective decay operators have
been derived from realistic VNN potentials. For completeness, important aspects that characterize
the calculation of M0ν, such as the role of short-range correlations and the closure approximation,
are briefly discussed. These and other approximations, such as the size of the model space, may affect
the results by .30%.

We show how different SM calculations, notwithstanding the diversity of the effective
Hamiltonians that are employed to calculate the nuclear wave functions, exhibit a rather narrow
spread among the predictions of the nuclear matrix elements, making the SM a solid and reliable
framework for M0ν calculations.
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