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Abstract: New observations of high-redshift objects are crucial for the improvement of the standard
ΛCDM cosmological model and our understanding of the Universe. One of the main directions of
modern observational cosmology is the analysis of the large-scale structure of Universe, in particular,
in deep fields. We study the large-scale structure of the Universe along the line of sight using
the latest version of the COSMOS2015 catalogue, which contains 518,404 high quality photometric
redshifts of galaxies selected in the optical range of the COSMOS field (2× 2 deg2), with depth
up to the redshift z ∼ 6. We analyze large-scale fluctuations in the number of galaxies along the
line of sight and provide an estimate of the average linear sizes of the self-correlating fluctuations
(structures) in independent redshift bins of ∆z = 0.1 along with the estimate of the standard deviation
from homogeneity (the observed cosmic variance). We suggest a new method of the line-of-sight
analysis based on previous works and formulate further prospects of method development.
For the case of the theoretical form of approximation of homogeneity in the ΛCDM framework,
the average standard deviation of detected structures from homogeneity is σΛCDM

mean = 0.09± 0.02,
and the average characteristic size of structures is RΛCDM

mean = 790± 150 Mpc. For the case of the
empirical approximation of homogeneity, the average standard deviation of detected structures
from homogeneity is σ

empiric
mean = 0.08 ± 0.01, and the average characteristic size of structures is

Rempiric
mean = 640± 140 Mpc.

Keywords: cosmology; observations; large-scale structure of the universe

1. Introduction

The development of observational techniques and the increase of computing power at the
beginning of the 21st century made it possible to study the evolution of large-scale structure of
the Universe (LSSU) from the moment of birth of the first galaxies to the modern era. The relevance of
theoretical models and the correct understanding of the evolution of the Universe is determined by
using various observational cosmological tests [1–3].

The ΛCDM model is the standard cosmological model (SCM) that assumes the homogeneous
distribution of matter in the Universe (“at sufficiently large scales”) including cold dark matter
and dark energy. The SCM also implies the evolution of the density fluctuations of both dark and
luminous matter with time, which is associated with the observed large-scale structure of the Universe.
The SCM predicts that the primordial small density fluctuations of the dark and luminous matter
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(δρ/ρ ∼ 10−5) have linear time-growth for the structures having scales larger ∼10 Mpc at the present
epoch [2,4]. The largest predicted by ΛCDM structures have sizes about the scale of the Baryon
Acoustic Oscillations Rbao ∼ 100 Mpc [5].

The very important observational test of the SCM is to estimate the maximum amplitudes
and sizes of the largest structures visible in the high redshift Universe. This test can establish an
observational limit to “the galaxy bias factor”, i.e., the ratio of fluctuation amplitudes of visible to dark
matter [4]. Modern cosmological N-body simulations1 provide MULTIDARK-GALAXIES catalogs,
derived from the Planck cosmology MULTIDARK simulations MDPL2, with a volume of 1 h−1Gpc3

and mass resolution of 1.5 × 109 h−1M� by applying the semi-analytic models GALACTICUS, SAG,
and SAGE [5]. These catalogs can be used for comparison between ΛCDM model predictions with real
galaxy distribution at high redshift. In the next decade, the sensitivity limit of the upcoming telescopes
(The James Webb Space Telescope2, ALMA3, SKA4) will be sufficient to detect the earliest galaxies and
hence to perform the “largest structure” observational test.

However, we can already estimate the amplitudes and sizes of visible matter fluctuations by using
the deepest narrow-angle catalog COSMOS2015 [6], which contains more than 5× 105 galaxies with
high quality measured photometric redshifts up to z = 6.

The COSMOS2015 catalog is significantly improved compared with its previous version, used in
the works by Nabokov and Baryshev [7,8], Shirokov et al. [9]. Note that in recent works, several
structures were detected in the COSMOS field, which also point to existence of large filamentary
structures at z ∼ 0.73, called the COSMOS wall [10], structures at redshifts of 0.1 < z < 1.2 [11],
voids at z ∼ 2.3 [12] and massive proto-supercluster at z ∼ 2.45 [13]. The very large structure of the
dark matter with a size of about 1000 Mpc was detected in the COSMOS field by using method of the
weak gravitational lensing [14,15].

In this paper, we develop preceding approach used by Nabokov and Baryshev [7,8], Shirokov et al. [9].
We develop a new method of analysis of the galaxy number counts by introducing two-level of fluctuation
sequences. We also use the last version of the COSMOS2015 catalogs.

2. The COSMOS2015 Catalogue

2.1. Description

In this paper, we use the COSMOS2015 catalogue [6] of precise photometric redshifts to analyze
the line-of-sight distribution of galaxies. The catalog contains 30-band photometry data over the
entire spectral range from radio to X-ray for 518,404 photometric redshifts of galaxies in the range
0 < z < 6. The targets were selected in the optical range using the Hubble Space Telescope and
were supplemented by data from the Chandra and XMM-Newton space observatories. The main goal
of the COSMOS project is to study the relationships between the large-scale structure of Universe,
dark matter, the formation of galaxies and the activity of nuclei in galaxies, as well as the influence of
environmental conditions on the evolution of galaxies. The survey covers two square degrees on the
celestial sphere nicknamed the COSMOS field in the direction of Sextans constellation.

2.2. Photometric Redshifts

Large catalogs of redshifts allow the usage of a wide range of statistical tools that provide
estimates of systematic effects via cosmological tests (e.g., the LSSU, Hubble diagram, Malmquist bias,
and gravitational lensing bias [16,17]). Conclusions about the LSSU drawn from careful analysis of

1 https://www.cosmosim.org
2 https://www.jwst.nasa.gov
3 https://www.almaobservatory.org
4 https://www.skatelescope.org
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photometric redshifts are mostly in agreement with results obtained from spectral surveys and other
independent studies (see, for example, Shirokov et al. [9], Sokolov et al. [18]).

However, relatively large errors in the photometric redshifts estimation make the study of the
LSSU especially challenging. Essential improvements in photometric redshift techniques, using the best
SED fitting in the COSMOS field imaged in a large number of filters [6] or deep learning methods [19],
allow us to reach a redshift uncertainty σz = 0.007(1 + z) at small redshifts, which corresponds to a
distance uncertainty of ∼40 Mpc (at z ∼ 1). At high redshifts 3 < z < 6, the photometric redshifts in
COSMOS2015 catalog are defined on the grid in steps of σz < 0.021(1+ z) [6] using Hyperz: Photometric
Redshift Code5.

In our analysis, we take the linear size of the redshift bin ∆z = 0.1, which is an order of magnitude
larger than the redshift error σz ∼ 0.007. So, we can firmly study the large-scale structures having
linear sizes larger than ∼100 Mpc.

2.3. Selection Effects

In the literature, there is no reliable theoretical estimate of all observational selection effects in
construction of the number-distance relation. For example, the Malmquist bias is a result of the limited
magnitude sensitivity of the equipment, which leads to preferable detection of the brighter sources.
Such selection effects as K-corrections, evolution effects, types of continuous spectra of galaxies,
must also be taken into account in directly observed quantities.

The usual approach for taking into account the main selection effects in the primary observed
number-distance relation is to use a fitting function for the redshift distribution N(z). We use several
functional types of combined observational selection effects, including an exponential function for all
redshifts, which decreases sharply with increasing redshift.

Photometric redshifts are determined by using simultaneously several filters, therefore, they are
affected by the selection of visible magnitudes in different filters. This selection may contain the
so-called “spectral deserts”, which are often found in spectroscopic observations. The description
of this and other issues in detail, and the data processing decisions of the authors of the catalog is
given in (Laigle et al. [6] [Section 3.2]). In the COSMOS2015 catalog, the observational selection effects
(such as K-corrections, evolution effects, types of continuous spectra of galaxies and much more) have
already been taken into account. Thus, we consider the catalog as a fair galaxy sample.

Figure 1 shows the angular distribution of 25,750 galaxies in the COSMOS2015 catalogue in a
slice with thickness of ∆z = 0.2 at z = 1.0. Each imaged galaxy has 1σ uncertainty σ(z) < 10%.
We can see the inhomogeneity of this distribution. The contrast between the medium pixels and the
maximum pixels reaches a factor 3. The analysis of similar slices was performed in Chiang et al. [20].
Circular empty regions are a result of masking stars. Stars in the field greatly complicate the
construction of 3D maps of galaxies, but does not affect the radial distribution along the line of
sight on large scales (in redshift bins).

In the next section, we describe the method we used to analyze the LSSU by radial fluctuations of
the number of galaxies along the line of sight.

5 https://www.researchgate.net/publication/258555988_Hyperz_Photometric_Redshift_Code
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Figure 1. The projection on the sky of 25,750 galaxies from the COSMOS2015 catalogue in the range
1.0 < z < 1.2 with the error σ(z) < 10%. The left angular map shows galaxies as points. The right
angular map is gaussian interpolation in 36 × 42 pixels (each of which is equal to 2 squared minutes)
plotted by using the matplotlib.pyplot library. The color palette shows the galaxy count in one pixel.

3. The Method for Line-of-Sight Analysis of the LSSU in Spatial Bins

3.1. Spatial Distribution of Galaxies

According to the SCM, fluctuations in the large-scale distribution of galaxies could be
approximated as a Gaussian process. Therefore, we assume that the histogram of the number of
galaxies in spatial bins is described by a smooth function with a limited variance and an expected
value (or average value) at each point. Moreover, this function starts to grow as ∼RD, where R is the
radius of probe sphere, and D is a certain density characteristic associated with the spatial correlation
function of matter density. The quantity D can be also called the fractal dimension, assuming that the
large-scale distribution of matter is naturally-hierarchical one created by the gravity influence [3]).

According to the N-body simulations in the evolutionary theory of galaxies formation frameworks,
the average number of galaxies has a maximum at z ∼ 1, but their mass and luminosity are less than
at z = 0 [5]. In other words, the detection probability of a massive and bright (detectable) galaxy is a
bit lower at z ∼ 1 than at smaller redshifts. At large redshifts z > 2 the number of galaxies and their
mass rapidly decrease. This result can be verified by the query interface on CosmoSim website6 by
the MDPL2 catalogs [5]. Apparently, this is because small galaxies at z ∼ 1 are being continuously
merged by the influence of gravity and other evolution processes, forming more massive ones at z = 0.
We also note that counts of simulated galaxies is a complicated issue and highly dependent on their
detectability and detection methods. So, the work by Graziani et al. [21] shows how a smooth accretion
can create MW-like galaxies at z = 0 in the overdense environment.

3.2. Radial Histogram of the Number of Galaxies

Deep surveys of galaxies are narrow-angle conical sections of the global spatial distribution of
galaxies. The radial distribution of the number of galaxies N1(z) is given by the equation

dN(z, dz) = N1(z)dz , (1)

where dN is the number of galaxies in redshift range from z to z + dz (linear density). We consider the
dependence N(z) as the histogram ∆N/∆z. The number of galaxies ∆N(z, ∆z) counted in a spherical
shell with thickness of ∆z such that

6 https://www.cosmosim.org

https://www.cosmosim.org
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∆N(z, ∆z) = N(z)∆z . (2)

In other words, the N(z) distribution is an observable approximation of the N1(z) distribution.
Thus, the distribution N(z) can be built in redshift bins with a step of ∆z. The value ∆N(z, ∆z) is

the number of galaxies in a spherical shell (z, z + ∆z). We conclude that with a reasonable choice of
the parameter ∆z, the observed histogram ∆N/∆z corresponds to the real radial distribution of the
number of galaxies N(z). In our case, the reasonable choice of the parameter ∆z is bin ∆z = 0.1.

3.3. The Approximations of Homogeneous Distribution

We approximate the homogeneous radial distribution of the number of galaxies with the
least-squares method (LSM). Since the studied distribution has a high noise level (including the
cosmic variance) and possible unknown systematic effects, the LSM via theoretical function may give
an inaccurate result depending on the sample geometry. Therefore, the further introduced empirical
functions as an alternative that can give a better approximation in the least-squares sense.

In the SCM frameworks, the distribution of galaxies N(z) is approximated by a power law [22]

∆Nmodel(z, ∆z) = A

(
za + zab

zb + C

)
∆z , (3)

where Nmodel(z, ∆z) is the number of galaxies in the redshift bin (z, z + ∆z). The formula has three
free parameters for the LSM: a, b, and C.

We also used the empirical approximation function suggested in the works by Shirokov et al. [9],
Massey et al. [15], Lovyagin [23]

∆Nemp1(z, ∆z) = Azγe(−z/zc)α
∆z , (4)

where the free parameters γ, α, and zc can be found by the LSM, and the dependent factor A is the
normalization constant. The normalization constant is chosen such that the integral of function N(z) is
equal to the total number of galaxies N,

∫ ∞

0
N(z)dz =

∫ ∞

0
Azγexp

(
−
(

z
zc

)α)
dz =

Azγ+1
c Γ( γ+1

α )

α
= N , (5)

where Γ(x) is the Euler’s complete gamma function. However, factor A cannot be calculated directly
from the formula (5) due to the high noise level. Therefore, accordingly to Lovyagin [23], it is necessary
to search for it in the range from A−

√
A to A +

√
A.

In addition, we considered a particular case of the function (4) for α = 1 and new labels for
the parameters,

∆Nemp2(z, ∆z) = Azae−bz∆z , (6)

to estimate the difference in the sum of LSM residuals between the three-parameter and
two-parameter functions.

We searched for the coefficients using scipy library and leastsq function, which has two
parameters: initial values of the parameters (input) and the sum of LSM residuals (output).
A parametric vector (104, 1, 1, 1), where the value 104 corresponds to parameter A in all approximation
Formulas (3)–(6), was taken as a zero approximation for the parameters of all functions. We call the
approximation ∆Nmodel as the theoretical one and the approximations ∆Nemp1 and ∆Nemp2 as the
empirical ones. Since our analysis is based on the clear mathematical approach without an accurate
physical interpretation of the approximation parameters, we will use quantities ∆Napprox1, ∆Napprox2,
and ∆Napprox3 instead of ∆Nmodel, ∆Nemp1, and ∆Nemp2.
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3.4. The Fluctuation Amplitudes

After finding the best fitting parameters, we can detect inhomogeneities in the radial histogram
of the observed number of galaxies. Fluctuations of physical quantities are the deviations of these
quantities from their mean value, caused by random processes. The variance of fluctuations can
be found in the plot of relative fluctuations, which we call the fluctuation pattern. We consider a
fluctuation in each redshift bin δ(z, ∆z) as follows

δ(z, ∆z) = (∆Nobs − ∆Napprox)/∆Napprox , (7)

where ∆Nobs is the observed number of galaxies in the bin, and ∆Napprox is the theoretically expected
number of galaxies in the bin that is equal to the integral under the approximation function in the
range (z, z + ∆z). The quantity ∆Napprox has the physical sense of the fluctuation mean and depends
on the quality of the LSM approximation as well as the approximation formula.

One can introduce an index i denoting the ordinal number of the bin for the ∆N and δ values.
Thus, δi is a relative difference between the observed number of galaxies and the theoretically expected
one derived by the chosen approximation function of homogeneous distribution of galaxies in the i-bin.

We take the sequence of fluctuations δi only with either positive or negative values as a criterion
for detecting structure in the fluctuation pattern. So, we can introduce a new index j as the ordinal
number of the detected structure. We denote the middle of the first bin of each such sequence as zstart

and the middle of the last bin as zfinal. Each j-structure has the final bin, which is the start bin for
j + 1-structure except for the last one. We denote all such transition bins as j-bins. The last structure
with the index j = m + 1 has zfinal ≈ zmax, where zmax is the size of galaxy sample. We exclude this
structure from analysis. Thus, we detect m structures that we now consider as a new random process
of candidates for large-scale structures of galaxies.

We introduce quantity δj as the average value over all fluctuations δi of j-structure by the equation

δj = ∑
i∈j

δi/n , (8)

where n is the number of i-bins inside j-structure. In this paper, we consider structures with n > 2.
This leads to the fact that the redshift size of detectable structures is greater than ∆z = 0.2 in redshift
radial space. Further, we calculate an unbiased estimate of the variance of observed fluctuations of the
number of galaxies s2

j and a variance of the sample mean σ̂2
δj

for each structure by the equations ([24],
p. 670, Equations (2)–(8) and (19)).

s2
j = ∑

i∈j
(δi − δj)

2/(n− 1), (9)

σ̂2
δj
=

s2
j

n
, (10)

where n is the number of i-bins inside j-structure. From now on, we will use designations σ instead of σ̂

as estimate of variance and σobs instead of |δj| as the mean value of observed fluctuations of j-structure.
The mean value of observed fluctuations over all structures σmean can be found as follows

σmean = σobs =
m

∑
j=1

|δj|
m

=
m

∑
j=1

σobs
m

, (11)

where m is the number of detected j-structures.
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We can obtain an error of the mean value of observed fluctuations over all structures σσmean ,
taking into account the Poisson noise, by the formula

σ2
σmean = σ2

σobs
+

(σP)
2

m
, (12)

where σσobs is the standard deviation of σmean, obtained similarly to σσobs by Equations (9) and (10),
σP is the average Poisson noise over all structures, and m is the number of detected j-structures.
Such approach to Poisson errors impairs the estimate of the mean error of the observed cosmic
variance, but allows one to detect possible structures in a sample with a signal-to-noise ratio less than
unity (see, for example, Figures 6 and 7 from Shirokov et al. [9]). We can do this because the amplitude
of the Poisson errors varies weakly within a single sample of galaxies with a factor of about 2–3.

We rename σobs as an amplitude of fluctuations of the observed number of galaxies or just the
fluctuation amplitude in the context of one structure and σmean as an average fluctuation amplitude
over all detected structures in the context of the galaxy sample.

3.5. Comparison with the SCM Predictions

According to the ΛCDM model, the theoretical cosmic variance of the fluctuations in the density
of matter σ2 for each redshift bin (z, z + ∆z) is equal to the sum of two variances,

σ2(z, ∆z) = σ2
gal + σ2

p , (13)

where σ2
p is the classical Poisson noise, and σ2

gal is the variance calculated by the formula

σ2
gal(V) =

1
(1 + z)V2

∫
V

dV1

∫
V

dV2ξgal(|r1 − r2|) , (14)

where V = V(z, ∆z) is the integration volume, ξ(|r1 − r2|) is the spatial two-point correlation function
of matter density, and the factor 1/(1 + z) takes into account the linear growth over time of the
fluctuations of LSSU [7]. In fact, this formula corresponds to the complete correlation function of matter
(visible and dark). However, within the SCM frameworks, the one is derived only for dark matter,
which is associated with the visible matter via the hypothesis of galaxy bias [4]. Various parameters
of galaxies should be taken into account in order to better match the theory of dark matter with
observations of baryonic matter [4].

The variance of density fluctuations of dark matter is given by Equations (10) and (12) from
Moster et al. [4] or by the formula

σdm(z, ∆z) =
σa

zβ + σb

√
0.2
∆z

, (15)

where parameters (a, b, and β) are related to the angular dimensions of the COSMOS field and are
equal to (0.069, 0.234, and 0.834), respectively [4].

The galaxy bias has theoretical and observed values, which may differ from each other.
For example, the accounting for the stellar mass of visible galaxies reduces the bias difference
(as difference between theoretical and observed values) with the factor of 2–3 [9]. Both values are
defined as a ratio of the correlation function of visible matter to the one of dark matter. The ratio
of “visible variance” to “dark variance” can be used as a calculable approximation of galaxy bias,
b2(z, m?, ...) = ξgal/ξdm ≈ σ2

gal/σ2
dm, which can be estimated from observations (with adding the

“obs” prefix) and corrected for Poisson noise [9]. Galaxy bias is a complicated function that depends on
a large number of parameters and redshift effects. If the observed function of galaxy bias is coincided
with the theoretical one, bobs(z)/b(z, m?, ...) ≈ 1, then the bias hypothesis is confirmed.
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In this work, we calculate only the observed bias value bobs(z). The average bias bmean (as the
output method’s parameter) demonstrates the effect of difference between the observed variance of
visible matter and theoretical variance of dark matter in the galaxy sample. We calculate the average
bias value over structures as follows

bmean = b =
∑ bj

m
, (16)

where m is the number of structures detected in the fluctuation pattern. We take an error for bj as the
relative error of the value σobs and its error, respectively. The estimate of error σbmean is the standard
deviation of bmean.

According to the Formula (13), it is necessary to take into account the Poisson noise (σ2
P = 1/∆N)

when we calculate the observed bias value. The noise may be too high on poor samples
(with ∆N < 104). A poor sample may give a small fluctuation amplitude δobs(z, ∆z) relatively
to a large Poisson background σP that will lead to a negative observed variance σobs. In this paper,
we eliminate such structures.

3.6. Alternative Approach

The observed distribution of galaxies is consistent with the power-law nature of the correlation
function of matter density ξpl(r) = (r0/r)γ (e.g., Shirokov et al. [9], Tekhanovich and Baryshev [25]).
Using Equation (14), one can calculate a power-law estimate of the cosmic variance (σgal = σpl) with
the parameters γ = 1, r0 = 5 from Shirokov et al. [9] as follows

σ2
pl(V, r0, γ) =

1
(1 + z)V2

∫
V

dV1

∫
V

dV2ξ(|r1 − r2|, r0, γ) , (17)

and compare its with the observed variance corrected for Poisson noise by introducing the power-law
bias function bpl(z) = σobs/σpl. The consistency between the power-law and observed bias functions,
bobs(z)/bpl(z) ≈ 1, will show the efficiency of applying the power-law correlation function (PLCF)
without taking into account the influence of different selection effects for estimating the observed
cosmic variance. This conclusion may be important for future testing of new cosmological models.
We also get the average value of the power-law bias function bpl as the output method’s parameter
and its standard deviation σbpl

.

3.7. Calculating the Fluctuation Scales

The metric distance in terms of redshift in the SCM is given by the formula

r(z)Mpc =
c

H0

z∫
0

(
Ωv + Ω3

m(1 + z)
)− 1

2 dz , (18)

where c is the speed of light, H0 = 70 km s−1 Mpc−1 is the Hubble constant, the vacuum density
(dark energy) Ωv = 0.7, the matter density (visible and dark) Ωm = 1 − Ωv = 0.3, and z is the
source redshift. Since we are working in the co-moving space we will use the metric distance, not the
luminosity distance.

Here, we introduce a more stringent criterion to estimate the linear scales of large-scale structures
than it was used in the papers by Nabokov and Baryshev [7], Shirokov et al. [9]. As it is noted above,
we calculate the structure borders zstart and zfinish as the middle of j-bins, where the fluctuation function
δi changes a sign. The structure size Rj is given by the equation

Rj = ∆r(z, ∆z) = r(zfinish
j )− r(zstart

j−1 ), j ∈ (1, 2, ...) , (19)
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where the values zj and zj+1 correspond to the midpoints of the j-bins (zstart
0 = 0). We define the

upper and lower errors of the structure size as half of the corresponding metric sizes of the start and
final j-bins.

Since we are interested in average values of the target variables for a galaxy sample, we also
calculate the average size of the detected structures Rmean = Rj. The errors of Rmean take into account
both the root-mean-square deviation from the mean, and the half sizes of the boundary bins by
the formula

σ2
Rmean

= σ2
Rj
+ (σRj)

2 , (20)

where σRj
is the standard deviation of Rmean, and σRj is the mean of upper (or, respectively, lower)

Rj errors.
According to the SCM, the correlation function of spatial density of dark matter is equal

to zero at the scale of r0 = 174 Mpc, ξgal(174 Mpc) = 0, without reference to the galaxy bias
value [26]. The bins with sizes exceeding this value can be considered as independent and requiring
a sign change of the observed fluctuations δi = δobs(z, ∆z) on a scale about the double one
2r0 ∼ 350 Mpc. Modern cosmological N-body simulations, such as the Horizon Run 2 simulation,
predict inhomogeneities with a size of about 300 Mpc for the brightest galaxies, which are modelled
over dark matter halos [27]. The BLUETIDES simulation, in which galaxies are modeled by simulating
gas, shows the clustering galaxies at high redshifts with the galaxy bias b ≈ 8 [28].

A comparison of metric distances r(z) (comoving space) and luminosity distances dL = (1+ z)r(z)
(proper space) is shown in Table 1 for redshift bins ∆z = 0.1, which are denoted by the midpoints z.
The difference between the corresponding distances caused by the factor (1 + z).

Table 1. The metric size of bins ∆z = 0.1 in Mpc at various redshifts. ∆r(z) is the size in the moment
t = t(z) (comoving distances), and ∆dL is the size in the moment t = t(0) (proper distances).

z 0.05 0.95 1.45 1.55 1.65 1.95 2.95 3.95 4.95 5.95

∆r(z, ∆z), Mpc 407 244 184 175 166 144 95 68 52 41
∆dL(z, ∆z), Mpc 448 784 866 879 890 920 989 1032 1063 1087

3.8. Applications of the Method

The methods of LSSU analysis should be maximally reliable and robust for any geometries.
This way, for example, the sample depth should not significantly affect the identified structures, as we
show in Appendix A for two disjoint samples of the COSMOS and UltraVISTA galaxies from the
COSMOS2015 catalog. Besides, though we did not require a correlation between two disjoint samples,
one can see a correlation for several structures at small redshifts that indicates their presence.

It is possible to consider density fluctuations of matter in metric space (with and without taking
into account the temporal effects) instead of redshift space. In such a configuration, the uniform radial
density distribution grows as a power-law function of the radius and, after reaching a maximum,
also falls as one (with a negative exponent). However, for the transition from redshifts to metric
distances, it is necessary to accept a certain cosmological model. We get different distances and cosmic
variance in different cosmological models. It means that we need to calculate the fluctuation tables in a
grid of models with a search for the optimum cosmological parameters. An illustration of a metric
radial histogram in the ΛCDM model frameworks with a uniform approximation for the UltraVISTA
subsample is given in Appendix B.

4. Results

4.1. Entire Sample of the COSMOS2015 Catalogue

Figure 2 (left) shows the radial histogram of the number of galaxies in the COSMOS2015 catalogue
(without additional sampling) at all redshifts 0 < z < 6 for 518,404 galaxies. The LSM approximations
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are shown by dashed lines: red corresponds to the theoretical Formula (3), green to the empirical
Formula (4), orange to its simplified form of Equation (6). The legend presents approximation formulas
with coefficient values, and the root of the residual sum. The fluctuation pattern is shown in the right
panel of Figure 2. Our LSM analysis gave a coincidence of the green and orange curves with high
accuracy so that they can be considered as equivalent ones.

On the one hand, as it can be seen in the figure, the curves of the empirical cases coincide.
This implies that the Formula (6) is successfully simplified. However, the presence of two parameters
in the exponent leads to the uncertainty of determining the coefficients, which can result in
the nonphysical large values of parameters. On the other hand, a power-law theoretical curve
corresponding to Formula (3) has a similar behavior at small redshifts, but describes the histogram at
high redshifts poorly.

At small redshifts, z < 1.5, both approximations give a mutually consistent result with an average
fluctuation amplitude of δ ≈ 10 % and an average structure scale of ∆R ≈ 700 Mpc. At intermediate
redshifts, 1.5 < z < 3.5, a difference between the empirical and theoretical approximations is increasing.
At large redshifts, 3.5 < z < 6, the difference grows rapidly, as well as a difference between the
histogram and the approximations themselves that indicates an unsuccessful approximation of the
histogram at these scales. This effect can be related to a lack of statistics at the highest redshifts or with
unknown redshift systematics.

Nevertheless, in the fluctuation pattern, the regions of deficiency and excess of galaxies with
a scale of 3–5 redshift bins are clearly visible. It can be noted that the fluctuations δi of the
empirical curves are more stable with respect to redshift around δ ∼ 10 % in the range 0 < z < 5.
That emphasises the importance of choosing the distribution maximum and a successful approximation
of the distribution tail.

The fluctuation pattern, obtained from the analysis of the entire COSMOS2015 catalog, is similar
to periodic density oscillations, which can be also seen in the deep-UltraVISTA sample in Appendix B
(in metric space).

Figure 2. (left) Histogram of the radial distribution of photometric redshifts from the COSMOS2015
catalogue in the range 0 < z < 6 for 518,404 galaxies within bins ∆z = 0.1, and the approximations.
Dotted lines mark the least-squares fittings. (right) The fluctuation pattern. Dotted lines mark Poisson
noise 5σ.

4.2. The w-Sampling

To account for the photometric redshift uncertainties, we introduce the sampling parameter w,
which is equal to the difference of one and the relative error in determining z,

wi = 1− σi(z)
zi

, i = 1, 2, ... , N , (21)

where σi(z) is 1σ uncertainty of each redshift zi and N = 518, 404. Based on the choice of the parameter
w, we considered four samples from the COSMOS2015 catalogue:
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• any w (no sampling), i.e., the entire sample;
• w > 0.7 (weak sampling), i.e., galaxies with relative error σ(z) < 30% at significance level of 1σ or

σ(z) < 90% at significance level of 3σ;
• with w > 0.9 (medium sampling), i.e., galaxies with relative error σ(z) < 10% at significance level

of 1σ or σ(z) < 30% at significance level of 3σ;
• with w > 0.97 (strong sampling), i.e., galaxies with relative error σ(z) < 3% at significance level

of 1σ or σ(z) < 9% at significance level of 3σ.

The high-resolution histograms of the radial distribution of the COSMOS2015 galaxies for the
selection parameter w are shown in Figure 3. The left panel demonstrates how the selection by the
quality of photometric redshifts reduces the number of galaxies and reveals the large-scale structures,
for example, at 2 < z < 4 in redshift space. The right panel is the left plot but in metric space,
where distance units are in Mpc. We can see various structures (on Gpc scales) as a sum of the physics
of the LSSU and observational selection effects.

Figure 3. High resolution differential histograms of radial distribution of galaxies from the
COSMOS2015 catalogue in redshift space (left) with ∆z = 0.03, and metric space (right) with
∆r(z) = 50 Mpc for the various values of the sampling parameter w.

Figure 4 (left panels) shows the histograms of the radial distribution of galaxies for sampling
parameters w = 0.7 and w = 0.9 and demonstrates that reducing the sample based on the quality
of photometric redshift helps to reveal the LSSU, for example, at 2 < z < 4 with scale of about Gpc.
In this way, the method can be also applied not only in the redshift space, but also in the metric space
(see Appendix B).

For weak sampling (w = 0.7), the fluctuation pattern differs slightly from the entire sample,
and the number of galaxies is about 75% of the total number. The empirical approximation describes
the observed histogram better up to z ≈ 5, while the theoretical curve is successful only up to z ≈ 3.

For strong sampling (w = 0.9), the large-scale structures are seen more clearly, and the number
of galaxies is about 48% of the total number. The empirical approximation describes the observed
histogram poorly, while the theoretical curve has the smallest sum of residual squares. In this case,
the region of galaxy deficiency (void) in the redshift range 2 < z < 2.5, and the region of galaxy excess
(supercluster) in the range 2.5 < z < 3.5 are clearly visible.

It is important to note that for samples with more strictly selected photometric redshifts,
the empirical Formula (6) predicts an underdensity at large redshifts, while the theoretical Formula (3)
gives the best result.

We present the structure parameters detected by the method from the corresponding fluctuation
patterns for the four values of w (w = “all” means the case of no sampling) in Table 2 for empirical
approximations of homogeneity (that are coincided), and in Table 3 for the theoretical curve.
The description of structure table contents in detail is given in Section 3 and Appendix A.

The structure tables indicate the existence of physical large-scale structures in Gpc scales.
The largest structures found in the COSMOS2015 catalogue are detected at redshifts: 2 . z . 2.5
(void), and 2.5 . z . 3.5 (cluster).
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The main output of the tables is the characteristic size of structures Rmean and their average
characteristic amplitude σmean. We obtain the galaxy bias functions b(z) and the average bias bmean

through comparison of the predicted cosmic variances in different models with the observations.
These parameters are convenient for fast comparison of different samples of galaxies.

The structure tables show that the observed cosmic variance can be described by the PLCF of
density ξ(r) = (r0/r)γ with parameters γ = 1.0, r0 = 5 at all redshifts [7,9,25]. The PLCF bias bpl is
greater than the dark matter bias bdm in factor about 2–3.

Figure 4. Histograms of radial distribution of the photometric redshifts and corresponding fluctuation
patterns for samples with the parameter w = 0.7 for 391,098 galaxies (top), and w = 0.9 for
248,183 galaxies (bottom) with a bin ∆z = 0.1. The dashed lines indicate the least squares fit (left) and
Poisson noise 5σ (right).

Table 2. Tables of structures for w-samples from the COSMOS2015 catalogue for a bin ∆z = 0.1 with
zmax = 6 and the various σz selection. The approximation is by empirical Formula (6). In the last
string there are the means of corresponding values (by all structures): mean of redshifts zmean, mean of
structure sizes in Mpc Rmean, mean of Poisson noise level 1σP, mean of observed cosmic variance σmean,
mean of dark matter variance σdm, mean of dark matter bias bdm, mean of Peebles correlation function
variance σpl and its bias bpl (see details in the text).

Sample j n z ∆r(z), Mpc σp σobs σdm bdm σpl bpl

COSMOS2015 1 3 0.15 ± 0.10 774+203
−183 0.005 0.131 ± 0.064 0.188 0.7 ± 0.3 0.199 0.7 ± 0.3

zmax = 6 2 3 0.35 ± 0.10 694+183
−163 0.004 0.065 ± 0.077 0.132 0.5 ± 0.6 0.179 0.4 ± 0.4

w = all 3 3 0.55 ± 0.10 618+163
−145 0.004 0.044 ± 0.050 0.104 0.4 ± 0.5 0.168 0.3 ± 0.3

4 5 0.85 ± 0.20 1035+145
−114 0.003 0.058 ± 0.049 0.097 0.6 ± 0.5 0.188 0.3 ± 0.3

5 8 1.50 ± 0.35 1265+108
−75 0.003 0.072 ± 0.028 0.073 1.0 ± 0.4 0.187 0.4 ± 0.2

6 4 2.00 ± 0.15 421+75
−65 0.004 0.072 ± 0.050 0.050 1.4 ± 1.0 0.151 0.5 ± 0.3

7 5 2.35 ± 0.20 482+65
−55 0.005 0.058 ± 0.022 0.048 1.2 ± 0.5 0.156 0.4 ± 0.1

8 12 3.10 ± 0.55 1000+55
−37 0.004 0.162 ± 0.033 0.045 3.6 ± 0.7 0.168 1.0 ± 0.2

9 5 3.95 ± 0.20 273+36
−32 0.010 0.059 ± 0.039 0.032 1.8 ± 1.2 0.140 0.4 ± 0.3

10 4 4.40 ± 0.15 180+31
−28 0.014 0.050 ± 0.055 0.028 1.7 ± 1.9 0.129 0.4 ± 0.4

11 7 4.85 ± 0.30 321+28
−24 0.013 0.126 ± 0.046 0.030 4.2 ± 1.5 0.145 0.9 ± 0.3

means: 2.19 ± 0.22 642+148
−137 0.006 0.082 ± 0.012 0.075 1.6 ± 0.4 0.164 0.5 ± 0.1
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Table 2. Cont.

Sample j n z ∆r(z), Mpc σp σobs σdm bdm σpl bpl

COSMOS2015 1 3 0.15 ± 0.10 774+203
−183 0.008 0.195 ± 0.035 0.188 1.0 ± 0.2 0.199 1.0 ± 0.2

zmax = 6 2 3 0.35 ± 0.10 694+183
−163 0.005 0.039 ± 0.116 0.132 0.3 ± 0.9 0.179 0.2 ± 0.6

w = 0.7 3 3 0.55 ± 0.10 618+163
−145 0.005 0.101 ± 0.080 0.104 1.0 ± 0.8 0.168 0.6 ± 0.5

4 5 0.85 ± 0.20 1035+145
−114 0.003 0.135 ± 0.069 0.097 1.4 ± 0.7 0.188 0.7 ± 0.4

5 8 1.50 ± 0.35 1265+108
−75 0.003 0.110 ± 0.036 0.073 1.5 ± 0.5 0.186 0.6 ± 0.2

6 4 2.00 ± 0.15 421+75
−65 0.005 0.078 ± 0.055 0.050 1.5 ± 1.1 0.151 0.5 ± 0.4

7 5 2.35 ± 0.20 482+65
−55 0.005 0.042 ± 0.022 0.048 0.9 ± 0.5 0.156 0.3 ± 0.1

8 12 3.10 ± 0.55 1000+55
−37 0.005 0.189 ± 0.035 0.045 4.2 ± 0.8 0.168 1.1 ± 0.2

9 3 3.75 ± 0.10 145+37
−35 0.013 0.010 ± 0.017 0.028 0.0 ± 0.0 0.118 0.0 ± 0.0

10 4 4.00 ± 0.15 202+35
−32 0.013 0.092 ± 0.059 0.030 3.0 ± 1.9 0.131 0.7 ± 0.4

11 7 4.55 ± 0.30 347+31
−26 0.014 0.116 ± 0.044 0.031 3.7 ± 1.4 0.147 0.8 ± 0.3

12 5 5.25 ± 0.20 193+25
−23 0.025 0.269 ± 0.164 0.026 10.3 ± 6.3 0.134 2.0 ± 1.2

means: 2.37 ± 0.21 598+144
−134 0.009 0.115 ± 0.022 0.071 2.6 ± 0.8 0.160 0.8 ± 0.2

COSMOS2015 1 3 0.15 ± 0.10 774+203
−183 0.010 0.260 ± 0.108 0.188 1.4 ± 0.6 0.199 1.3 ± 0.5

zmax = 6 2 4 0.50 ± 0.15 955+173
−145 0.005 0.054 ± 0.086 0.124 0.4 ± 0.7 0.192 0.3 ± 0.5

w = 0.9 3 5 0.85 ± 0.20 1035+145
−114 0.004 0.118 ± 0.080 0.097 1.2 ± 0.8 0.188 0.6 ± 0.4

4 3 1.15 ± 0.10 434+114
−102 0.005 0.011 ± 0.073 0.066 0.2 ± 1.0 0.149 0.1 ± 0.4

5 14 1.90 ± 0.65 1958+102
−55 0.003 0.196 ± 0.043 0.066 3.0 ± 0.7 0.189 1.0 ± 0.2

means: 0.91 ± 0.24 1031+302
−287 0.005 0.128 ± 0.046 0.108 1.2 ± 0.5 0.183 0.7 ± 0.2

COSMOS2015 1 3 0.35 ± 0.10 694+183
−163 0.011 0.290 ± 0.173 0.132 2.2 ± 1.3 0.179 1.6 ± 1.0

zmax = 6 2 5 0.65 ± 0.20 1166+163
−129 0.006 0.089 ± 0.055 0.114 0.8 ± 0.5 0.196 0.5 ± 0.3

w = 0.97 3 3 0.95 ± 0.10 487+129
−114 0.007 0.120 ± 0.229 0.075 1.6 ± 3.1 0.153 0.8 ± 1.5

4 3 1.35 ± 0.10 388+102
92 0.010 0.041 ± 0.135 0.059 0.7 ± 2.2 0.144 0.3 ± 0.9

5 9 1.85 ± 0.40 1216+92
−62 0.010 0.231 ± 0.074 0.064 3.6 ± 1.2 0.182 1.3 ± 0.4

means: 1.03 ± 0.18 790+227
−212 0.009 0.154 ± 0.046 0.089 1.8 ± 0.5 0.171 0.9 ± 0.3

Table 3. Tables of structures for w-samples from the COSMOS2015 catalogue for a bin ∆z = 0.1 with
zmax = 6 and the various σz selection. The approximation is by theoretical formula (3). In the last
string there are the means of corresponding values (by all structures): mean of redshifts zmean, mean of
structure sizes in Mpc Rmean, mean of Poisson noise level 1σP, mean of observed cosmic variance σmean,
mean of dark matter variance σdm, mean of dark matter bias bdm, mean of Peebles correlation function
variance σpl and its bias bpl (see details in the text).

Sample j n z ∆r(z), Mpc σp σobs σdm bdm σpl bpl

COSMOS2015 1 3 0.15 ± 0.10 774+203
−183 0.005 0.169 ± 0.133 0.188 0.9 ± 0.7 0.199 0.9 ± 0.7

zmax = 6 2 3 0.35 ± 0.10 694+183
−163 0.004 0.110 ± 0.084 0.132 0.8 ± 0.6 0.179 0.6 ± 0.5

w = all 3 4 0.60 ± 0.15 900+163
−137 0.003 0.038 ± 0.038 0.112 0.3 ± 0.3 0.186 0.2 ± 0.2

4 4 0.90 ± 0.15 753+137
−114 0.003 0.023 ± 0.057 0.087 0.3 ± 0.6 0.174 0.1 ± 0.3

5 7 1.35 ± 0.30 1172+114
−83 0.003 0.076 ± 0.027 0.077 1.0 ± 0.4 0.186 0.4 ± 0.1

6 8 2.00 ± 0.35 989+83
−60 0.003 0.114 ± 0.041 0.059 1.9 ± 0.7 0.176 0.6 ± 0.2

7 7 2.75 ± 0.30 616+57
−45 0.005 0.134 ± 0.048 0.046 2.9 ± 1.1 0.161 0.8 ± 0.3

8 6 3.30 ± 0.25 420+45
−38 0.006 0.082 ± 0.026 0.039 2.1 ± 0.7 0.151 0.5 ± 0.2

means: 1.42 ± 0.21 790+155
−137 0.004 0.093 ± 0.017 0.092 1.3 ± 0.3 0.177 0.5 ± 0.1

COSMOS2015 1 3 0.15 ± 0.10 774+203
−183 0.007 0.367 ± 0.129 0.188 2.0 ± 0.7 0.199 1.8 ± 0.7

zmax = 6 2 3 0.35 ± 0.10 694+183
−163 0.005 0.015 ± 0.134 0.132 0.1 ± 1.0 0.179 0.1 ± 0.7

w = 0.7 3 3 0.55 ± 0.10 618+163
−145 0.005 0.083 ± 0.066 0.104 0.8 ± 0.6 0.168 0.5 ± 0.4

4 5 0.85 ± 0.20 1035+145
−114 0.003 0.067 ± 0.060 0.097 0.7 ± 0.6 0.188 0.4 ± 0.3

5 8 1.40 ± 0.35 1335+114
−79 0.003 0.097 ± 0.032 0.076 1.3 ± 0.4 0.189 0.5 ± 0.2

6 14 2.40 ± 0.65 1561+79
−45 0.003 0.196 ± 0.039 0.055 3.5 ± 0.7 0.180 1.1 ± 0.2

7 6 3.30 ± 0.25 420+45
−38 0.007 0.044 ± 0.024 0.039 1.1 ± 0.6 0.151 0.3 ± 0.2

means: 1.29 ± 0.25 920+211
−195 0.005 0.124 ± 0.046 0.099 1.4 ± 0.4 0.179 0.7 ± 0.2
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Table 3. Cont.

Sample j n z ∆r(z), Mpc σp σobs σdm bdm σpl bpl

COSMOS2015 1 3 0.15 ± 0.10 774+203
−183 0.010 0.360 ± 0.203 0.188 1.9 ± 1.1 0.199 1.8 ± 1.0

zmax = 6 2 3 0.35 ± 0.10 694+183
−163 0.007 0.066 ± 0.109 0.132 0.5 ± 0.8 0.179 0.4 ± 0.6

w = 0.9 3 3 0.55 ± 0.10 618+163
−145 0.006 0.029 ± 0.071 0.104 0.3 ± 0.7 0.168 0.2 ± 0.4

4 3 1.05 ± 0.10 459+121
−108 0.005 0.001 ± 0.109 0.070 0.0 ± 0.0 0.151 0.0 ± 0.0

5 4 1.50 ± 0.15 538+97
−83 0.006 0.059 ± 0.053 0.062 1.0 ± 0.9 0.160 0.4 ± 0.3

6 4 1.80 ± 0.15 463+83
−71 0.007 0.024 ± 0.043 0.054 0.4 ± 0.8 0.154 0.2 ± 0.3

7 7 2.25 ± 0.30 756+71
−55 0.006 0.205 ± 0.065 0.053 3.9 ± 1.2 0.168 1.2 ± 0.4

8 12 3.10 ± 0.55 1000+55
−374 0.006 0.483 ± 0.076 0.045 10.8 ± 1.7 0.168 2.9 ± 0.5

means: 1.34 ± 0.19 663+146
−130 0.006 0.153 ± 0.064 0.089 2.7 ± 1.3 0.168 1.0 ± 0.4

COSMOS2015 1 3 0.55 ± 0.10 618+163
−145 0.008 0.005 ± 0.066 0.104 0.0 ± 0.0 0.168 0.0 ± 0.0

zmax = 6 2 3 0.75 ± 0.10 548+145
−129 0.007 0.057 ± 0.067 0.087 0.7 ± 0.8 0.160 0.4 ± 0.4

w = 0.97 3 4 1.20 ± 0.15 633+114
−97 0.008 0.063 ± 0.139 0.072 0.9 ± 1.9 0.166 0.4 ± 0.8

4 13 2.05 ± 0.60 1678+92
−53 0.008 0.338 ± 0.080 0.062 5.5 ± 1.3 0.185 1.8 ± 0.4

5 25 3.85 ± 1.20 1754+53
−25 0.014 1.104 ± 0.175 0.040 27.3 ± 4.3 0.170 6.5 ± 1.0

6 4 5.20 ± 0.15 147+25
−23 0.054 0.074 ± 0.087 0.025 2.1 ± 2.4 0.126 0.4 ± 0.5

means: 2.27 ± 0.38 896+290
−282 0.017 0.273 ± 0.173 0.065 7.3 ± 4.4 0.162 1.9 ± 1.0

5. Discussion

As we note above, the galaxy bias is a complicated function that can rise with increasing redshift.
A theoretical estimate of the dark matter galaxy bias function bdm(z) for the COSMOS field calculated
by Equation (15) can be improved by taking into account the stellar mass of the COSMOS galaxies [9].
Thereby our results are consistent with the SCM predictions. Nevertheless, the presence of fluctuations
with a high value of the bias (5, 10, or 20) is a direct indication of the existence of large-scale structures
that are interesting for the LSSU study.

As we show on Figure 4 (bottom) and Figure A2 (bottom), the larger value of the sampling
parameter w leads to the increasing correlation of fluctuations between the COSMOS2015 and the
UltraVISTA+deep-UltraVISTA samples. This means that introducing additional sampling criteria for
the quality of photometric redshifts of galaxies provides a more reliable fluctuation pattern, which was
one of the goals of this work.

Comparison of the physical properties of the objects in the local Universe and at large redshifts
requires new available observational spectral bands and instruments for multimessenger ranges
(such as neutrino and gravitational waves). Observational cosmology based on multimessenger data
allows one to verify existing cosmological models as well as formulating new ones Shirokov et al. [29].
Our method can be used for the analysis of photometric catalogs towards the transient objects (such as
supernovae and gamma-ray bursts) detected by neutrino and gravitational-wave detectors.

The works by Nabokov and Baryshev [8], Lovyagin [23], Shirokov et al. [30], Park et al. [31]
emphasize the importance of the analysis of the LSSU for the development of modern cosmology,
which has become an increasingly important task in the 21st century. The spatial distribution of
galaxies reflects both the initial conditions in the early Universe and the evolution of primordial
density perturbations. The analysis of fluctuations in the radial distribution of galaxies allows one to
estimate the sizes and amplitudes of the largest structures in a given sample of galaxies.

Super-large fractal-like structures with scales of more than 100 Mpc reveal themselves both in
the spatial distribution of galaxies in the local Universe at redshifts of z . 0.1 and in the quasars
and gamma-ray bursts distributions at redshifts of z ∼ 2 [3,25,30,32–35]. The analysis of fractal
properties [3,32,36] can be used to describe the properties of the large-scale distribution of matter [25,30].

Note that in recent works there were detected several structures in the COSMOS field, which also
point to existence of large filamentary structures at z ∼ 0.73, called the COSMOS wall [10], structures
at redshifts of 0.1 < z < 1.2 [11], voids at z ∼ 2.3 [12] and massive proto-supercluster at z ∼ 2.45 [13].
The very large structure of the dark matter with a size of about 1000 Mpc was detected in the COSMOS
field by using the method of weak gravitational lensing [14,15].
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Our results demonstrated in this paper are consistent with our previous works and have
a higher quality of detecting fluctuation structure in redshift space. The positive correlation of
fluctuations between independent spectral and photometric surveys of different groups is shown in
the work Shirokov et al. [9].

6. Conclusions

We have performed the robust statistical analysis of the new photometric catalog COSMOS2015
and obtained new results, which confirm our preceding works. We have considered the radial
fluctuations of the number of galaxies along the line of sight in the photometric redshift space for the
optical part of the COSMOS2015 catalog and some of its subsamples. We have calculated the histograms
of the number of galaxies in redshift bins, constructed empirical and theoretical approximations for the
homogeneous distribution by using the LSM, and performed the comparative analysis of their quality.
We have obtained the tables of structures for each sample and for each approximation. The bin size,
∆z = 0.1, was chosen such as to maximize the spatial resolution (at a relatively low level of Poisson
noise) and minimize the grid effect for determining photometric redshifts with errors σz < 0.021(1 + z)
at high redshifts 3 < z < 6 [6].

Essential improvements in photometric redshift techniques, using the best SED fitting in the
COSMOS field imaged in a large number of filters [6] or deep learning methods [19], allow to reach a
redshift uncertainty σz = 0.007(1 + z) at small redshifts, which corresponds to a distance uncertainty
of ∼ 40 Mpc (at z ∼ 1). So, in our paper, we present the firmly observed structures at redshift z ∼ 2
with sizes l ∼ 700 Mpc, which are larger than the BAO scale lbao ∼ 100 Mpc.

We have developed Python software for the line-of-sight analysis based on works by Nabokov
and Baryshev [7,8], Shirokov et al. [9], Lovyagin [23]. Our method takes into account the integral
values within each bin for all quantities that increase the mathematical rigor and certainty of the results.
In this paper, we calculate the structure means as the target variables of the method and use algorithms
for determining errors. These features make the method more robust for comparative analysis of
different samples of galaxies.

Our analysis confirm the presence of dark matter structures from the paper by Massey et al. [14]
at small redshifts. Thus, the observations of visible matter and the observations of dark matter are
consistent. Moreover, we have obtained huge structures at high redshifts. These results are consistent
with the ΛCDM model, if the corresponding bias is taken into account.

Based on the results of the work, we can draw the following conclusions:

• The method for analyzing radial fluctuations of the number of galaxies along the line of sight
(see the last work Shirokov et al. [9]) now takes into account the integral values within each bin
for all quantities. That increases the mathematical rigor and certainty of the results. The target
variables became more robust for comparative analysis of different samples of galaxies with the
developed algorithms for error estimation. The use of logarithmic redshift bins can better take
into account the photometric errors. Moreover, the metric bin size in logarithmic scale slightly
depends on the redshift. Instead of analytical bias functions, numerical estimates of galaxy biases
can be obtained from N-body simulations of the Universe (in a grid of model parameters) or by
using the concept of model fractal catalogs, as in Shirokov et al. [30].

• For the case of the theoretical form of approximation of homogeneity in the ΛCDM frameworks,
the average standard deviation of detected structures from homogeneity is σΛCDM

mean = 0.09± 0.02,
and the average characteristic size of structures is RΛCDM

mean = 790± 150 Mpc. The maximum size
of the detected structure is Rj = 1, 754± 40 Mpc, and the minimum one is Rj = 147± 24 Mpc.

• For the case of the empirical approximation of homogeneity, the average standard deviation of
detected structures from homogeneity is σ

empiric
mean = 0.08± 0.01, and the average characteristic

size of structures is Rempiric
mean = 640± 140 Mpc. The maximum size of the detected structure is

Rj = 2, 000± 80 Mpc, and the minimum one is Rj = 145± 36 Mpc.
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• We have introduced the selection parameter w to take into account different uncertainty of
redshifts σ(z). At different values of the parameter w, we have obtained similar results.

• Our calculations show that the observed cosmic variance of radial fluctuations in the number of
galaxies can be also described by the PLCF at all redshifts [7,9,25].

The method can be also applied in future observation data of the Transient High-Energy Sky
and Early Universe Surveyor (THESEUS) space mission project [37,38] that together with optical
ground-based telescopes, e.g., GTC [39] and BTA [29], is aimed to explore the unique capabilities of
gamma-ray bursts (GRBs) for cosmology and multimessenger astrophysics. The observed distribution
of galaxies along the line of sight gives information about the inhomogeneous distribution of visible
matter in the fixed direction in the sky. Statistical analysis of a grid of such fields (towards GRB
host-galaxy) will allow one to perform a cosmic tomography of the large-scale distribution of galaxies
on the largest optically available scales. The cosmic tomography allows one to constrain precisely
cosmology as well as the galaxy structures [8,9,18,29,40].

The codes developed in Python underlying this article are available in the LSA software repository
on www.github.com, at DOI: 10.5281/zenodo.4167356.
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Abbreviations

The following abbreviations are used in this manuscript:

LSM least-squares method
LSSU large-scale structure of Universe
SCM standard cosmological model (ΛCDM)
PLCF power-law correlation function

Appendix A

The COSMOS2015 catalogue [6] also contains the UltraVISTA DR2 [41] catalogue data.
The columns FLAG_HJMCC and FLAG_DEEP that have been combined into a single UltraVISTA
sample. Further, a mutual sampling by the COSMOS and UltraVISTA galaxies have also been done.
Further, we analyzed two independent samples: the COSMOS subsample (the optical range) with
184,197 galaxies and the UltraVISTA subsample (the near-IR range) with 40,237 galaxies.

The independence of the samples as well as the coverage of different spectral ranges allows one
to conduct their comparative analysis. However, the number of UltraVISTA objects is 5 times less than
in the COSMOS so this factor should be taken into account. These samples lie in the same direction on
the celestial sphere and hence should give a correlation of density fluctuations.

The method was applied with the parameters ∆z = 0.1, zmax = (3, 6) and without w-sampling
by σ(z). The corresponding histograms of the radial distribution of galaxies with approximations
by the Formulas (3)–(6) and fluctuation patterns are shown in Figures A1 and A2. The dotted lines

7 http://cosmos.astro.caltech.edu/page/the-team
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in the fluctuation patterns (right) show the Poisson noise of level 5σP. As can be seen in the figures,
the COSMOS sample shows four distinct (exceeding the level of 5σP) structures with redshifts:
z = 0.15 ± 0.10 (void), z = 0.40 ± 0.15 (cluster), z = 1.45± 0.30 (void), and z = 2.00± 0.25
(cluster). The UltraVISTA sample gives a somewhat different picture, although there is a positive
correlation with the COSMOS sample at z . 1, and shows distinct structures at z = 2.25± 0.50 (void)
and at z = 3.65± 0.7 (cluster).

This result can be explained by the fact that in infrared observations the dust attenuation effects
are smaller than in the optical range. Thus, according to the COSMOS2015 catalog data, it can be
concluded that optical observations provide rich statistics, and therefore, are useful for the LSSU
analysis at redshifts z . 1, while infrared observations have a better quality of statistics (in the sense of
redshifts) up to z . 6.

The structure tables corresponding to Figures A1 and A2 are shown in Table A1 for zmax = 3,
and Table A2 for zmax = 6. The parameter j is the index number of structure, detected by the algorithm.
The parameter n shows the number of bins of a given structure (each structure is a sequence of bins
with only positive or only negative fluctuations). The parameter z shows the average redshift value
for the bins of each structure, and the errors can be used to restore the centers of the border bins.
The parameter ∆r(z) gives an estimate of the metric size of the structure (sequence of bins), where the
upper and lower limits correspond to the metric size of the border bins. The parameter σP is an estimate
of the Poisson noise, which is equal to the ratio of unity to the number of all galaxies in the structure.
The parameter σobs shows level of the observed cosmic variance, where the error is the standard
deviation from σobs within the structure. We also include columns for comparing observations with
the predictions of theoretical models. The parameter σdm shows the theoretical variance of the dark
matter density in the ΛCDM model frameworks. The next column contains the corresponding galaxy
bias bdm, with the errors that are proportional to the errors of the σobs.

Figure A1. Histograms of the radial distribution of the COSMOS2015 photometric redshifts and
corresponding fluctuation patterns for the disjoint 162,318 COSMOS galaxies (top) and 29,470
UltraVISTA galaxies (bottom) with a bin ∆z = 0.1 and zmax = 3 without sampling by σ(z). The dashed
lines indicate the least squares fit (left) and Poisson noise 5σ (right).
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Figure A2. Histograms of radial distribution of the COSMOS2015 photometric redshifts and the
corresponding fluctuation patterns for the disjoint COSMOS galaxies (top) and UltraVISTA galaxies
(bottom) with a bin ∆z = 0.1 and zmax = 6 without sampling by σ(z). The dashed lines indicate the
least squares fits (left) and Poisson noise 5σ (right).

Table A1. Tables of structures for disjoint the COSMOS (top) and UltraVISTA (bottom) samples from the
COSMOS2015 catalogue for a bin ∆z = 0.1 with zmax = 3 and without σz selection. The approximation
is by empirical Formula (6). In the last string there are the means of corresponding values (by all
structures): mean of redshifts zmean, mean of structure sizes in Mpc Rmean, mean of Poisson noise level
1σP, mean of observed cosmic variance σmean, mean of dark matter variance σdm, mean of dark matter
bias bdm, mean of Peebles correlation function variance σpl and its bias bpl (see details in the text).

Sample j n z ∆r(z), Mpc σp σobs σdm bdm σpl bpl

Only COSMOS 1 3 0.15 ± 0.10 774+203
−183 0.008 0.100 ± 0.063 0.188 0.5 ± 0.3 0.199 0.5 ± 0.3

zmax = 3 2 4 0.40 ± 0.15 1012+183
−154 0.006 0.063 ± 0.078 0.140 0.5 ± 0.6 0.198 0.3 ± 0.4

w = all 3 4 0.80 ± 0.15 799+145
−121 0.006 0.025 ± 0.009 0.094 0.3 ± 0.1 0.178 0.1± 0.1

4 3 1.05 ± 0.10 459+121
−108 0.007 0.020 ± 0.057 0.070 0.3 ± 0.8 0.151 0.1 ± 0.4

5 7 1.45 ± 0.30 1111+108
−79 0.005 0.105 ± 0.034 0.073 1.4 ± 0.5 0.184 0.6± 0.2

6 6 2.00 ± 0.25 704+79
−62 0.006 0.185 ± 0.081 0.056 3.3 ± 1.4 0.168 1.1 ± 0.5

7 5 2.45 ± 0.20 462+62
−53 0.008 0.058 ± 0.030 0.046 1.3 ± 0.6 0.154 0.4 ± 0.2

8 3 2.75 ± 0.10 204+53
−49 0.011 0.014 ± 0.026 0.035 0.3 ± 0.4 0.125 0.1 ± 0.1

means: 1.38 ± 0.17 691+166
−152 0.007 0.071 ± 0.021 0.088 1.0 ± 0.4 0.170 0.4 ± 0.1

Only UltraVISTA 1 2 0.10 ± 0.05 397+203
−193 0.028 0.202 ± 0.438 0.157 1.3 ± 2.8 0.155 1.3 ± 2.8

zmax = 3 2 3 0.25 ± 0.10 734+193
−173 0.018 0.109 ± 0.071 0.155 0.7 ± 0.5 0.187 0.6 ± 0.4

w = all 3 4 0.50 ± 0.15 955+173
−145 0.014 0.004 ± 0.044 0.124 0.0 ± 0.0 0.192 0.0 ± 0.0

4 4 0.90 ± 0.15 753+137
−114 0.014 0.077 ± 0.082 0.087 0.9 ± 0.9 0.174 0.4 ± 0.5

5 5 1.25 ± 0.20 823+114
−92 0.013 0.071 ± 0.066 0.075 0.9 ± 0.9 0.176 0.4 ± 0.4

6 5 1.65 ± 0.20 666+92
−75 0.014 0.111 ± 0.028 0.062 1.8 ± 0.4 0.167 0.7 ± 0.2

7 9 2.25 ± 0.40 1012+75
−53 0.012 0.104 ± 0.031 0.055 1.9 ± 0.6 0.175 0.6 ± 0.2

means: 0.99 ± 0.18 763+170
−151 0.016 0.097 ± 0.023 0.102 1.2 ± 0.3 0.175 0.7 ± 0.2
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Table A2. Tables of structures for disjoint the COSMOS (top) and UltraVISTA (bottom) samples from the
COSMOS2015 catalogue for a bin ∆z = 0.1 with zmax = 6 and without σz selection. The approximation
is by empirical Formula (6). In the last string there are the means of corresponding values (by all
structures): mean of redshifts zmean, mean of structure sizes in Mpc Rmean, mean of Poisson noise level
1σP, mean of observed cosmic variance σmean, mean of dark matter variance σdm, mean of dark matter
bias bdm, mean of Peebles correlation function variance σpl and its bias bpl (see details in the text).

Sample j n z ∆r(z), Mpc σp σobs σdm bdm σpl bpl

Only COSMOS 1 3 0.15 ± 0.10 774+203
−183 0.008 0.098 ± 0.064 0.188 0.5 ± 0.3 0.199 0.5 ± 0.3

zmax = 6 2 4 0.40 ± 0.15 1012+183
−154 0.006 0.063 ± 0.078 0.140 0.5 ± 0.6 0.198 0.3 ± 0.4

w = all 3 4 0.80 ± 0.15 799+145
−121 0.006 0.024 ± 0.009 0.094 0.3 ± 0.1 0.178 0.1 ± 0.1

4 3 1.05 ± 0.10 459+121
−108 0.007 0.021 ± 0.057 0.070 0.3 ± 0.8 0.151 0.1 ± 0.4

5 7 1.45 ± 0.30 1111+108
−79 0.005 0.106 ± 0.034 0.073 1.5 ± 0.5 0.184 0.6± 0.2

6 6 2.00 ± 0.25 704+79
−62 0.006 0.185 ± 0.081 0.056 3.3 ± 1.4 0.168 1.1 ± 0.5

7 5 2.45 ± 0.20 462+62
−53 0.008 0.058 ± 0.030 0.046 1.2 ± 0.6 0.154 0.4 ± 0.2

8 3 2.75 ± 0.10 204+53
−49 0.012 0.016 ± 0.025 0.035 0.3 ± 0.5 0.125 0.1 ± 0.1

9 7 3.35 ± 0.30 497+45
−37 0.010 0.066 ± 0.032 0.039 1.7 ± 0.8 0.155 0.4 ± 0.2

10 3 3.75 ± 0.10 145+37
−35 0.017 0.014 ± 0.015 0.028 0.0 ± 0.0 0.118 0.0 ± 0.0

11 13 4.45 ± 0.60 717+35
−25 0.011 0.128 ± 0.028 0.034 3.7 ± 0.8 0.159 0.8 ± 0.2

12 3 5.25 ± 0.10 96+24
−23 0.033 0.041 ± 0.036 0.022 1.2 ± 1.0 0.112 0.2 ± 0.2

means: 2.32 ± 0.20 582+134
−124 0.011 0.068 ± 0.015 0.069 1.3 ± 0.4 0.158 0.4 ± 0.1

Only UltraVISTA 1 3 0.25 ± 0.10 734+193
−173 0.018 0.132 ± 0.095 0.155 0.9 ± 0.6 0.187 0.7 ± 0.5

zmax = 6 2 4 0.50 ± 0.15 955+173
−145 0.014 0.045 ± 0.045 0.124 0.3 ± 0.4 0.192 0.2 ± 0.2

w = all 3 4 0.90 ± 0.15 753+137
−114 0.014 0.130 ± 0.087 0.087 1.5 ± 1.0 0.174 0.7 ± 0.5

4 5 1.25 ± 0.20 823+114
−92 0.013 0.056 ± 0.065 0.075 0.7 ± 0.8 0.176 0.3 ± 0.4

5 4 1.60 ± 0.15 511+92
−79 0.015 0.101 ± 0.028 0.059 1.7 ± 0.5 0.158 0.6 ± 0.2

6 11 2.25 ± 0.50 1271+79
−51 0.010 0.175 ± 0.039 0.057 3.1 ± 0.7 0.179 1.0 ± 0.2

7 3 2.85 ± 0.10 197+51
−47 0.022 0.002 ± 0.023 0.035 0.0 ± 0.0 0.124 0.0 ± 0.0

8 15 3.65 ± 0.70 1063+47
−30 0.012 0.249 ± 0.041 0.040 6.2 ± 1.0 0.166 1.5 ± 0.3

9 6 4.60 ± 0.25 285+30
−26 0.024 0.043 ± 0.029 0.030 1.2 ± 0.8 0.143 0.3 ± 0.2

10 4 5.00 ± 0.15 154+26
−24 0.033 0.061 ± 0.032 0.025 2.0 ± 1.0 0.127 0.4 ± 0.2

11 4 5.30 ± 0.15 143+24
−23 0.036 0.044 ± 0.045 0.024 1.0 ± 1.1 0.126 0.2 ± 0.2

means: 2.56 ± 0.24 626+150
−141 0.019 0.094 ± 0.023 0.065 1.9 ± 0.5 0.159 0.6 ± 0.1

The next column contains the approximation of the matter density σpl, distributed according to
the PLCF with the parameters (r0 = 5, γ = 1.0) (see Tables 3 and 4 in Shirokov et al. [9]). At high
redshifts (z > 3.6), linear extrapolation of the data in logarithmic coordinates was used to determine
σpl. Column bpl contains the corresponding bias parameter, where errors are calculated in the same
ways as bdm. The bias value b = 0 indicates that the Poisson noise is higher than σobs, and this structure
is excluded from the b(z) function, as well as from the calculation of the average bias value bmean.

Last row contains the following average values of corresponding parameters over all structures
detected in a sample of galaxies: average redshift zmean, average size of structures in Mpc Rmean,
average Poisson noise level 1σP, average observed cosmic variance σmean, average dark matter variance
σdm, average dark matter bias bdm, average Peebles correlation function variance σpl and its bias bpl.
Errors of all the target values correspond to the standard deviation of the corresponding parameters
for all structures, except for σmean, which is calculated by the Formula (12).

The catalogue contains an interesting note about redshift columns: “a comparison photo-z/spec-z
shows that these errors could be underestimated by a factor 0.1 * I – 0.8 at I > 20 and 1.2 at I < 20”. Taking
this into account one can improve the picture of spatial structures of the catalog and enhance the
correlation of density fluctuations between independent surveys of this field in future studies.

Appendix B

Figure A3 shows an example of the histogram of radial distribution of galaxies in the metric space
(in comoving coordinate system) calculated in the SCM frameworks with parameters (H0 = 70, Ωv = 0.7 ).
The transition from catalogs of redshifts to catalogs of metric distances on a grid of models will be possible
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with more complete statistics of galaxies obtained by narrow-angle deep surveys like the COSMOS. In the
future, this approach could impose new restrictions on cosmological parameters obtained by the cosmic
tomography (e.g., Nabokov and Baryshev [8], Shirokov et al. [29], Baryshev et al. [40]).

Figure A3. Histogram of radial distribution of the Deep-UltraVISTA [6] photometric redshifts
recalculated to metric distances in comoving space with a bin ∆R = 200 Mpc without sampling
by σ(z). The dashed line indicates the least-squares fit by the theoretical approximation of homogeneity
(according to the SCM) by Equation (3).
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