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Abstract: We suggest two new scenarios of high-energy particle collisions in the background of a
wormhole. In scenario 1, the novelty consists of the fact that the effect does not require two particles
coming from different mouths. Instead, all such scenarios of high energy collisions develop, when an
experimenter sends particles towards a wormhole from the same side of the throat. For static wormholes,
this approach leads to indefinitely large energy in the center of mass. For rotating wormholes, it makes
possible the super-Penrose process (unbounded energies measured at infinity). In scenario 2, one of
colliding particles oscillates near the wormhole throat from the very beginning. In this sense, scenario 2
is intermediate between the standard one and scenario 1 since the particle under discussion does not
come from infinity at all.
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1. Introduction

During the last decade, a lot of efforts were devoted to description of high-energy collisions in the
region of the strong gravitation field. This was stimulated by the observation about possibility to obtain an
indefinitely large energy Ec.m. in the centre of mass frame of two colliding particles [1] (see also earlier
works [2–4]). These findings were made for the case of rotating black holes. Meanwhile, later, similar
results were obtained for another strongly gravitating objects. Thus, the unbounded energies Ec.m. were
found for processes near naked singularities and wormholes. In the present article, it is the latter case
which we are interested in.

One should distinguish between two kinds of energy. The first one is Ec.m. that can be measured by
an observer who is present just in the point of collision. The second one is the Killing energy E measured
at infinity in the asymptotically flat space-time. In the present work, we will discuss both of them. It is
essential that if Ec.m. is finite, E is finite as well. This was shown in [5] for the Kerr metric and in [6] for a
more general case. (There is a very special case [7] when the parameters of the metric themselves diverge,
but we will not discuss it further.) Therefore, the necessary (although not sufficient) condition for obtaining
unbounded E consists of the consideration of processes with unbounded Ec.m.. In what follows, we will
use the term super-Penrose process (SPP), if E is unbounded.

For the first time, collisions with unbounded Ec.m. near wormholes were considered in [8]
for a particular type of wormholes, so-called Teo wormholes [9]. They are necessarily rotating,
the corresponding space-time does not have an asymptotically flat region. In the next work, it was shown
that collisions near such wormholes can also produce unbounded E [10]. Later, it was noticed [11] that
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high-energy collisions can be realized even for static wormholes (for example, if two Schwarzschild-like
wormholes are glued by means of the “cut and past” technique, see e.g., Section 15.2.1 of [12]). In the
Krasnikov’s scenario [11], unbounded Ec.m. do occur but unbounded E are forbidden since this would
require the presence of the ergosphere where E < 0. Meanwhile, such a region is absent for the
Schwarzschild-like metric. In our previous paper it was shown that the SPP is possible for rather general
rotating wormholes [13].

It is worth stressing that there exists nontrivial dependence between the behavior of Ec.m.(N), where N
is the lapse function, and the existence or nonexistence of the SPP. This relation was established in [14],
where general classification was constructed. In doing so, Ec.m.(N) itself is determined by the relative sign
of radial momenta of colliding particles. It is head-on collision that leads to the existence of the SPP. In this
sense, it is of interest to describe possible ways, how to realize head-on collisions. It is this point that we
stress. As far as wormholes are concerned, in previous works it was assumed that two particles come from
opposite mouths and meet near the throat (head-on collision). Thus, the corresponding experiment had
“mixed” nature involving observers from different sides of Universe.

In the present work, we suggest two completely new, alternative scenarios. We show that an
indefinitely large energies Ec.m. and E can occur even if both particles are sent from the same side of
the throat. However, this requires two-step process. Also, we exploit the fact that in wormhole space-times
there exist bound states (impossible for black holes) when a particle can oscillate between two turning
points [15].

One reservation is in order. All scenarios connected with using wormholes for obtaining unbounded
Ec.m. share the same feature. Namely, the lapse function near the throat should be small. This leads to an
indefinite growth of the curvature invariants (say, the Kretschmann scalar K) there. Meanwhile, one can
reconcile large Ec.m. and K remaining below the Planckian scale by choosing the parameters of the system
accordingly [16].

Below, we consider two types of scenarios in which high energy phenomena reveal themselves in
(i) indefinite growth of Ec.m. (with E remaining modest), (ii) in the SPP. To this end, we consider separately
(i) collision in static spherically symmetric wormholes and (ii) in rotating axially symmetric ones. In the
first case, only Ec.m. can be unbounded, in the second one we explain why also E can be made as large as
one likes.

The paper is organized as follows. In Section 2 we give basic formulas for the spherically symmetric
case including the metric, equations of motion and the energy in the center of mass of two colliding
particles. In Section 3 we describe a scenario in which one of two particles reflects from the potential
barrier, so that an ingoing particle converts into the outgoing one. In Section 4 we show that in choosing
the point of collision of the metric function being small enough, we can achieve indefinitely large Ec.m..
In Section 5 we describe another scenario in which one of colliding particles does not come from infinity
but oscillates near the throat between turning points. In Section 6 we give the general metric and equations
of particle motion in the case of rotating wormholes. In Section 7 we describe a general scheme of particle
collisions in such a background. In Section 8 we analyze possible output of particles with ultrahigh energy.
In Section 9 we discuss the role of trajectories with negative energy played in the high energy processes
under consideration. In particular, we discuss how they can be used in an alternative scenario of collision.
In Section 10 we summarize the results and outline some perspectives.

We use the geometric system of units in which fundamental constants G = c = 1.
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2. Spherically Symmetric Case: Basic Formulas

Let us consider the spherically symmetric metric

ds2 = − f dt2 +
dρ2

f
+ r2(ρ)dω2, dω2 = dθ2 + sin2 θdφ2, (1)

where we used a so-called quasiglobal coordinate ρ (see, e.g., Section 3.3.2 of [17]). Motion of free particles
occurs in the plane which we choose to be the equatorial one θ = π

2 . Equations of motion read

mṫ =
E
f

, (2)

mρ̇ = σP, (3)

mφ̇ =
L
r2 , (4)

where dot denotes differentiation with respect to the proper time τ, E being the conserved energy,
L conserved angular momentum, σ = ±1 depending on the direction of motion,

P =
√

E2 − f m̃2, (5)

m̃2 = m2 +
L2

r2 . (6)

The forward-in-time condition ṫ > 0 is satisfied, provided E > 0.
If two particles 1 and 2 collide, one can define the energy in the center of mass frame according to

E2
c.m. = −(m1u1µ + m2u2µ)(m1uµ

1 + m2uµ
2 ) = m2

1 + m2
2 + 2m1m2γ. (7)

Here, uµ is the four-velocity, subscript label particles, γ = −u1µuµ
2 is the Lorentz factor of relative

motion. Using (2)–(4) one obtains

m1m2γ =
E1E2 − σ1σ2P1P2

f
− L1L2

r2 . (8)

In what follows we consider the manifold to be a wormhole. For simplicity, we assume that the
function r(ρ) has one minimum at ρ = ρ0, so

r ≥ r0 ≡ r(ρ0). (9)

In this section, we restrict ourselves by pure radial motion L = 0 since this simplified case captures
the main features of the phenomenon under discussion. Then,

ρ̇ = σp, (10)

p =
√

ε2 − f , (11)

where ε = E
m ,

γ =
ε1ε2 − σ1σ2 p1 p2

f
. (12)
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3. Scenario of Collision 1: Two Particles Come from the Same Mouth

Let us consider the following scenario. Particle 1 has the energy E1 > m and starts its motion, say,
from the right infinity. In some point it decays to two particles 2 and 3. We assume that particle 2 has
the energy E2 < m, whereas particle 3 has E3 > m, σ3 = −1. Then, particle 3 escapes to the left infinity.
Meanwhile, particle 2 has the turning point r2, where p2 = 0, its position is given by

f (r2) = ε2
2. (13)

We assume that f is a monotonic function of r in each half-space, so there is one value of r2 but there
are two turning points in terms of ρ in which r(ρ) = r2. It is also clear that f attains its minimum f0 at
point ρ0, f0 = f (r(ρ0)).

Particle 2 oscillates between both turning points. Let it collide in point ρ0 with one more particle 4
with (for simplicity) the same mass that comes from infinity, ε4 > 1, σ4 = −1. We choose the moment of
collision in such a way that particle 2 moves from the left to the right, so σ2 = +1. From (12), we have

γ =
ε4ε2 + p4(ρ0)p2(ρ0)

f
. (14)

4. Unbounded Ec.m.

Now, we consider configurations with small f0 � ε2 < ε4. Then, p2(ρ0) ≈ ε2, p4(ρ0) ≈ ε4,

γ ≈ 2ε4ε2

f
. (15)

When f → 0, γ grows unbounded, and so does Ec.m.

We would like to remind a reader that there are few scenarios of high energy particle collisions in
which unbounded Ec.m. is obtained in head-on collisions. The key point of such scenarios is to obtain
somehow a particle that moves in the opposite direction (with respect to another particle that falls from
infinity) and arrange collision in the point where the lapse function is very small. This can be realized
(i) near white holes [18], (ii) in the background of a naked singularity [19], (iii) in the background of a
wormhole. In case (ii) there is a two-step scenario in which a particle bounces back from an indefinitely
high potential barrier and meets a new particle coming from infinity. In case (iii), there are two options.
One of them (iii-a) consists of that two particles comes from opposite mouths [11]. Meanwhile, in our
scenario (iii-b) all particles participating in the process, start in our universe.

Thus, in our scenario we can probe the other side of a wormhole starting the experiment on our side
of it and remaining only there.

5. Scenario of Collision 2: Intermediate Case

In this section, we describe one more scenario. Let us remind a reader that the key ingredient for
obtaining unbounded Ec.m. is a head-on collision of two particles near the throat, under an additional
condition that the metric coefficient f is small enough in the corresponding point. Thus, we have two
alternatives: (i) both particles come from opposite mouths [8,11], (ii) particles come from the same mouth
(see above). Meanwhile, there is also one more possibility based on the property of wormholes with no
analog in the black hole case. It was shown in [15] that there exist states such that a particle performs
bounded motion between two turning points. Choosing an appropriate phase when particle 2 moves, say,
from the left to the right, while particle 1 comes from the right infinity, for small f0 we obtain the result
similar to (15) with one difference: now ε4 is to be replaced by ε1.
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To make presentation self-closed, we write down the metric in the same form as in [15]:

ds2 = −dt2(g(r) + λ2) +
dr2

g(r)
+ r2dω2. (16)

Here, for simplicity, g = 1− r+
r , r ≥ r+, λ is a constant, r+ has the meaning of the throat radius.

If λ2 < ε2 < 1 + λ2, a trajectory oscillates between two turning points. Let collision occur in the phase
when both particles move in opposite directions.

Repeating our calculations step by step, we obtain for collision of particles 1 and 2 in point r0, moving
in opposite directions radially, the expression

γ =
ε1ε2 + p1(r0)p2(r0)

g(r0) + λ2 , (17)

p(r) =
√

ε2 − (g + λ2) (18)

instead of (14).
Choosing r0 = r+, we have

γ =
2ε1ε2

λ2 . (19)

If λ is sufficiently small, γ can be made as big as one likes.
Such a scenario can be thought of as an intermediate case between the aforementioned scenarios in

the sense that particle 2 comes neither from the left infinity nor from the right one. It was present near the
throat because of initial conditions. In addition, this scenario 2 has advantage as compared to scenario 1 in
that we should not arrange two-step process. It is sufficient to arrange one-step collision.

6. Rotating Wormholes

Now, we consider a more general metric that takes into account the effect of rotation:

ds2 = −N2dt2 + gφ(dφ−ωdt)2 +
dρ2

A
+ gφdθ2, (20)

where the coefficients do not depend on t and φ, ω > 0. (To simplify formulas, we use notation gφ for the
component of the metric tensor gφφ). We suppose that the equatorial plane is a plane of symmetry and are
interested in the motion within this plane only. Instead of (2)–(4), equations of motion read now

mṫ =
X
N2 , (21)

m
N√
A

ρ̇ = Pr = σP, (22)

mφ̇ =
L
gφ

+
ωX
N2 , (23)

where
X = E−ωL, (24)

P =
√

X2 − N2m̃2, (25)

m̃2 = m2 +
L2

gφ
. (26)
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The forward-in-time condition gives us
X ≥ 0. (27)

We assume that our metric has a wormhole character. This means that gφ has a minimum in some
point ρ0. For simplicity we assume that N has also minimum in this point, N(ρ0) 6= 0 and N(ρ0)� 1.

7. Collisions Near Throat of Rotating Wormhole: Scenario 1

Again, we consider the two-step scenario. Our aim is to elucidate, whether or not the energy extraction
from a wormhole is possible and whether or not it can be unbounded. In general, energy gain in this
context is nothing else than the Penrose process [20]. Let us repeat that if it is formally (in the test particle
approximation) unbounded, it is called the super-Penrose process (SPP). If the Penrose process is realized in
the scenario that involves collision, it is called the collisional Penrose process (for black holes, this process
is reviewed in [21]). On the first stage, particle 1 decays to particles 2 and 3. Particle 3 escapes to the
left infinity while particle 2 moves to the right. Both E2 > 0 and E3 > 0. On the second stage, particle 4
comes from infinity and collides with particle 2 near the throat. This is head-collision like in the static
case. As a result, particles 5 and 6 are created. We assume that E5 < 0 and E6 > 0, particle 6 escapes to the
right infinity.

Here, there are two essential differences now as compared to the static case. First, we assumed that
the ergoregion does exist that makes it possible to have E < 0. Such option was forbidden in the limit
ω → 0 corresponding to the static metric. Second, we cannot put all angular momenta equal to zero.
Moreover, some of them should be large.

To explain this, let us consider the conservation laws for the energy and angular momenta.

E2 + E4 = E5 + E6, (28)

L2 + L4 = L5 + L6. (29)

It follows from (28) and (29) that

Xtot ≡ X2 + X4 = X5 + X6. (30)

As, by assumption, E5 < 0 and E2 > 0, E6 > E4. Equation (27) with ω > 0 entails that L5 < 0.
Furthermore, we want to have E6 large positive, so E5 should be large negative. Formally, E5 → −∞,

E6 → +∞. Meanwhile, as all energies and angular momenta of particles on the 1st stage are supposed to
be finite, the quantities X2 and X4 are finite as well. Taking into account that X5 > 0 and X6 > 0 for the
same reason (27), we see that each of them should be finite according to (30). Therefore, we want to have
configurations with L5 → −∞, L6 → +∞. Thus, divergences in the right hand sides of (28) and (29) should
compensate each other. It is seen from (24) that E6 = X6(ρ0) + ω(ρ0)L6. Then, for finite X6(ρ0), ω(ρ0)

and L6 → +∞, the energy E6 → +∞ as well. This realizes the super Penrose process, when the energy E
detected by an observer at infinity is as large as one likes.

8. Output of Collision

In Section 7, we outlined the desired features of the process, but the question remained, whether or
not it can be realized. In principle, further analysis is required that, apart from the conservation of the
energy and angular momentum, also takes into account the conservation of the radial momentum. This is
the most subtle and crucial point. Happily, there is no need in carrying out such analysis here since we
reduced the problem to the one that has been already investigated in [13] and generalized in [14]. Namely,
the following statement was proved there.
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Let (i) two particles collide in the point where N � 1 but the horizon is absent (as it takes place
for the wormhole metric). Then, (ii) for head-collision the energy of an escaping particle is not bounded.
However, both these conditions are fulfilled now in our scenario. The aim of the first stage consisted of
the possibility to prepare particle 2 that moves from the left to the right. On the 2nd stage high-energy
head-on collision does occur.

It is worth stressing that both for a wormhole and a naked singularity the dependence Ec.m.(N) for
small N has the same form Ec.m.(N) ∼ N−1 and this gives rise to unbounded E—see line 3 in Table 1 on
page 6 in [14]. Independently of origination of head-on collision near the throat with very small N, once it
occurred, it leads to unbounded energies at infinity E.

9. Trajectories with Negative Energies and Scenario 2

The key role in the scenario under discussion, as well as in any Penrose process, is played by the
states with negative energy. Strange as it may seem, only quite recently the properties of such trajectories
were elucidated and described in [22] for the Kerr metric. Later on, they were generalized in [23]. It turned
out that corresponding geodesics cannot stay forever in the region external with respect to the horizon.
The complete curve inevitably crosses the horizon. Correspondingly, a particle with E < 0 cannot oscillate
between two turning points outside the horizon or move on the circular orbit. (The similar statements
are valid for the Reissner-Nordström black hole [24].) In the wormhole case there is no horizon and the
situation changes drastically. The particle with E < 0 cannot escape to either of two infinities. Therefore,
it must oscillate between turning points.

Thus, in our scenario, after the 1st collision, one of particles sits on the trajectory with E < 0 and in
the phase when it moves outward, it collides with a particle coming from infinity, creating a new particle
with indefinitely large energy.

From another hand, trajectories of such a type can be used for one more scenario of collision. Omitting
formulas, we describe it qualitatively. If a particle has energy E < 0, it cannot come from infinity or
escape to infinity. Instead, it oscillates between turning points. Let collision between particle 1 coming
from infinity and particle 2 oscillating inside a wormhole occur when they move in opposite directions.
The reaction can be described as 1 + 2→ 3 + 4. If the lapse function in the point of collision (say, exactly
in the throat) is small enough, we again obtain indefinitely large E3, provided L3 is big and negative.
The essential difference between this scenario and the one described above in Section 7 consists of that
there is no need in a two-step process.

10. Conclusions

One of the methods of obtaining the super-Penrose process consists of arranging the head-on collision
in the point with a small value of the lapse function. To this end, a particle that was ingoing converts into
an outgoing due to reflection from the potential barrier with subsequent collision with another particle
coming from infinity. This is realized in the metric with naked singularities [5,6,19] where the potential
barrier has indefinitely big height. Meanwhile, in the present work we considered wormholes, the potential
barrier being finite.

In the present work, we suggested two new scenarios. In scenario 1, both particles are sent from
infinity from the same side of a wormhole. It turned out that two main features are inherent to this
scenario. For pure static wormholes, it warrants unbounded Ec.m. If a wormhole is rotating, it also leads
to unbounded E, i.e., the super-Penrose process. A separate question arises, how a remote observer who
registers high-energy particles at infinity, can distinguish between a naked singularity and a wormhole.

In scenario 2, particle 1 comes from infinity while particle 2 oscillates between turning points from
the very beginning. It can be considered as an intermediate scenario between a standard one (when both
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particles come from different mouths) and scenario 1 outlined above. In doing so, particle 2 does not come
from infinity at all.

It turns out that trajectories with finite motion near the wormhole throat can play a double role.
First, they can serve as initial conditions in collisions leading to unbounded Ec.m. Second, after collisions,
one of product of reaction can sit on such a trajectory. Thus, either motion along a trajectory under
discussion can be specified as some initial condition or a particle can appear there as a result of a previous
collision. Anyway, one cannot determine the origin of such a trajectory without additional assumptions.

All discussion was carried out in the test particle approximation. As long as the energy value does not
exceed the parameters of the metric, this looks quite reasonable. Say, in the case of Kerr-like wormholes
with the parameters M and a, one can obtain the energy 1� E

m � a, M. Especially interesting is to make
attempt of finding self-consistent solutions with the backreaction taken into account but this problem is
beyond our task.
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