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Abstract: We derive the reconstruction formulae for the inflation model with the non-minimal
derivative coupling term. If reconstructing the potential from the tensor-to-scalar ratio r, we could
obtain the potential without using the high friction limit. As an example, we reconstruct the
potential from the parameterization r = 8α/(N + β)γ, which is a general form of the α-attractor.
The reconstructed potential has the same asymptotic behavior as the T- and E-model if we choose
γ = 2 and α� 1. We also discuss the constraints from the reheating phase by assuming the parameter
wre of state equation during reheating is a constant. The scale of big-bang nucleosynthesis could put
an upper limit on ns if wre = 2/3 and a low limit on ns if wre = 1/6.
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1. Introduction

In the standard big-bang cosmology, inflation has successfully solved various problems, such as
the flatness, horizon and monopole problems. Besides, its quantum fluctuation can produce the seed
of the formation of large-scale structure [1–4]. A scalar field with a flat potential is usually chosen to
investigate inflation. The most economical and fundamental candidate for the inflaton is therefore the
Standard Model Higgs boson. However, the Higgs boson is disfavored by the observational data [3,5]
when minimally coupled to gravity due to its large tensor-to-scalar ratio. If the kinetic term of the
scalar field is non-minimal coupled to Einstein tensor, the tensor-to-scalar ratio r could be reduced
to being consistent with the observational data, and the effective Higgs self-coupling λ could be the
order of 1 [6,7]. This inflation model with non-minimal derivative coupling belongs to the subclass
of the Horndeski theory [8], which is a general scalar–tensor theory, with field equations that are at
most of the second-order derivatives of both the metric gµν and scalar field φ in four dimensions [9].
Therefore, the non-minimal derivative coupling inflation model could save the Higgs model without
introducing a new degree of freedom. For more about the non-minimal derivative coupling inflation
model, refer to [10–17].

The most important observables of inflation are the spectral tilt ns and the tensor-to-scalar ratio r.
To be compared with the observational data easily, they are usually expressed by the e-folding number
N before the end of inflation at the horizon exit of the pivotal scale. Among them, one of the predictions
that is greatly favored by the observational data may be the α-attractors, ns = 1− 2/N and r = 12α/N2.
Numerous inflation models make the α-attractors prediction, for example the Starobinsky model [1],
the Higgs inflation with a non-minimal coupling ξφ2R in the strong coupling limit ξ � 1 [18,19],
the pole inflation with the kinetic term being (∂φ)2/(1− φ2/6α)2 [20] and the T/E model [21,22].
It is therefore worth studying whether there are still other models that can make the prediction of
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α-attractors. In this paper, we consider the non-minimal derivative coupling inflation models to
investigate this α-attractors issue by reconstructing the potential. Starting from the observational
data and parameterizing the observable with N, using the relationships between the observable
and the potential, we can then reconstruct the potential [23,24]. By this reconstruction, the model
parameters can be constrained easily and the reconstructed potential would always be consistent with
the observational data [24–47].

After the inflation, it is followed by the reheating phase, which may give additional constraints
on the inflation phase [46,48]. Assuming that the effective parameter wre of state equation during
reheating is a constant and the entropy is a conserved quantity, we can relate the e-folding number and
the energy scale during reheating to those during inflation [48–54]. From these relations, the constraints
on the energy scale during reheating would transfer to the constraints on the inflation model.

In this paper, we reconstruct the inflationary potentials of the non-minimal coupling inflation
models and research the additional constraints from the reheating phase. The paper is organized as
follows. In Section 2, we give a brief review about the inflation model with the non-minimal derivative
coupling term and the reconstruction method. In Section 3, we reconstruct the potential from the
parameterization of tensor-to-scalar ratio r. We discuss the constraints from the reheating in Section 4,
and give the conclusion in Section 5.

2. The Relations

In this section, we develop the formulae for the reconstruction of the inflationary potential with
the kinetic term non-minimal coupled to Einstein tensor. We start from the action

S =
1
2

∫
d4x
√
−g
[

R− gµν∂µφ∂νφ +
1

M2 Gµν∂µφ∂νφ− 2V(φ)

]
, (1)

where we choose the unit c = M2
pl = 1/(8πG) = 1 and the coupling parameter M is a constant with

the dimension of mass. For the homogeneous and isotropic Universe with the Robertson–Walker metric

ds2 = −dt2 + a(t)2
[

dr2

1− Kr2 + r2
(

dθ2 + sin2 θdφ2
)]

, (2)

where K = 0 in the inflation epoch, the action (1) becomes

S =
1
2

∫
d4x
√
−g
[

R +

(
1 +

3H2

M2

)
φ̇2 − 2V(φ)

]
. (3)

The kinetic term of this model is

(1 +
3H2

M2 )
φ̇2

2
> 0, (4)

so there are no ghosts in this model. The scale range of the parameter M is very broad. If M is
extremely larger than the Hubble parameter, M2 � H2, the non-minimal derivative coupling term can
be neglected and the model reduces to the canonical case. If M is extremely smaller than the Hubble
parameter, M2 � H2, the non-minimal derivative coupling term dominates the inflation, and may
make some new predictions different from the canonical case.

The Friedmann equation is

H2 =

(
ȧ
a

)2
=

1
3

[
φ̇2

2
(1 + 9F) + V(φ)

]
, (5)

where F = H2/M2 is the friction parameter. The equation of motion for the scalar field φ is

d
dt

[
a3φ̇(1 + 3F)

]
= −a3 dV

dφ
. (6)
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For the slow-roll inflation, the slow-roll conditions are

1
2
(1 + 9F)φ̇2 � V(φ),∣∣φ̈∣∣� ∣∣3Hφ̇

∣∣,∣∣∣∣ 2Ḣ
M2 + 3H2

∣∣∣∣� 1.

(7)

Under these slow-roll conditions, the background Equations (5) and (6) become

H2 ≈ V(φ)

3
, (8)

3Hφ̇(1 + 3F) ≈ −Vφ, (9)

where Vφ = dV/dφ. With Equation (8), the friction parameter becomes

F ≈ V(φ)

3M2 . (10)

The corresponding slow-roll parameters are

εV =
1
2

(
Vφ

V

)2 1 + 9F
(1 + 3F)2 , (11)

ηV =
1

1 + 3F
Vφφ

V
. (12)

Using Equations (8), (9) and (11), we obtain

3φ̇2(1 + 9F)
2V(φ)

≈ εV . (13)

The derivative of εV with respect to t is [10]

˙εV = 2HεV

[
2 + 21F + 81F2

(1 + 9F)2 εV − ηV −
1
3

η2
V

− 4 + 72F + 603F2 + 2538F3 + 5103F4

3(1 + 3F)(1 + 9F)3 ε2
V

+
2(2 + 48F + 441F2 + 1944F3 + 3645F4)

3(1 + 3F)(1 + 9F)3 εVηV

]
. (14)

By using the relation dN = −Hdt, to the first order of slow-roll parameters, Equation (14) becomes

d ln εV
dN

= 2
[

ηV −
2 + 21F + 81F2

(1 + 9F)2 εV

]
, (15)

where N is the e-folding number before the end of inflation at the horizon exit. The power spectrum
for the scalar perturbation is [10]

Pζ ≈
1 + 9F
1 + 3F

× H2

8π2εV
. (16)

The power spectrum for the tensor perturbation is [10]

PT ≈
2H2

π2 . (17)
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The scalar tilt ns and the tensor-to-scalar ratio r are [10,55]

ns − 1 = 2ηV −
6(1 + 4F)

1 + 9F
εV , (18)

r =
16(1 + 3F)

1 + 9F
εV . (19)

From Equations (15) and (18), we obtain the relation between ns and εV ,

ns − 1 =
d ln εV

dN
− 2 + 36F + 54F2

(1 + 9F)2 εV . (20)

From Equations (5) and (13), we obtain the relation between φ and N,

dφ = ±
√

2εV
1 + 9F

dN, (21)

where the sign ± depends on the sign of dV/dφ. Without loss of generality, in this paper, we only
research the ‘+’ case. Combining Equations (11) and (21), we get the relation between the potential
and the slow-roll parameter,

εV =
1 + 9F
2 + 6F

(ln V),N . (22)

By using Equations (10) and (19), Equations (16), (20) and (22) become

Pζ =
2H2

π2r
, (23)

ns − 1 =
d ln r
dN

− r
8

, (24)

r = 8(ln V),N . (25)

These relations (23)–(25) do not contain the friction parameter F, thus it is possible to reconstruct the
potential from the tensor-to-scalar ratio without using the high friction limit. In the following sections,
we discuss this issue.

3. The Reconstruction

In this section, we reconstruct the potential from the tensor-to-scalar ratio r. The observational
data favor small r, and the α-attractor gives r = 12α/N2, which is small enough to be consistent with
the observational data when α � 1. In this section, we discuss a general parameterization of the
α-attractor

r =
8α

(N + β)γ
, (26)

where γ > 1, and β accounts for the contribution from the scalar field φe at the end of the inflation.
From the relation (24), we obtain the spectral tilt

ns − 1 = − γ

N + β
− α

(N + β)γ
. (27)

With the help of relation (25), we obtain the potential

V = V0 exp
[
− α

(γ− 1)(N + β)γ−1

]
. (28)
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Combining the slow-roll Friedmann Equation (8) and the power spectrum in Equation (23), we relate
the amplitude of the power spectrum As to the potential,

As =
2V

3π2r
. (29)

Substituting the reconstructed potential (28) into relation (29) and using the parameterization (26),
we obtain

V0 =
3
2

π2 Asr exp

[
α

γ− 1

( r
8α

) γ−1
γ

]
. (30)

Combining Equations (28) and (22), we get the slow-roll parameter

εV =
1 + 3F0 exp

[
α(1− γ)−1(N + β)1−γ

]
2 + 2F0 exp [α(1− γ)−1(N + β)1−γ]

α

(N + β)γ
, (31)

where the amplitude of the friction parameter F0 = V0/M2. From the condition of the end of inflation,
εV(0) = 1, we obtain the relation among α, β and γ

1 + 3F0 exp
[
α(1− γ)−1β1−γ

]
2 + 2F0 exp [α(1− γ)−1β1−γ]

× α

βγ
= 1. (32)

Under the GR limit F0 � 1, relation (32) reduces to α = 2βγ; under the high friction limit F0 � 1,
relation (32) reduces to α = 2βγ/3. From Equation (26), the tensor-to-scalar ratio r under the
high friction limit is therefore smaller than that under the GR limit when β and γ is unchanged.
Substituting Equation (31) into Equation (21), we get the relation between φ and N,

dφ =

√√√√r

(
8 + 8F0 exp

[α(N + β)1−γ

(1− γ)

])−1

dN. (33)

Combining it with Equation (26), the relation becomes

dφ =

√√√√r

(
8 + 8F0 exp

[α(8α/r)(1−γ)/γ

(1− γ)

])−1

dN. (34)

To the first order of tensor-to-scalar ratio r, it becomes

dφ =

√
r

8 + 8F0
dN, (35)

and the solution is

φ− φ0 =


2

2− γ

√
α

1 + F0
(N + β)

2−γ
2 , γ 6= 2,√

α

1 + F0
ln(N + β), γ = 2,

(36)

where φ0 is the integration constant. Substituting Equation (36) into Equation (28), we get the
reconstructed potential

V(φ) =


V0 exp

[
−λ

(√
1 + F0φ0 −

√
1 + F0φ

) 2γ−2
γ−2

]
, γ 6= 2,

V0 exp
[
−αe−

√
1+F0(φ−φ0)/

√
α
]

, γ = 2,

(37)
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where

λ =
α

γ− 1

(
γ− 2
2
√

α

) 2γ−2
γ−2

. (38)

Therefore, we reconstruct the potential from the parameterization (26) without using the high friction
limit. Furthermore, the potential (37) and parameter (38) show that the effect of the no-minimally
derivative coupling term is the rescaling of the inflaton field by a factor

√
1 + F0. For the α-attractors

parameterization γ = 2, under the GR limit F0 � 1, the potential reduces to [39]

V(φ) = V0 exp
[
−αe−(φ−φ0)/

√
α
]

. (39)

If α� 1, this potential reduces to

V(φ) = V0

[
1− αe−(φ−φ0)/

√
α
]

, (40)

which is asymptotic behavior of the T-model and E-model.
Taking N = 60 and F0 � 1, and comparing the theoretical predictions (26) and (27) with the Planck

2018 data [5], we obtain the constraints on the parameters β and γ shown in Figure 1. Taking γ = 2,
β = 1 and N = 60, the theoretical predictions are ns = 0.967 and r = 0.0014. With these parameters,
the plot of the potential is shown in Figure 2.

Planck TT,TE,EE+lowE+lensing
+BK14+BAO

0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985
0.00

0.02

0.04

0.06

0.08

0.10

ns

r
0
.0
0
2

0 2 4 6 8 10

1.0

1.5

2.0

2.5

β

γ

Figure 1. The constraints on ns and r0.002 from Planck data [5] and the theoretical predictions for the
parameterization (26) in the high friction limit. The Planck constraints on ns and r are displayed in the
left panel and the constraints on β and γ for N = 60 are displayed in the right panel. The red and blue
regions denote the 68% and 95% confidence level, respectively.
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r=8α/(N+β)γ

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

F0 +1 (ϕ-ϕe)

V
/V
0

Figure 2. The reconstructed potentials are normalized with V0 from Equation (30), and the inflaton
field is normalized with 1/

√
F0 + 1. We choose the value of φ0 that could make φe = 0.

4. Reheating

The inflation ends when the inflaton rolls down to the minimum of the potential; around the
minimum, the inflaton field will oscillate to reheat the cold universe. Because the inflation phase is
followed by the reheating phase, these two phases may constrain each other, so the reheating phase
may give other constraints on the inflation phase. In this section, we research the constraint from
the reheating phase on the reconstructed model under the high friction limit F � 1 and the GR limit
F � 1.

The relation between the pivotal scale k∗ = 0.002 Mpc−1 and the present Hubble parameter is

k∗
a0H0

=
a∗H∗
a0H0

=
a∗
ae

ae

are

are

a0

H∗
H0

= e−N−Nre
are

a0

H∗
H0

, (41)

where Nre is the e-folding number during reheating, are is the scale factor at the end of reheating,
and we assume the radiation domination phase follows the reheating phase immediately and the
reheating phase follows inflation phase immediately. Because the physics of the reheating is still
unknown, for simplicity, we assume a constant parameter wre of state equation during reheating,
and we get

Nre =
1

3(1 + wre)
ln

ρe

ρre
, (42)

where the relation between ρre and the temperature Tre is

ρre =
π2

30
greT4

re, (43)

with gre denoting the effective number of relativistic species at reheating phase. By using the condition
of the entropy conservation, we get the relation between temperature Tre and the present cosmic
microwave background temperature T0 = 2.725K,

a3
regs,reT3

re = a3
0

(
2T3

0 + 6× 7
8

T3
ν0

)
, (44)
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where gs,re denotes the effective number of relativistic species for entropy, and Tν0 = (4/11)1/3T0 is
the present neutrino temperature. By using the above relations, we obtain [48,49]

Nre =
4

1− 3wre

[
− N − ln

ρ1/4
e
H∗

+
1
3

ln
43

11gs,re
+

1
4

ln
π2gre

30
− ln

k∗
a0T0

]
, (45)

Tre = exp
[
−3Nre(1 + wre)

4

] [
30ρe

π2gre

]1/4
. (46)

The relations (45) and (46) show that Nre and Tre depend on gre and gs,re logarithmically, thus we
choose gre = gs,re = 106.75. At the end of inflation, we have εV ≈ 1; from Equation (13), we obtain the
relation φ̇2 = 2Ve/(27F), so we have ρe = 4Ve/3. By using the observational value of the amplitude of
the power spectrum [5], from Equation (16), we have

As = 3H2
∗/(8π2εV∗) = 2.2× 10−9, (47)

and Equations (45) and (46) become

Nre =
4

1− 3wre

(
56.46− N − ln Ve

4
+

ln εV∗
2

)
, (48)

Tre = exp
[
−3Nre(1 + wre)

4

] [
4Ve

10.675π2

]1/4
. (49)

By using Equations (28) and (31), under the high friction limit F � 1, we obtain the constraint from
the reheating process on the model parameters,

Nre =
4

1− 3wre

[
60.45 +

α

4(γ− 1)βγ−1 +
1
4

ln α− N − γ

4
ln(N + β)− α

4(γ− 1)(N + β)γ−1

]
, (50)

Tre = 0.01
α1/4

(N + β)γ/4 exp
[
− α

4(γ− 1)βγ−1 +
α

4(γ− 1)(N + β)γ−1 −
3Nre(1 + wre)

4

]
, (51)

where α = 2βγ/3. Under the GR limit F � 1, the relations are

Nre =
4

1− 3wre

[
59.90 +

α

4(γ− 1)βγ−1 +
1
4

ln α− N − γ

4
ln(N + β)− α

4(γ− 1)(N + β)γ−1

]
, (52)

Tre = 0.01
α1/4

(N + β)γ/4 exp
[
− α

4(γ− 1)βγ−1 +
α

4(γ− 1)(N + β)γ−1 −
3Nre(1 + wre)

4

]
, (53)

where α = 2βγ. These two situations make almost the same constraint except the 0.5 e-folding
difference in Nre and the different relations of α. Therefore, the friction parameter F has little influence
on the reheating phase, and we just consider the high friction limit situation in the following.

For different kinds of β, γ, N and wre, by using Equations (27), (50) and (51), we calculate the
corresponding spectral tilt ns, reheating e-folds Nre and reheating temperature Tre, and the results are
displayed in Figure 3.
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Figure 3. (Top) The relations between Nre and ns; and (Bottom) the relations between Tre and ns.
The corresponding values of β and γ for each model are indicated in each panel. The 1σ Planck
constraint ns = 0.9649± 0.0042 [5] is denoted by the gray band, and the 1σ Planck constraint on the
e-folds N is also indicated. The black, red, blue and green lines correspond to the reheating models
with wre = −1/3, 0, 1/6 and 2/3, respectively; in each line, the arrow denotes the direction of N
enlargement. The horizontal gray solid and dashed lines in the bottom panels denote the electroweak
scale TEW ∼ 100 GeV and the big bang nucleosynthesis scale TBBN ∼ 10 MeV, respectively.

The figures show that different model parameters β and γ and the value of wre provide different
constraints on the reheating e-folds Nre and the reheating temperature Tre, while the parameter β

almost does not affect the reheating process. For larger spectral tilt ns, the allowed reheating e-folding
number Nre with wre = −1/3, 0 and 1/6 will become smaller, while the allowed reheating e-folding
number Nre with wre = 2/3 will become larger. The scale of big-bang nucleosynthesis put an upper
limit on ns if wre = 2/3 and a low limit on ns if wre = 1/6.

5. Conclusions

The non-minimal derivative coupling term in the inflation model could reduce the tensor-to-scalar
ratio, which can make the large tensor-to-scalar ratio models, such as the Higgs inflation, be consistent
with the observations. We derive the reconstruction formulae of the inflation model with non-minimal
derivative coupling. To reconstruct the potential without using the high friction limit, we consider
the parameterization of the tensor to scalar ratio r = 8α/(N + β)γ inspired from the α-attractor.
For γ = 2, which is the α attractor, we get the same potential as obtained in [39], in the GR limit
F � 1. When α� 1, this potential has the same asymptotic behavior as that of T/E-model. For γ 6= 2,
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the potential is the exponential form. The observational constraints on the parameters are 1.2 < γ < 2.7
and β < 10. The reconstruction also show that the observational data favor the α attractor case
with γ ∼ 2.

The constraints on the spectral tilt ns from the Planck data could provide constraints on the
reheating process. Different model parameters provide different constraints on reheating e-folds Nre,
reheating temperature Tre and reheating state equation wre. For larger spectral tilt ns, the allowed
reheating e-folding number Nre with wre = −1/3, 0 and 1/6 will become smaller, while the allowed
reheating e-folding number Nre with wre = 2/3 will become larger. The energy scale of the reheating
could also provide additional constraints on the inflation. If γ = 2, β = 1 and wre = 2/3, the big bang
nucleosynthesis scale requires ns < 0.967; if γ = 2, β = 1 and wre = 1/6, the big bang nucleosynthesis
scale requires ns > 0.962.
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