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Abstract: So far, none of attempts to quantize gravity has led to a satisfactory model that not only
describe gravity in the realm of a quantum world, but also its relation to elementary particles
and other fundamental forces. Here, we outline the preliminary results for a model of quantum
universe, in which gravity is fundamentally and by construction quantic. The model is based on
three well motivated assumptions with compelling observational and theoretical evidence: quantum
mechanics is valid at all scales; quantum systems are described by their symmetries; universe has
infinite independent degrees of freedom. The last assumption means that the Hilbert space of
the Universe has SUpN Ñ 8q – area preserving Diff.pS2q symmetry, which is parameterized by
two angular variables. We show that, in the absence of a background spacetime, this Universe is
trivial and static. Nonetheless, quantum fluctuations break the symmetry and divide the Universe
to subsystems. When a subsystem is singled out as reference—observer—and another as clock,
two more continuous parameters arise, which can be interpreted as distance and time. We identify
the classical spacetime with parameter space of the Hilbert space of the Universe. Therefore,
its quantization is meaningless. In this view, the Einstein equation presents the projection of
quantum dynamics in the Hilbert space into its parameter space. Finite dimensional symmetries of
elementary particles emerge as a consequence of symmetry breaking when the Universe is divided to
subsystems/particles, without having any implication for the infinite dimensional symmetry and its
associated interaction-percived as gravity. This explains why gravity is a universal force.

Keywords: quantum gravity; quantum mechanics; symmetry; quantum cosmology

1. Introduction and Summary of Results

More than a century after the discovery of general relativity and description of gravitational force
as the modification of spacetime geometry by matter and energy, we still lack a convincing model for
explaining these processes in the framework of quantum mechanics. Appendix A briefly reviews the
history of efforts for finding a consistent Quantum Gravity (QGR) model. Despite tremendous effort
of generations of scientists, none of proposed models presently seem fully satisfactory.

Quantization of gravity is inevitable. Examples of inconsistencies in a universe where matter
is ruled by quantum mechanics but gravity is classical are well known [1,2]. In addition, in [2], it is
argued that there must be an inherent relation between gravity and quantum mechanics. Otherwise,
the universality of Planck constant h̄ as quantization scale cannot be explained.1 Aside from these
arguments, the fact that there is no fundamental mass/energy scale in quantum mechanics means that
it has to have a close relation with gravity that provides a dimensionful fundamental constant, namely

1 Nonetheless, Ref. [3] advocates a context dependent Planck constant.
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the Newton gravitational constant GN or equivalently the Planck mass MP ”
a

h̄c{GN , where c is the
speed of light in vacuum (or equivalently Planck length scale LP ” h̄{cMP). We should remind that
a dimensionful scale does not arise in conformal or scale independent models. Indeed, conformal
symmetry is broken by gravity, which provides the only fundamental dimensionful constant to play
the role of a ruler and make distance and mass measurements meaningful.2

In what concerns the subject of this volume, namely representations of inhomogeneous Lorentz
symmetry (called also Poincaré group), they were under special interest since decades ago, hoping that
they help formulate gravity as a renormalizable quantum field. The similarity of the compact group of
local Lorentz transformations to Yang–Mills gauge symmetry has encouraged quantum gravity models
that are based on the first order formulation of general relativity. These models use vierbein formalism
and extension of gauge group of elementary particles to accommodate Poincaré group [5,6]. However,
Coleman–Madula theorem [7] on S-matrix symmetries—local transformations of interacting fields that
asymptotically approach Poincaré symmetry at infinity—invalidates any model in which Poincaré
and internal symmetries are not factorized. According to this theorem total symmetry of a grand
unification model, including gravity, must be a tensor product of spacetime and internal symmetries.
Otherwise, the model must be supersymmetric [8] or VEV of the gauge field should not be flat [9].
However, we know that even if supersymmetry is present at MP scale, it is broken at low energies.
Moreover, any violation of Coleman–Madula theorem and Lorentz symmetry at high energies can
be convoyed to low energies [10] and violate e.g., equivalence principle and other tested predictions
of general relativity [11,12]. For these reasons, modern approaches to the unification of gravity as a
gauge field with other interactions consider the two sectors as separate gauge field models. In addition,
in these models gravity sector usually has topological action to make the formulation independent
of the geometry of underlying spacetime, see e.g., [13–15]. However, like other quantum gravity
candidates these models suffer from various issues. The separation of internal and gravitational gauge
sectors means that these models are not properly speaking a grand unification. Moreover, similar
to other approaches to QGR, these models do not clarify the nature of spacetime, its dimensionality,
and relation between gravity and internal symmetries.

In addition to consistency with general relativity, cosmology, and particle physics, a quantum
model unifying gravity with other forces is expected to solve well known problems that are related
to gravity and spacetime, such as: physical origin of the arrow of time; apparent information loss
in black holes; and, UV and IR singularities in Quantum Field Theory (QFT) and general gravity.3

There are also other issues that a priori should be addressed by a QGR model, but are less discussed in
the literature:

1. Should spacetime be considered as a physical entity similar to quantum fields associated to
particles, or rather it presents a configuration space ?

General relativity changed spacetime from a rigid entity to a deformable media. However,
it does not specify whether spacetime is a physical reality or a property of matter,
which ultimately determines its geometry and topology. We remind that in the framework
of QFT vacuum is not the empty space of classical physics, see e.g., [16,17]. In particular,
in the presence of gravity the naive definition of quantum vacuum is frame dependent.
A frame-independent definition exists [18] and it is very far from classical concept of an

2 In addition to MP, we need two other fundamental constants to describe physics and cosmology: the Planck constant h̄ and
maximum speed of information transfer that experiments show to be the speed of light in classical vacuum. We remind that
triplet constants ph̄, c, MPq are arbitrary and can take any nonzero positive value. The selection of their values amounts to
the definition of a system of units for measuring other physical quantities. In QFT literature usually h̄ “ 1 and c “ 1 are
used. In this system of units—called high energy physics units [4]—h̄ and c are dimensionless.

3 Some quantum gravity models such as loop quantum gravity emphasize the quantization of gravity alone. However, giving
the fact that gravity is a universal force and interacts with matter and other forces, its quantization necessarily has impact on
them. Therefore, any quantum gravity only model would be, at best, incomplete.
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empty space. Explicitly or implicitly, some of models reviewed in Appendix A address
this question.

2. Is there any relation between matter and spacetime ?

In general relativity matter modifies the geometry of spacetime, but the two entities
are considered as separate and stand alone. In string theory spacetime and matter
fields—compactified internal space—are considered and treated together, and spacetime
has a physical reality that is similar to matter. By contrast, many other QGR candidates
only concentrate their effort on the quantization of spacetime and gravitational interaction.
Matter is usually added as an external ingredient and it does not intertwine in the
construction of quantum gravity and spacetime.

3. Why do we perceive the Universe as a three-dimensional (3D) space (plus time) ?

None of extensively studied quantum gravity models discussed in Appendix A answer
this question, despite the fact that it is the origin of many troubles for them. For instance,
the enormous number of possible models in string theory is due to the inevitable
compactification of extra-dimensions to reduce the dimension of space to the observed
3 + 1. In background independent models, the dimension of space is a fundamental
assumption and essential for many technical aspects of their construction. In particular,
the definition of Ashtekar variables [19] for SUp2q – SOp3q symmetry and its relation with
spin foam description of loop quantum gravity [20] are based on the assumption of a 3D
real space. On the other hand, according to holography principle, the maximum amount
of information that is containable in a quantum system is proportional to its area rather
than volume. If the information is projected and available on the boundary, it is puzzling
why we should perceive the volume.

In a previous work [21], we advocated the foundational role of symmetries in quantum mechanics
and reformulated its axioms accordingly, see Appendix B for a summary. Of course, the crucial
role of symmetries in quantum systems is well known. However, axioms of quantum mechanics à
la Dirac and von Neumann consider an abstract Hilbert space and do not specify its relation with
symmetries of quantum systems. In addition to symmetries of their classical Lagrangian, Hilbert space
of quantum systems represents SUpNq group, called state symmetry, see Appendix C for more details.
Transformation of states by this group modifies their coherence, and recently quantification of this
property and its usefulness as a resource has become a subject of interest in quantum information
theory literature [22,23].

Inspired by these developments, in this work we study a standalone quantum system, which is
considered to be the Universe.

1.1. Summary of the Model and Results

The model assumes infinite number of independent and simultaneously commuting observables
in the Universe, but no background spacetime. Hilbert space HU of such system represents
SUpN Ñ 8q symmetry. However, in absence of a background spacetime, its dynamics is trivial
and its Lagrangian is defined on the group manifold of SUp8q symmetry. Therefore, states are pure
gauge. The vector space of gauge transformations, corresponding to linear transformations of the
Hilbert space, is BrHUs – SUp8q. On the other hand, quantum fluctuations break the state symmetry
and factorize the Hilbert space to blocks of tensor product of subspaces according to criteria studied
in [24,25]. For each subsystem, the rest of the Universe plays the role of a background parameterized
by three continuous quantities that can be identified with the classical space. Moreover, division of
the Universe to subsystems leads to emergence of time and its arrow à la Page & Wootters [26] or
similar methods [27]. We show that the 3 + 1 dimensional parameter space is, in general, curved and
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invariant under inhomogeneous Lorentz transformations and its curvature is determined by quantum
states of the subsystems. We also comment on the signature of parameter space metric. Based on these
observations, we interpret SUp8q sector of the model as Quantum Gravity. The finite rank factorized
symmetries become local gauge fields acting on a Hilbert space that presents matter fields.

These results demonstrate the importance of the division of Universe to subsystems and
the distinction of observer and clock from the rest. Nonetheless, in contrast to the Copenhagen
interpretation of quantum mechanics, the absence of observer does not make the model meaningless,
but trivial and static. This model answers some of issues raised in questions 1–3 raised earlier.
In particular, it clarifies the nature of spacetime and its dimensionality, and provides an explanation
for the universality of gravitational force.

A crucial proposal of the model is that what we perceive as classical spacetime is the configuration
(parameter) space of its content. In other words, rather than saying particles/objects (such as strings)
live in a 3 + 1 dimensional space, according to this model we can say that an ensemble of abstract
objects with SUp8q ˆ G symmetry look like a 3 + 1 dimensional infinite curved spacetime with
gravity, where subsystems are fields that represent group G as a local gauge symmetry. Thus, we can
completely neglect the geometric interpretation and just consider the Universe as an infinite tensor
product. This aspect of the model is similar to the approach of [28]. However, their model is somehow
inverse of that studied here. They use tensor product and quantum entanglement to make a symplectic
geometry that becomes a continuous curved spacetime when the number of tensor product factors
approaches to infinity. The drawback is that symplectic geometries defined by graphs can be embedded
in any space of dimension D ě 2. Consequently, they cannot explain the dimension of the spacetime.

Axioms and structure of the model is discussed in Section 2. Lagrangian of the system before
its division is described in Section 3. Properties of the model after symmetry breaking and division
of the Universe are studied in Section 4. Section 5 presents a brief comparison of this model with
string and loop quantum gravity. Section 6 presents outlines and prospective for future investigations.
Accompanying appendices contain technical details and review of previous results. Appendix A
gives a short recount of the history of quantum gravity models. Appendix B summaries the axioms
of quantum mechanics in symmetry language. State space and its associated symmetry is reviewed
in Appendix C. Properties of SUp8q and its representations are summarized in Appendix D and its
Cartan decomposition in Appendix E.

2. An Infinite Quantum Universe

Our departure point for constructing a quantum universe consists of three well motivated
assumptions with compelling observational and theoretical evidence:

I. Quantum mechanics is valid at all scales and applies to every entity, including the Universe as
a whole;

II. Any quantum system is described by its symmetries and its Hilbert space represents them;
III. The Universe has an infinite number of independent degrees of freedom.

The last assumption means that the Hilbert space of the Universe HU is infinite dimensional and
represents the group SUp8q. There is sufficient evidence in favour of such an assumption. For instance,
the thermal distribution of photons at IR limit contains an infinite number of quanta with energies
approaching zero and there is no minimum energy limit. For this reason, vacuum can be considered
to be a superposition of multi-particle states of any type—not just photons—without any limit on
their number [18]. In general relativity, there is no upper limit for gravitons wavelength and thereby
their number. Of course, one may argue that a lower limit on energy or spacetime volume may exist.
Nonetheless, for any practical application the number of subsystems/quanta in the Universe can be
considered to approach infinity. Indeed, even in quantum gravity models that assume a symplectic
structure for spacetime, such as spin foam/loop quantum gravity and causal sets, there is not a fixed
lattice of spacetime and the number of spacetime states is effectively infinite.
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The algebra that is associated to the SUp8q coherence (state) symmetry of the above model is
defined as4:

rL̂a, L̂bs “
h̄

cMP
f c
ab L̂c “ LP f c

ab L̂c (1)

where operators L̂α P BrHUs are generators of algebra sup8q and f c
ab are its structure coefficients.

They are normalized such that the r.h.s. of (1) explicitly depends on the Planck constant h̄. If h̄ Ñ
0, the r.h.s. becomes null, and the algebra becomes abelian and homomorphic to

ÂNÑ8Up1q —
in agreement with the symmetry of configuration space of classical systems, explained in Appendix C.
The same happens if MP Ñ8, that is when Planck mass scale is much larger than scale of interest. In
both cases LP Ñ 0. Assuming that SUp8q symmetry of the Universe can be associated to gravitational
interaction—we will provide more evidence in favour of this claim later—the above limits mean that,
in both cases, gravity becomes negligible.5

It is well known that BrHUs – SUp8q – area preserving DiffpS2q [29,30], where S2 is 2D
sphere. In fact, SUp8q is homomorphic to area preserving diffeomorphism of any two-dimensional
(2D) Riemann surface [31–33]. Therefore, here S2 can be any 2D surface, rather than just sphere.
This theorem can be heuristically understood as the following: any compact 2D Riemann surface can
be obtained from sphere by removing a measure zero set of pairs of points and sticking the rest of
the surface pair-by-pair together. Although surfaces with different genus are topologically different,
they are homomorphic. This property may be important in the presence of subsystems with singularity,
such as black holes, in which part of the parameter space is inaccessible. From now on, we call a 2D
surface that its diffeomorphism represents SUp8q a diffeo-surface.

Homomorphism between SUp8q and DiffpS2q makes it possible to expand L̂a’s with respect
to spherical harmonic functions, depending on angular coordinates pθ, φq on a sphere. Moreover,
owing to the Cartan decomposition, SUp8q generators can be described as a tensor product of Pauli
matrices [29,34]. In this case, indices in (1) consist of a pair pl, mq | l “ 0, ¨ ¨ ¨ ,8;´l ď m ď `l.
Appendix E reviews decomposition and indexing of SUp8q generators. We continue to use single
letters for the indices of generators when there is no need for their explicit description.

The algebra (1) is not enough to make the system quantic and as usual L̂a’s must respect
Heisenberg commutation relations:

rL̂a, Ĵbs “ ´iδab h̄. (2)

where Ĵa P BrH˚Us is the dual of L̂a and H˚U is the dual Hilbert space of the Universe. As there
is a one-to-one correspondence between L̂’s and Ĵ’s, they satisfy the same algebra, represent the
same symmetry group, namely SUp8q, and they have their own expansion to spherical harmonics.
Owing to SUp8q – DiffpS2q, vectors of the Hilbert space are differentiable complex functions of
angular coordinates pθ, φq. Thus, spherical harmonic functions constitute an orthogonal basis for HU .
The Cartan subalgebra of BrHUs – SUp8q is also infinite dimensional.

The quantum Universe defined here is static, because there is no background space or time in
the model. Nonetheless, in Section 4, we show that continuous degrees of freedom similar to space
and time naturally arise when the Universe is divided to subsystems. The short argument goes as
the following:

We assume that eigen states of the Hilbert space of the Universe are not abstract objects and
physically exist. This assumption is supported by the fact that in Standard Model (SM) of particle
physics states that constitute a basis for its Hilbert space and for its space of linear transformations are
indeed observed particles (fields). Consequently, taking into account the assumption that HU is infinite

4 In this work, all vector spaces and algebras are defined on complex number field C, unless explicitly mentioned otherwise.
5 Although in (1) we show the dimensional scale h̄{MP in the definition of operators and their algebra, for the sake of

convenience in the rest of this work, we include it in the operators, except when its explicit presentation is necessary for
the discussion.
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dimensional, we conclude that the Universe must consist of infinite number of particles/subsystems.
Although subsystems may have some common properties, which make them indistinguishable from
each others, there are many other distinguishable aspects, which discriminate them from each others.
This statement is in agreement with the corollary presented in Appendix B regarding the divisibility of a
quantum Universe, derived from axioms of quantum mechanics. Thus, this conclusion is independent
of details of the model.

Notice that, without the assumption about physical existence of eigen states, an infinite
dimensional Hilbert space does not necessarily mean Universe must be infinitely divisible.
Hilbert space of many quantum systems have an infinite number of states. However, they do not
necessarily occur in each instance (copy) of the system. The case of a Universe is different, because,
by definition, there is only one copy of it. Therefore, every eigen state of a complete basis of its Hilbert
space must physically exist. Otherwise, it can be completely discarded.

In the next sections, we make this argument more rigorous and explain how it can lead to a
3 + 1 dimensional spacetime and internal gauge symmetry of elementary particles. We begin with
constructing a Lagrangian for this static model and show that it is trivial.

3. Lagrangian of the Universe

Although the infinite dimensional Universe described in the previous section is static, it has to
satisfy constraints imposed by symmetries associated to it. They are analogous to constraints imposed
on systems in thermodynamic equilibrium. Although there is no time variation in such systems,
a priori small perturbations occur, for instance, by absorption and emission of energy. They must be in
balance with each others, otherwise the system would lose its equilibrium. Therefore, it is useful to
define a Lagrangian that quantifies these constraints. In the case of present model, the Lagrangian
should quantify SUp8q symmetry and its representation by HU .

Lagrangian of a system must be invariant under transformations of fields by application of
members of its symmetry group. As there is no background spacetime in this model, the most
appealing candidate is a Lagrangian similar to Yang–Mills, but without a kinetic term. In such a
situation, the only available quantities are invariants of the symmetry group:

LU “

ż

d2Ω
b

|gp2q|
„

1
2

ÿ

a, b

L˚a pθ, φqLbpθ, φqtrpL̂a L̂bq `
1
2

ÿ

a
LatrpL̂aρpθ, φqq



, d2Ω ” dpcos θqdφ (3)

where g is the determinant of 2D metric of the diffeo-surface. If we use description (A5) for L̂ operators,
a “ b “ 1. If we use (A12) expression, a, b “ pl, mq, l “ 0, ¨ ¨ ¨ ,8;´m ď l ď `m. The latter
case explicitly demonstrates the Cartan decomposition of SUp8q to SUp2q factors, as described in
Appendix E. Notice that pθ, φq are internal variables [30], reflecting the fact that vectors of the Hilbert
space representing SUp8q are functions on a 2D Riemann surface. For the same reason, in contrast to
usual Lagrangians in QFT, there is no term containing derivatives with respect to these parameters in
LU . If we use differential representation of L̂lm defined in (A5) and apply it to amplitudes Llmpθ, φq,
the first term in the Lagrangian will depend on the partial derivatives of amplitudes, just like in the QFT.
However, it is straightforward to see that derivatives with respect to cos θ and φ will have different
amplitudes and, thereby, the kinetic term will be unconventional and non-covariant, unless we
consider amplitudes Llmpθ, φq as functions of the metric of a deformed sphere. This is the explicit
demonstration of SUp8q – DiffpS2q invariance of this Lagrangian.

Generators T̂a, T̂b P SUpNq,@N can be normalized, such that trpTaTbq 9 δab, see e.g., [29].
In analogy with field strength in Yang–Mills theories, the function Lapθ, φq can be interpreted as
the amplitude of the contribution of operator L̂a in the dynamics of the Universe. Due to global Up1q
symmetry of operators applied to a quantum state, La’s are, in general, complex. On the other hand,
when considering the Cartan decomposition of SUp8q to tensor product of SUp2q factors and the
fact that σ: “ pσ˚qt “ σ, we conclude that L̂:a “ L̂a, Similar to QFT, one can use LU to define a path
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integral. In the absence of time, the path integral presents the excursion of states in the Hilbert space
by successive application of L̂a operators. Nonetheless, owing to SUp8q symmetry, variation of states
is equivalent to gauge transformation and non-measurable.

The analogy of LU with Yang–Mills theory has interesting consequences. For instance, differential

representation of L̂lm defined in (A5) can be written as L̂lm “

b

|gp2q|εµνpBµYlmqBν. In classical limit, one

can consider that L̂lm acts on the field amplitude Llm and the first term in the integrand of Lagrangian
LU can be arranged, such that it becomes proportional to Ricci scalar Rp2q. As the geometry of 2D
diffeo-surface is arbitrary, for each set of Llm the metric gµν can be chosen, such that Llm dependent part
of the integrand becomes proportional to Ricci scalar for that metric. Thus, in classical limit the first
term is topological.6 We could arrive to this conclusion inversely. Because SUp8q – DiffpS2q, in the
classical limit the Lagrangian should be the same as Einstein gravity in a static 2D curve space. Thus,

the first term in (3) can be replaced by
ş

d2Ω
b

|gp2q|Rp2q. Then, the definition of L̂lm operators in (A5)

and amplitudes Llm can be used to write Rp2q with respect to L̂lm and relate metric and connection
of the 2D surface to amplitudes Łlm. We leave a detailed demonstration of these relations to a future
work. The relation between gauge field term in LU and Riemann curvature in classical limit is crucial
for interpretation of this term as gravity when the Universe is divided to subsystems.

Notice that, in both representations of SUp8q, namely Cartan decomposition to tensor product
of SUp2q factors and diffeomorphism of 2D surfaces, angular coordinates θ and φ play the role of
parameters that identify/index the members of the symmetry group. Consequently, their quantization
is meaningless. This is consistent with interpretation of Einstein equation as an equation of state [35].
Presuming the physical reality of Hilbert space and operators applied to it, as discussed in the previous
section and in Appendix C, we can interpret Llm as intensity of force mediator particles related to the
symmetry represented by operators L̂lm, and ρ in the second term of the Lagrangian LU as density
matrix of matter.

Although LU is static, we can apply a variational principle with respect to amplitudes to obtain
field equations and find equilibrium values of Llm and ρ. However, it is easily seen that solutions of
these equations are trivial. At equilibrium Llm Ñ 0 and ρlm Ñ 0, see Appendix E.2 for the details.
Because SUp8qn – SUp8q @ n, this solution has properties of a frame independent vacuum of a
many-particle Universe defined by using coherent states [18]. Their similarity implicitly implies that
the Universe is divisible and consists of infinite number of particles/subsystems interacting through
mediator particles of SUp8q force, which is the action of L̂lm. We investigate this conclusion in more
details in the next section.

4. Division to Subsystems

There are many ways to see that the quantum vacuum (equilibrium) solution of a Universe with
LU Lagrangian (3) is not stable. Of course there are quantum fluctuations. They are nothing else than
random application of L̂lm operators, in other words random scattering of force mediator quanta by
matter. They project the Hilbert space to itself. However, owing to SUp8q symmetry of Lagrangian,
states are globally equivalent and the Universe maintain its equilibrium. Nonetheless, locally states
are different and they do not respond to L̂lm in the same manner. Here, locality means restriction of
Lagrangian and projections to a subspace of the Hilbert space [25]. As state space is homomorphic to
the space of smooth functions on the sphere f pθ, φq, the restriction of transformations to a subspace is
equivalent to a local deformation of the diffeo-surface. Moreover, the difference between structure
coefficients of SUp8q can be used to define a locality or closeness among operators that belong to

6 We remind that
ş

M d2Ω
b

|gp2q|Rp2q “ 4πχpMq, where χ is the Euler characteristic of the compact Riemann 2D surface M.
Moreover, Ricci scalar alone does not determine Riemann curvature tensor Rµν and only provides one constraint for three
independent components of the metric tensor.
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BrHUs. These observations are additional evidence to the argument given at the end of Section 3 in
favour of the divisibility of the quantum Universe introduced in Section 2 to multi-particle/subsystems.

A quantum system that is divisible to separate and distinguishable subsystems 7 must fulfill 3
conditions [24]:

- There must exist sets of operators tAiu Ă BrHs such that @ā P tAiu and @b̄ P tAju, and i ‰
j, rā, b̄s “ 0;

- Operators in each set tAiumust be local8;
- tAiu’s must be complementarity, which is bitAiu – EndpBrHsq.

The most trivial way of fulfilling these conditions is a reducible representation of symmetries by
BrHs. In the case of BrHUs – SUp8q, as:

SUp8qn – SUp8q @ n (4)

the above condition can be easily realized. Moreover, instabilities, quantum correlations,
and entanglement may create local symmetries among groups of states and/or operators. There are
many examples of such grouping and induced symmetries in many-body systems, see e.g., [36]
for a review. A hallmark of induced symmetry by quantum correlations is the formation of anyon
quasi-particles having non-abelian symmetry in the fractional quantum Hall effect [37]. On the other
hand, there is only one state in the infinite dimensional Hilbert space, in which all pointer states have
the same probability, namely the maximally coherent state defined in (A2). Even if a many-body
system begins in such a maximally symmetric state, quantum fluctuations rapidly change it to a less
coherent and more asymmetric one. In addition, due to (4), irreducible representations of SUp8q
are partially entangled [25] and there is high probability of clustering of subspaces in a randomly
selected state.

Lets assume that such groupings indeed have occurred in the early Universe and they continue
to occur at Planck scale. They provide the necessary conditions for division of the Universe to parts
or particles with SUp8q ˆ G – SUp8q as their symmetry. The local symmetry G is assumed to be a
compact Lie group of finite rank and respected by all subsystems. Although different subsystems
may have different internal symmetries, without a lack of generality, we can assume that G is their
tensor product, but some species of particles/subsystems are in singlet representation of some of the
component groups.

As the rank of G is assumed to be finite, complementarity condition dictates that the number of
subsystems must be infinite to account for the infinite rank of HU . If states are in a finite dimensional
representations of G, at least one of the representations must have infinite multiplicity and their Hilbert
space would be infinite dimensional. Thus, despite the division of BrHUs, SUp8q remains a symmetry
of subsystems and tAiu Ă BrHis – SUp8q, where Hi is the Hilbert space of subsystem i. Clustering
of states and subsystems are usually the hallmark of strong interaction and quantum correlation [36].
Therefore, the interaction of subsystems through internal G symmetry is expected to be stronger than
through SUp8q, thereby the weak gravitation conjecture [38] is satisfied.

We could also formulate the above Universe in a bottom-up manner. Consider the ensemble
of infinite number of quantum systems—particles—each having finite symmetry G and coherently
mixed with each others. Their ensemble generates a Universe with SUp8q ˆG – SUp8q as symmetry
represented by its Hilbert space. Therefore, top-down or bottom-up approaches to an infinitely

7 In statistical quantum or classical mechanics distinguishability of particles usually means being able to say, for instance,
whether it was particle 1 or particle 2 which was observed. Here by distinguishability we mean whether a particle/subsystem
can be experimentally detected, i.e., through application of L̂lm to a subspace of parameter space and identified in isolation
from other subsystems or the rest of the Universe.

8 This condition is defined for quantum systems in a background spacetime. In the present model there is not such a
background. Nonetheless, as explained earlier, locality on the diffeo-surface can be projected to BrHUs.
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divisible Universe give the same result. The bottom-up view helps to better understand the origin
of SUp8q symmetry. It shows that, for each subsystem, it is the presence of other infinite number of
subsystems and its own interaction with them that is seen as a SUp8q symmetry.

4.1. Properties of an Infinitely Divided Quantum Universe

The division of the Universe to subsystems has several consequences. First of all, the global
Up1q symmetry of HU becomes local, because Hilbert spaces of subsystems Hi, @i, where index i
runs over all subsystems, acquire their own phase symmetry. Therefore, we expect that there is at
least one unbroken Up1q local—gauge—symmetry in nature. It may be identified as Up1q symmetry
of the Standard Model. From now on, we include this Up1q to the internal symmetry of subsystems
G. Additionally, the infinite number of subsystems in the Universe means that each of them has its
own representation of SUp8q symmetry. However, these representations are not isolated and are part
of the SUp8q symmetry of the whole Universe. This property is similar to finite intervals on a line,
which are homomorphic to Rp1q and, at the same time, part of it and have the same algebra. Therefore,
the memory of being part of the whole Universe is not washed out with the division to subsystems.
Otherwise, according to the corollary discussed in Appendix B subsystems could be considered as
separate and isolated universes.

The area of diffeo-surface is irrelevant when only one SUp8q is considered. However, it becomes
relevant and observable when it is compared with its counterparts for other subsystems. More precisely,
homomorphism between Hilbert spaces of two subsystems s and s1 defined as:

Rss1 : Hs Ñ Hs1 (5)

can be considered as an additional parameter that is necessary for their identification and indexing.
A more qualitative description of how a third continuous parameter emerges from division of Universe
to subsystem is given in the next subsection.

4.2. Parameterization of Subsystems

There are various ways to see that the division of the Universe to subsystems defined
in Section 2 induces a new continuous parameter. As discussed in the previous subsection,
each subsystem represents SUp8q ˆ G. When SUp8q representation of different subsystems are
compared, e.g., through a morphism, the radius of diffeo-surface becomes relevant, because different
radius means different area. This dependence allows for classifying subsystems according to a size
scale. More precisely, in the definition of L̂lm in (A5), Ylm9rl , where r is the distance to centre in
spherical coordinates when the 2D surface is embedded in Rp3q. If we factorize r-dependence part of
Ylm, the algebra of L̂lm defined in (A4) becomes:

rL̂lm, L̂l1m1s

ˇ

ˇ

ˇ

ˇ

r“1
“ rl2´l1´l f l”m”

lm,l1m1 L̂l”m”

ˇ

ˇ

ˇ

ˇ

r“1
(6)

where all L̂lm operators are defined for r “ 1 (in an arbitrary unit). Equation (6) shows that r can be
interpreted as a coupling that quantifies the strength of correlation between L̂lm operators. Moreover,
due to homomorphism (4), L̂lm’s of subsystems are part of L̂lm’s of the full system. Consequently,
subsystems are never completely isolated and they interact through an algebra similar to (6), but their
r factors can be different:

rL̂prqlm , L̂pr
1q

l1m1s

ˇ

ˇ

ˇ

ˇ

r“1
“ r“l2

r1´l1

r´l f l”m”
lm,l1m1 L̂r2

l”m”

ˇ

ˇ

ˇ

ˇ

r“1
(7)

where r indices on L̂lm operators are added to indicate that they may belong to different subsystems.
Nonetheless, the algebra remains the same, because operators L̂lm belong, at the same time, to the global
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SUp8q. On the other hand, the nonlocality of this algebra in the point of view of subsystems should
induce a dependence on derivative with respect to parameters when infinitesimal transformations are
considered, e.g., in the Lagrangian. Specifically, we expect a relation between r2 and pr, r1q, determined
by homomorphism (5). In the infinitesimal limit, the r.h.s. of (7) becomes Lie derivative of L̂lm in the
direction of L̂l1m1 in the manifold that is defined by parameters pr, θ, φ, tq, where the last parameter is
time with respect to an observer, as described in the next subsection.

In summary, after the division of the Universe to subsystems, their SUp8q symmetries are indexed
by angular parameters pθ, φq and an additional continuous parameter r “ p0,8q. They share the algebra
of global SUp8q, but acquire a new index and, in this sense, their algebra becomes nonlocal. Notably,
in the infinitesimal limit the algebra can be considered as the Lie derivative of L̂a P BrHs operators
on the manifold of parameter space pr, theta, φ, tq. Differential properties of the model need more
investigation and will be reported elsewhere.

Finally, we can define a conjugate set of parameters for the dual Hilbert space H˚U and dual
operators Ĵa defined in (2). Therefore, in contrast to some quantum gravity candidates, this model does
not have a preference for position or momentum spaces.

4.3. Clocks and Dynamics

The last step for construction of a dynamical quantum Universe is the introduction of a clock by
using comparison between variation of states of two subsystems, tagged as system and clock, under the
application of operators L̂α P SUp8q ˆG by a third subsystem, tagged as observer, who plays the role
of a reference. The necessity of an observer/reference is consistent with the foundation of quantum
mechanics, as described in [21]. In the context of the present model, this discrimination can be
understood as the following: although the global SUp8q symmetry means that any variation of full
state by application of L̂α is a gauge transformation, a variation of subsystems with respect to each
others is meaningful and can be quantified.

The technical details of introducing a clock and relative time in quantum mechanics are intensively
studied in the literature, see e.g., [27] for a review and proof of the equivalence of different approaches.
Here, we describe this procedure through an example. Consider the application of operators
L̂c P BrHCs and L̂s P BrHss to two subsystems, called clock and system, respectively, such that:

L̂cρc L̂:c “ ρc ` dρc “ dρ1c, L̂sρs L̂:s “ ρs ` dρs “ dρ1s (8)

Because these operations are local and restricted to subsystems, they are not gauged out. One way
of associating a c-number quantity to these variations is to define parameter t, such that, for instance,
dt ” |tr pρ1cÔcq ´ tr pρcÔcq|, where Ôc is an observable of the clock subsystem. This quantity is positive
and, by definition, incremental. The Hamiltonian operator of the system Hs P BrHss according to this
clock would be an operator for which dρs{dt “ ´i{h̄rHs, ρss.

More generally, defining a clock is equivalent to comparing excursion path of two subsystems
in their respective Hilbert space under successive application of L̂c and L̂s to them, respectively.
The arrow of time arises because through the common SUp8q symmetry any operation—even a local
one—is communicated to the whole Universe. Thus, inverting the arrow of time amounts to performing
an inverse operation on all subsystems, which is extremely difficult. Therefore, although the dynamical
equation of one system may be locally symmetric with respect to time reversal, due to global effect of
every operation, its effect cannot be easily reversed.

4.4. Geometry of Parameter Space

The final stride of time definition brings the dimension of continuous parameter space necessary
for describing states and dynamics of an infinite dimensional divisible Universe to 3 + 1, namely
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pr, θ, φ, tq.9 Although these parameters arise from different properties of the Universe, namely pθ, φq

from SUp8q symmetry, r from division to infinite number of subsystems, and t from their relative
variation, they are mixed through the global SUp8q symmetry, arbitrariness of the choice of reference
frame and clock, and quantum superposition of states. Therefore, geometry of the parameter space is
Rp3`1q.

The 2D parameter space of the whole Universe is, by definition, diffeomorphism invariant, as it is
the representation of SUp8q. However, at this stage it is not clear whether the subdivided Universe is
rigid, that is only invariant only under global frame transformations of the (3 + 1)D parameter space,
or deformable and invariant under its diffeomorphism. Here we show that it is indeed diffeomorphism
invariant. Moreover, its geometry is determined by states of subsystems.10

Consider a set of 2D diffeo-surfaces representing SUp8q symmetries of subsystem.
These diffeomorphism can be obtained from application of L̂lm P SUp8q operators to vacuum
state of each subsystem, considered to be a sphere. They are smooth functions of parameters
pr, θ, φq and can be identified with states of the subsystems, which are also smooth functions of
the same parameters. After ordering these surfaces—for instance, according to their average distances
11—and defining a projection between neighbours 12, such that if on ith surface the point pθi, φi, riq is
projected to pθi`1, φi`1, ri`1q on pi` 1qth surface, the distance in Rp3q between points in an infinitesimal
surface ∆Ωi ă ε2 containg pθi, φi, riq and infinitesimal surface ∆Ωi`1 ă ε12 containg pθi`1, φi`1, ri`1q

approaches zero if ε, ε1 Ñ 0. The path connecting closest points on ∆Ωi and ∆Ωi`1 defines an
orthogonal direction in a deformed S2 ˆ Rp1q–Rp3q and the Riemann curvature of this space can be
determined from sectional curvature. Therefore, parameter space (or equivalently Hilbert space) is
curved. Moreover, as the projection between ∆Ωi and ∆Ωi`1 used for this demonstration is arbitrary,
we conclude that the parameter space is not rigid and its diffeomorphism does not change the physics.
The same procedure can be applied when a clock is chosen. Therefore, the above conclusions apply to
the full (3 + 1)D parameter space of the subdivided Universe.

Finally, from homomorphism between diffeo-surfaces and states of subsystems, we conclude that
(3 + 1)D classical spacetime can be interpreted as parameter space of the Hilbert space of subsystems
of the Universe, and gravity as the interaction that is associated to SUp8q symmetry.

4.5. Metric Signature

Up to now we indicated the dimension of spacetime—parameter space of SUp8q symmetry—after
subdivision of the Universe as 3 + 1. This implicitly means that we have considered a Lorentzian
metric with negative signature. In special and general relativity, the signature of metric is dictated by
observation of the constant speed of light in classical vacuum. Indeed, diffeomorphism invariance,
Einstein equation, and interpretation of gravity as curvature of spacetime are independent of signature
of the spacetime metric.

9 Evidently, in addition to 3 + 1 external parameters each subsystem represents the internal symmetry G, where its
representations have their own parameters.

10 Notice that even in classical general relativity diffeomorphism and relation between geometry and state of matter are
independent concepts. In particular, Einstein equation is not the only possible relation and a priori other diffeomorphism
invariant relations between geometry and matter are allowed—but constrained by experiments.

11 More generally, any measure of difference between states, such as Fubini–Study metric or fidelity can be used to order states.
As Hilbert spaces of quantum systems with SUp8q symmetry consist of continuous functions, we can use usual analytical
tools for defining a distance. However, we should not forget that functions are vectors of a Hilbert space. Moreover,
Hilbert space vectors are, in general, complex functions and each projection between diffeo-surfaces corresponds to two
projection in the Hilbert space, one for real part and one for imaginary part of vectors.

12 This projection is isomorphic to a homomorphism between BrHss of subsystems.
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In quantum mechanics, Heisenberg uncertainty relation imposes Mandelstam–Tamm
constraint [39] on the minimum time necessary for the transition of a quantum state ρ1 to another
perfectly distinguishable state ρ2 [23]:

∆t ě
h̄
?

2
cos´1 Apρ1, ρ2q
b

Qpρ1, Ĥq
,

Apρ1, ρ2q ” trp
?

ρ1
?

ρ2q, Qpρ, Ĥq ”
1
2
|trpr

?
ρ, Ĥs2q| (9)

where Ĥ is the system’s Hamiltonian. Consider ρ1 as the state of Universe after selecting and separating
an observer and a clock and ρ2 as an infinitesimal variation of ρ1, that is ρ2 “ ρ1 ` dρ1. We assume
that the clock is chosen, such that, in (9), minimum time is achieved. Subsequently, (9) becomes:

QpĤ, ρ1qdt2 “ trp
a

dρ1
a

dρ1
:
” ds2 (10)

This equation is similar to a Riemann metric for a system at rest with respect to the chosen coordinates
frame for the parameter space pr, θ, φ, tq. On the other hand, the r.h.s. of (10) only depends on the
variation of state and is independent of the chosen frame for parameters. Therefore, ds is similar to an
infinitesimal separation. A coordinate transformation, i.e., pr, θ, φ, tq Ñ pr1, θ1, φ1, t1q does not change
state of the Universe and is equivalent to a basis transformation in the Hilbert space. On the other
hand, the l.h.s. of (10) changes. Considering the similarity of (10) to metric equation, we can write
ds2 as:

g00dt12 ˘ giidx1idx1i “ ds2 (11)

where we have used Cartesian coordinates in place of spherical. We have chosen parameter
transformation such that g0i “ gi0 “ 0. We have also assumed gij ą 0 and factorized the sign
of spatial part of the metric. In these new coordinates, the Hamiltonian associated to the new clock t1 is
Ĥ1 and Mandelstam–Tamm relation imposes:

Q1pĤ1, ρ1qdt12 ” g00dt12 ě trp
a

dρ1
a

dρ1
:
q “ ds2 (12)

For ds2 ě 0, constraint (12) is only satisfied if the sign of spatial part in (11) and thereby the
signature of the metric is negative. We remind that Mandelstam–Tamm constraint does not apply to
states that do not fulfill distinguishability condition. In these cases, ds2 ă 0 is allowed. In classical
view of spacetime, they correspond to spacelike events, where two events/states are not causally
related. In quantum mechanics, this can be related to nonlocality [40] and the absence of strict causality.
Additionally, the explicit dependence of separation on the density matrix in (10) and (12) and its
independence of the coordinate frame of the parameters/spacetime confirms and completes the
discussion of Section 4.4 regarding the curved geometry of parameter space and diffeomorphism
invariance of subdivided Universe.
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4.6. Lagrangian of Subsystems

Finally, the Lagrangian of the Universe after the division to subsystems and selection of reference
observer and clock takes the following form:

LUs “

ż

d4x
a

´g
„

1
16πGN h̄

ÿ

l,m,l1,m1

trpL˚lmpxqLl1m1pxqL̂lm L̂l1m1q `

1
8pπGN h̄q1{2

ˆ

ÿ

l,m,a

trpLlmpxqTapxqL̂lm b T̂aq `
ÿ

lm

LlmtrpL̂lm b 1Gρpxqq
˙

`

1
4

ÿ

a,b

trpT˚a pxqTbpxqT̂aT̂bq `
1
2

ÿ

a
Tatrp1SUp8q b T̂aρpxqq



. (13)

The terms of this Lagrangian can be interpreted as the following. The first term is the Lagrangian
for an ensemble of SUp8q symmetries of all subsystems, except observer and clock. Amplitudes
Ll1m1pxq depend on full SUp8q parameter space, which is pr, θ, φ, tq. Due to the nonlocal algebra (7),
we expect that Ll1m1pxq’s include derivative terms. Additionally, Llm’s are normalized such that the
usual gravitational coupling be explicit. We notice that, if h̄GN 9 h̄2

{M2
P Ñ 0, the first and the third

terms will be canceled. Therefore, the naive classical limit of the model does not include these gravity
related terms.

The second term presents gravitational interaction of internal gauge fields and matter, respectively.
The third and forth terms together correspond to the Lagrangian of pure gauge fields for local G
symmetry and its interaction with matter field. They take the standard form of Yang–Mills models if
Tapxq fields are two-forms in the (3 + 1)D parameter space.

We leave explicit description of Ll1m1pxq’s and Ta’s as functionals of spacetime, and determination
of semi-classical limit of the Lagrangian for future works. Nonetheless, the Lagrangian (13) is not
completely abstract. Llm operators can be expressed as a tensor product of Pauli matrices and regrouped
by r and t indices, which have no other role than associating a group of matrices to subsystems. This
is because the tensor product of SUp8q is homomorphic to itself. However, such expansion is not
very useful and practical for analytical calculations, in particular for finding semi-classical limit of
the model.

5. Comparison with Other Quantum Gravity Models

It is useful to compare this model with string theory and Loop Quantum Gravity (LQG)—the two
most popular quantum gravity candidates.

A common aspect of string/superstring theories with the present model is the presence of a 2D
manifold in their foundation. However, in contrast to string theories, in which a 2D world sheet is
introduced as an axiom without any observational support, the presence of a 2D manifold here is a
consequence of the infinite symmetry of the Universe, which has compelling observational support.
Moreover, the 2D nature of the underlying Universe manifests itself only when the Universe is
considered as a whole. Otherwise, it is always perceived as a (3 + 1)D continuum (plus parameters of
internal symmetry of subsystems).

In string theory, matter and spacetime are fields living on the 2D world sheet, or equivalently the
world sheet can be viewed as being embedded in a multi-dimensional, partially compactified space
without any explanation for the origin of such non-trivial structures. On the other hand, in the present
model the approach to matter is rather bottom-up. The Cartan decomposition of SUp8q to smaller
groups, in particular SUp2qmeans that they can be easily break and separate from the pool of the SUp8q
symmetry—for instance by quantum correlation between pairs of subsystems—without affecting the
infinite symmetry. And indeed it seems to be the case because SUp2q and SUp3q Ă SUp2q ˆ SUp2q –
SUp4q are Standard Model symmetries. Additionally, string theory is fundamentally first quantized
and string based field theories are considered to be low energy effective descriptions. However,
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as explained in the previous sections, in the present model owing to its infinite dimensional symmetry,
Hilbert and Fock spaces are homomorphic and the model can be straightforwardly considered as first
or second quantized.

The importance of SUp2q symmetry in the construction of LQG and its presentation as spin
foam [20] is shared with the present model. However, SUp2q – SOp3q manifold on which Ashtekar
variables are defined has its origin in the ADM (3 + 1)D formalism, based on the presumption that
spacetime and thereby quantum gravity should be formulated in the physical spacetime. Moreover,
LQG does not address the origin of matter as the source of gravity or the origin of the Standard
Model symmetries. The present model explains both the dimension of spacetime and relation between
quantum gravity, matter, and SM symmetries.

A concept that string theory and LQG does not consider—at least not in their foundation—is
the fact that in quantum mechanics discrimination between observer and observered is essential,
and models which do not consider this concept in their construction—especially when the models is
intended to be applied to the whole Universe—are somehow metaphysical, because they implicitly
consider that the observer is out of this Universe.

6. Outline and Future Perspectives

In this work, we proposed a new approach to quantum gravity by constructing a Universe in
which gravity is fundamentally quantic and demonstrated how it may answer some of questions
that we raised in the Introduction section regarding gravity and the nature of spacetime. As we have
already summarized the model and its results in Section 1.1, here we concentrate on perspectives for
further studies.

Understanding nonlocality and differential form of the algebra of subsystem defined by
Equation (7) is crucial for finding an algebraic expression for the Lagrangian (13), which, at present,
is too abstract. This task is especially important for investigating the semi-classical limit of the model.
On the other hand, this Lagrangian describes an open system, because the state of the observer and
probably some of degrees of freedom of the clock are traced out. Formulation of the subdivided
Universe as an open system should help application of the model to black hole physics and cosmology.

We discussed a bottom-up procedure for the emergence of internal symmetries in
Section 4. In particular, we concluded that they should generate stronger couplings between
particles/subsystems than gravity. However, this argument does not explain how the hierarchy
of couplings arises. We conjecture that clustering of subsystems, which leads to the emergence of
internal symmetries, also determines their couplings, probably through processes that are analogous to
the formation of moiré super-lattice and strong correlation between electrons in 2D materials. The fact
that, in this model, both the Universe as a whole and its subsystems have SUp8q symmetry, which is
represented by diffeomorphism of 2D surfaces, means that the necessary ingredients for formation of
moiré-like structures are readily available.

In the absence of experimental quantum gravity tests, the ability of models to solve theoretical
issues has prominent importance. Among topics that must be addressed black holes and puzzles
of information loss in semi-classical approaches have high priority. Because the model studied here
is inherently quantic, the first task is finding a purely quantic definition for black holes. Naively,
a quantum black hole may be defined as a many particle system in a quantum well in real space.
However, we know that quantum field theory in curved spacetime background of black holes leads to
Hawking radiation and extraction of energy from black hole. Consequently, in the realm of quantum
mechanics, black holes are not really contained in a limited region of space. Their potential well is not
perfect and their matter content extends to infinity. Thus, this definition should be considered as an
initial condition.

Inflation and dark energy are other issues that should be investigated in the context of this model.
Notably, it would be interesting to see whether the topological nature of 2D Lagrangian of the whole
Universe can have observable consequences, for instance, as a small but nonzero vacuum energy.
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As for inflation, an exponential decoupling and decoherence of particles/subsystems in the early
universe may be interpreted as inflation and an extension of spacetime. These possibilities need
detailed investigation.

In conclusion, the inhomogeneous Lorentz transformation may be the classical interface of a much
deeper and global realm of a quantum Universe.
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Appendix A. A Very Brief Summary of the Best Studied Quantum Gravity Models

Introduction of quantum mechanical concepts to general relativity was first mentioned by Einstein
himself in his famous 1916 paper. The first detailed work on the topic was by Léon Rosenfeld in
1930 [41], in which the action of Einstein-Hilbert model with matter is quantized by replacing classical
variables with hermitian operators, see e.g., [42] for the history of early approaches to quantum gravity.
This canonical approach and its modern variants based on the quantization of 3 + 1 dimensional
Hamiltonian description of dynamics, notably Wheeler-DeWitt (WD) formalism [43,44] and quantum
geometrodynamics [45] lead to nonrenormalizable models.13 See e.g., [46] for review of other issues of
these approaches and their current status.

Another model, inspired by the ADM Hamiltonian formulation of general relativity [47], the Dirac
Hamiltonian description of quantum mechanics [48], and the WD approach to QGR is Loop Quantum
Gravity (LQG), see e.g., [49,50] and references therein. In this approach, triads defined on a patch of
the 3D space—what is called Ashtekar variables [19]—replace spatial coordinates and are considered
as Hermitian operators acting on the Hilbert space of the Universe. Their conjugate operators form
a SUp2q Yang-Mills theory and provide a connection—up to an undefined constant called Immirzi
parameter—for the quantized 3D space. However, to implement diffeomorphism of general relativity
without referring to a fixed background, the physical quantized entities are holonomies—gauge
invariant nonlocal fluxes and Wilson loops defined on 2D surfaces and their boundaries, respectively.
Similar to the WD formalism, the LQG Hamiltonian is a constraint, and thereby there is no explicit
time in the model [49]. Recently, it is shown that a conformal version of the LQG has an explicit time
parameter [51]. But, conformal symmetry must be ultimately broken to induce a mass or distance
scale in the model. Other issues in the LQG are lack of explicit global Lorentz invariance, absence of
any direct connection to matter, and most importantly quantization of space, that violates Lorentz
invariance even when the absence of time parameter in the model is neglected.

Regrading the violation of Lorentz invariance, even if discretization is restricted to distances
close to the Planck scale, matter interaction propagates it to larger distances [10]. This issue is also
present in other background independent approaches to quantum gravity, in which in one way or
another the spacetime is discretized. Examples of such models are symplectic quantum geometry [52]
and dynamical triangulations, in which space is assumed to consist of a dynamical lattice [53,54].
See also [55] for a recent review of these approaches and [56] for some of their issues, in particular a
likely absence of a UV fixed point, which is necessary for renormalizabilty of these models. Therefore,
the claimed quantization of space volume or in other words emergence of a fundamental length scale
in UV limit of these models is still uncertain. Another example is causal sets—a discretization approach
with causally ordered structures [57], see e.g., [58] for a review. They probably suffer from the same
issue as other discretization models, notably breaking of Lorentz symmetry, see e.g., [59], but also [60]

13 We should emphasize that references given in this appendix are only examples of works on the subjects on which tens or
even hundreds of articles can be found in the literature.
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for counter-arguments. We should remind that all quantum gravity models depend on a length
(or equivalently mass) scale, namely the Planck length LP (or mass MP). Dimensionful quantities need
a unit, which does not arise from dimensionless or scale invariant quantities. Therefore, discretization
is not a replacement for a dimensionful fundamental constant in quantum gravity models.

Another way of quantizing spacetime without discretization is consideration of a noncommutative
spacetime [61,62]. This formalism is in fact one of the earliest proposals for a quantum gravity.
More recently this approach is studied in conjunction with other QGR models such as string theory [63]
and matrix models [64]. An essential issue of this class of models is their inherent nonlocality that
leads to mixing of low and high energy scales [65]. On the other hand, this characteristic might be
useful for constraining them, and thereby related QGR models [66].

In early 1980’s the discovery of both spin-1 and spin-2 fields in 2D conformal quantum field
theories embedded in a D-dimensional spacetime—called string models—opened a new era and
discipline for seeking a reliable quantum model for gravity, and ultimately unifying all fundamental
forces in a Great Unified Theory (GUT). Nambu-Goto and Polyakov string theories were studied in
1970’s as candidates for describing strong interaction of hadrons. Although with the establishment
of Quantum Chromo-Dynamics (QCD) as the true description of strong nuclear force string theories
seemed irrelevant, their potential for quantizing spacetime [67,68] gave them a new role in fundamental
particle physics. String and superstring theories became and continue to be by far the most extensively
studied candidates of quantum gravity and GUT.14

Quantized strings/superstring models are finite and meaningful only for special values of
spacetime dimension D. For these cases, the central charge of Virasoro algebra or its generalization
to affine Lie algebra vanishes when the contribution of all fields, including ghosts of the conformal
theory on the 2D world-sheet are taken into account. Without this restriction the theory is infested
by anomalies, singularities, and misbehaviour. The allowed dimension is D “ 26 for bosonic string
theories and D “ 10 for superstrings. The group manifold on which a viable string model can live
is restricted as well. For instance, the allowed symmetry in heterotic Polyakov model is SOp32q or
E8 ˆ E8. Wess-Zumino-Novikov-Witten (WZNW) models with 2D affine Lie algebras provide more
variety of symmetries, including coset groups. However, restriction on dimension/rank of symmetry
groups remains the same. Therefore, to make contact with real world, which has 3 + 1 dimensions,
the remaining dimensions must be compactified.

Initially the inevitable compactification of fields in string models was welcomed because it might
explain internal global and local (gauge) symmetries of elementary particles, in a similar manner as in
Kaluza-Klein unification of gravity and electromagnetism [71,72]. However, intensive investigations
of the topic showed that compactification generates a plethora of possible models. Some of these
models may be considered more realistic than others based on the criteria of having a low energy limit
containing the Standard Model symmetries. But, unobserved massless moduli, which may make the
Universe overdense if they acquire a mass at string or even lower scales, strongly constrain many
of string models. Therefore, moduli must be stabilized [73,74]. For instance, they should acquire
just enough effective mass to make them a good candidate for dark matter [75]. Moreover, in string
theories there is no natural inflation candidate satisfying cosmological observations without fine-tuning.
Although moduli are considered as potential candidates for inflation [76], small non-Gaussianity of
Cosmic Microwave Background (CMB) anisotropies [77] seems to prefer single field inflation [78].
In addition, single field slow roll inflation may be inconsistent [79] with constraints to be imposed on
a scalar field interacting with quantum gravity in the framework of swampland extension of string
models landscape [80]. Some researchers still believe that a genuinely non-perturbative formulation
of superstring theories may solve many of these issues 15. However, the absence of any evidence of

14 A textbook description and references to original works can be found in textbooks such as [69,70].
15 Non-supersymmetric string models may have no non-perturbative formulation and should be considered as part of a

supersymmetric model, see e.g., Chapter 8 of [70].



Universe 2020, 6, 194 17 of 27

supersymmetry up to „TeV energies at LHC—where it was expected, such that it could solve Higgs
hierarchy problem [81]—is another disappointing result for string models.

Observation of accelerating expansion of the Universe due to a mysterious dark energy with
properties very similar to a cosmological constant—presumably a nonzero but very small vacuum
energy—seems to be another big obstacle for string theory [82] as the only quantum gravity
candidate including both matter and gravity in its construction. The landscape of string vacua
has Á10200´500 minima—depending on how models are counted [83]. But there is no rule to
determine which one is more likely and why the observed density of dark energy—if it is the
vacuum energy—is „10123 fold less than its expected value, namely MP

4. To tackle and solve some
of these issues, extensions and/or reformulations of string theories have led to their variants such
as matrix models [84,85], M-theory, F-theory, and more recently swampland [80] and weak gravity
conjecture [38,86], and models constructed based on them.

In early 1999 Randall-Sundrum brane models [87,88] and their variants—inspired by D-branes in
toroidal compactification of open strings and propagation of graviton closed strings in the bulk of one
or two non-compactified warped extra dimensions—generated a great amount of excitement and were
subject of intensive investigations. By confining all fields except gravitons on 4D branes these models
are able to lower the fundamental scale of quantum gravity to TeV energies—presumably the scale
of weak interaction—and explain the apparent weakness of gravitational coupling and high value of
Planck mass. Thus, a priori brane models solve the problem of coupling hierarchy in Standard Model
of particle physics. In addition, an effective small cosmological constant on the visible brane may be
achievable [89,90]. However, brane models, in general, have a modified Friedmann equation, which is
strongly constrained by observations [91–93]. Moreover, it is shown that the confinement of gauge
bosons on the brane(s) violates gauge symmetries, and if gauge fields propagate to the bulk, so do the
matter [94,95]. Nonetheless, some methods for their localization on the brane are suggested [96,97].
On the other hand, observation of ultra high energy cosmic rays constrains the scale of quantum
gravity and characteristic scale of warped extra-dimension to ą100 TeV [98,99]. This constraint is
consistent with other theoretical and experimental issues of brane models, specially in the context of
black hole physics, that is instability of macroscopic black holes, nonexistence of an asymptotically
Minkowski solution [100,101], and observational constraint [102] on the formation of microscopic
black holes in colliders at TeV energies [103].

In the view of these difficulties more drastic ideas have emerged. Some authors suggests UV/IR
correspondence of gravity. They propose that at UV scales graviton quantum condensate behaves
asymptotically similar to classical gravity [104,105]. Other proposals attracting some interest include
the emergence of classical gravity and spacetime from thermodynamics and entropy [106,107] or
condensation of more fundamental fields [108,109].

More recently, the development of quantum information theory and its close relation with
entanglement of quantum systems, their entropy and the puzzle of information loss in Hawking
radiation of black holes have promoted models that interpret gravity and spacetime as an emergent
effect of entanglement [110–112] and tensor networks [113,114]. These ideas are in one way or another
related to holography principle and Ads/CFT equivalence conjecture [115]. In these models spacetime
metric and geometry emerge from tensor decomposition of the Hilbert space of the Universe to
entangled subspaces. The resulted structures are interpreted as graphs and a symplectic geometry
is associated to them. In the continuum limit the space of graphs can be considered as a quantum
spacetime. In a somehow different approach in the same category of models the concept of locality
specified by subalgebras is used to decompose the Universe. Local observables belong to spacelike
subspaces in a given reference frame/basis [116,117]. This means that in these models a background
spacetime is implicitly postulated without being precise about its origin and nature. In addition to
spacetime, subsystems/subalgebras should somehow present matter. But, it is not clear how they are
related. Moreover, the problem of the spacetime dimensionality and how it acquires its observed value
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is not discussed. In any case, investigation of these approaches to quantum gravity is still in its infancy
and their theoretical and observational consistency are not fully worked out.

Appendix B. Quantum Mechanics Postulates in Symmetry Language

In this appendix we reformulate axioms of quantum mechanics à la Dirac [118] and von
Neumann [119] with symmetry as a foundational concept:

i. A quantum system is defined by its symmetries. Its state is a vector belonging to a projective
vector space called state space representing its symmetry group. Observables are associated
to self-adjoint operators. The set of independent observables is isomorphic to subspace of
commuting elements of the space of self-adjoint (Hermitian) operators acting on the state space
and generates the maximal abelian subalgebra of the algebra associated to symmetry group.

ii. The state space of a composite system is homomorphic to the direct product of state spaces
of its components.16 In the special case of separable components, this homomorphism
becomes an isomorphism. Components may be separable-untangled—in some symmetries and
inseparable—entangled—in others. The symmetry group of the states of a composite system is
a subgroup of direct product of its components.

iii. Evolution of a system is unitary and is ruled by conservation laws imposed by its symmetries
and their representation by the state space.

iv. Decomposition coefficients of a state to eigen vectors 17 of an observable presents the
coherence/degeneracy of the system with respect to its environment according to that
observable. Projective measurements by definition correspond to complete breaking of
coherence/degeneracy. The outcome of such measurements is the eigen value of the eigen
state to which the symmetry is broken. This spontaneous decoherence (symmetry breaking) 18

reduces the state space to the subspace generated by other independent observables, which
represent remaining symmetries/degeneracies.

v. A probability independent of measurement details is associated to eigen values of an observable
as the outcome of a measurement. It presents the amount of coherence/degeneracy of the
state before its breaking by a projective measurement. Physical processes that determine the
probability of each outcome are collectively called preparation.19

These axioms are very similar to their analogues in the standard quantum mechanics, except that
we do not assume an abstract Hilbert space. The Born rule and classification of the state space
as a Hilbert space can be demonstrated using axioms (i) and (v), and properties of statistical
distributions [21]. We remind that the symmetry represented by the Hilbert space of a quantum
system is in addition to the global Up1q symmetry of states, which leaves probability of outcomes in a
projective measurement unchanged. When system is divided to subsystems that can be approximately
considered as non-interacting, each subsystem acquire its own local Up1q symmetry. Even in presence
of interaction between subsystems, a local Up1q symmetry can be considered, as long as the interaction
does not change the Hilbert space of subsystems. We notice that axiom (ii) slightly diverges from its
analogue in the standard quantum mechanics. It emphasizes on the fact that the symmetry group
represented by a composite system can be smaller than the tensor product of those of its components.

16 Notice that this axiom differentiates between possible states of a composite system, which is the direct product of those of
subsystems, and what is actually realized, which can be limited to a subspace of the direct product of individual components
and have reduced symmetry.

17 More precisely rays because state vectors differing by a constant are equivalent.
18 Ref. [21] explains why decoherence should be considered as a spontaneous symmetry breaking similar to a phase transition.
19 Literature on the foundation of quantum mechanics consider an intermediate step called transition between preparation and

measurement. Here we include this step to preparation or measurement operations and do not consider it as a separate
physical operation.
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In particular, entanglement may reduce the dimension of Hilbert space and thereby the rank of
symmetry group that it represents.

A corollary of these axioms is that without division of the Universe to system(s) and observer(s)
the process of measurement is meaningless. In another word, an indivisible universe is trivial and
homomorphic to an empty set. In standard quantum mechanics the necessity of the division of the
Universe to subsystems arises in the Copenhagen interpretation, which has many issues, see e.g., [120]
for a review. In covariant quantum models and ADM canonical quantization of gravity, in which
Hamiltonian is always null and naively the Universe seems to be static, relational definitions of time is
based on the division of the Universe to subsystems, see e.g., [27]. Therefore, we conclude that division
to subsystems is fundamental concept and must be explicitly included in the construction of quantum
cosmology models.

Appendix C. State Space Symmetry and Coherence

The choice of a Hilbert space H to present possible states of a system is usually based on the
symmetries of its classical Lagrangian. Although these symmetries have usually a finite rank—the
number of simultaneously measurable observables—the Hilbert space presenting them may be infinite
dimensional. For example, translation symmetry in a 3D space is homomorphic to Up1q ˆUp1q ˆUp1q
and has a global SUp2q – SOp3q symmetry under rotation of coordinates. They can be presented
by 6 parameters/observables. Thus, the rank of the symmetry is finite. Nonetheless, due to the
abelian nature of Up1q group, the Hilbert space of position operator HX is infinite dimensional.
More generally, the dimension of the Hilbert space depends on the dimension of the representation of
the symmetry group of Lagrangian and its reducibility. The Hilbert space of a multi-particle system
can be considered as a reducible representation of the symmetry, even if single particles are in an
irreducible representation. In particular, Fock space of a many-particle system can be presented as an
infinite dimensional Hilbert space representing symmetries of the Lagrangian in a reducible manner.
This property is important for the construction of the quantum Universe model studied here, because it
demonstrates that the infinite size of the physical space can be equally interpreted as manifestation of
infinite number of particles/subsystems in a composite Universe.

Ensemble of linear operators acting on a Hilbert space BrHs represents SUpNq group where N is
the dimension of the Hilbert space H and can be infinite. As discussed in details in [21] configuration
space of classical (statistical) systems have

ÂN Up1q symmetry where each Up1q is isomorphic to the
continuous range of values that an observable may have. Thus, quantization extends the symmetry of
classical configuration space to BrHs “ SUpNqxUp1q – UpNq Ą

ÂN Up1q, where here we have also
considered the global Up1q symmetry of the Hilbert space.

Application of linear operators can be interpreted as interaction with another system or more
generally with the rest of the Universe. The change of state can be also considered as Positive Operator
Valued Measurement (POVM). In particular, a projective measurement and decoherence makes the
state completely incoherent ρ̂inc:

B̂ρ̂c B̂: Ñ ρ̂inc “
ÿ

i

ρi ρ̂i, ρ̂i ” |iyxi| (A1)

where B̂ P BrHs, |iy is an eigen basis for the measured observable, and subscript inc means incoherent.
We remind that the space of simultaneously observable operators corresponds to the Cartan subalgebra
of BrHs. Coefficients ρi are probability of occurrence of eigen value of |iy as outcome of the
measurement. Because ρ̂inc is diagonal, completely incoherent states ρ̂inc represent the Cartan subgroup
of BrHs. A maximally coherent state in the above basis is defined as:

ρ̂maxc9
ÿ

i,j

|iyxj| (A2)
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This is a pure state, in which all eigen states have the same occurrence probability in a projective
measurement. Notice that due to the projectivity of Hilbert space ρ̂maxc is unique and application of
any other member of BrHs reduces its coherence, quantified for instance by fidelity or Fubini-Study
metric [22]. More generally, action of BrHs members changes coherence of any state which is not
completely incoherent. For this reason, we call SUpNq symmetry of BrHs the coherence symmetry.20

It is useful to remind that in particle physics generators of BrHs space physically exist and are
not abstract operation of an apparatus controlled by an experimenter. In the Standard Model BrHs
is generated by vector boson gauge fields in fundamental representation of SM symmetry group.
They act on the Hilbert space generated by matter fields. If gravity, which is the only known universal
interaction follows the same rule, we should be able to define a Hilbert space for matter on which
linear operators representing gravity act. In the model studied here we identify these operators with
L̂’s defined in Section 2.

Regarding the example of translational and rotational symmetries of the physical space mentioned
earlier, despite the fact that the dimension of the Cartan subalgebra of BrHXs – SUpN Ñ8q is infinite,
and a priori there must be infinite simultaneously observable quantities in the physical space, in
quantum mechanics only one vector observable is associated to BrHXs, namely the position of a
particle/system. QFTs define field operators at every point of the space and assume that at equal time
operators at different positions commute (or in the case of fermions anti-commute). However, in the
formulation of QFT models position is a parameter not an operator. These different interpretations of
spacetime highlight the ambiguity of its nature in quantum contexts—as described in question 2 in the
Introduction section.

Appendix D. SUp8q and Its Polynomial Representation

Special unitary group SUpNq can be considered as N-dimensional representation of SUp2q.
For this reason generators TpNqlm of the associated Lie algebra supNq can be expanded as a matrix
polynomial of N-dimensional generators of SUp2q. Indices pl, mq in these generators are the same as in
SUp2q representations: l “ 0, ¨ ¨ ¨ , N ´ 1, m “ ´l . . . ,`l. Lie bracket of generators TpNqlm is defined as:

rT̂pNqlm , T̂pNql1m1 s “ f pNq l”m”
lm,l1m1 T̂pNql”m” (A3)

Structure coefficients f pNq l”m”
lm,l1m1 of supNq can be written with respect to 3j and 6j symbols, see e.g., [29] for

their explicit expression. For N Ñ8, after rescaling these generators T̂pNqlm Ñ pN{iq1{2T̂pNqlm , they satisfy
the following Lie brackets:

rL̂lm, L̂l1m1s “ f l”m”
lm,l1m1 L̂l”m” (A4)

where L̂lm ” T̂pNÑ8qlm and coefficients f l”m”
lm,l1m1 are N Ñ8 limit of f pNq l”m”

lm,l1m1 . In addition, it is shown [29]
that L̂lm can be expanded with respect to spherical harmonic functions Ylmpθ, φq defined on a sphere,
i.e., the manifold associated to SUp2q:

L̂lm “
BYlm
B cos θ

B

Bφ
´
BYlm
Bφ

B

B cos θ
(A5)

L̂lmYl1m1 “ ´tYlm, Yl1m1u “ ´ f l”m”
lm,l1m1Yl”m” (A6)

tf, gu ”
Bf

B cos θ

Bg

Bφ
´
Bf

Bφ

Bg

B cos θ
, @ f, g defined on the sphere (A7)

20 In some quantum information literature coherence symmetry is called asymmetry [23]. In this work we call it coherence
symmetry or simply coherence to remind that its origin is quantum degeneracy and indistinguishability/symmetry of states
before a projective observation.
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where θ “ r0, πs and φ “ r0, 2πs are angular coordinates and tf, gu is the Poisson bracket of continuous
functions f and g on the sphere. We notice that although generators L̂lm are linear combination of
B{Bpcos θq and B{Bφ, the latter operators cannot be considered as generators of SUpN Ñ8q, because
they commute with each other and generate only the abelian subspace of SUp8q group.

Using (A5)–(A7), coefficients f l”m”
lm,l1m1 can be determined:

f l”m”
lm,l1m1 “

p2l”` 1q
4π

ż

d2Ω Y˚l”m”tYlm, Yl1m1u, Y˚lm “ Yl,´m d2Ω ” dpcos θq dφ (A8)

Here we normalize Ylm such that:
ż

d2Ω Y˚l1m1 Ylm “
4π

p2l ` 1q
δll1 δmm1 (A9)

Although L̂lm is defined in discrete pl, mq space—analogous to a discrete Fourier mode—we can
use inverse expansion to define operators which depend only on continuous angular coordinates:

L̂pθ, φq ”
ÿ

l,m

Y˚lm L̂lm (A10)

As tL̂pθ, φqu are linear in L̂lm and contain all these generators, they are also generators of SUpN Ñ

8q – DiffpS2q and coefficients in their Lie bracket is expressed with respect to θ and φ as:

fppθ, φq, pθ1, φ1q; pθ”, φ”qq “
ÿ

lm,l1m1,l”m”

Y˚lmpθ, φqY˚l1m1pθ1, φ1qYl”m”pθ”, φ2q f l”m”
lm,l1m1 (A11)

Coefficients f are anti-symmetric with respect to the first two sets of parameters and can be
considered as a 2-form on the sphere, and Lie algebra of L̂pθ, φq operators as:

rL̂pθ1, φ1q, L̂pθ2, φ2qs “

ż

dΩ3 fppθ1, φ1q, pθ2, φ2q; pθ3, φ3qq L̂pθ3, φ3q (A12)

Operators L̂pθ, φq are continuous limits of L̂lm’s and both set of generators are vectors and live on
the tangent space of the sphere.

Appendix E. Cartan Decomposition of SUp8q

Representations of supNq algebra can be decomposed to direct sum of smaller su algebras,
see e.g., [34] and references therein. In the case of SUp8q the fact that its algebra is homomorphic
to Poisson brackets of spherical harmonic functions, which in turn correspond to representations of
SUp2q – SOp3q, means that sup8q algebra should be expandable as direct sum of representations of
SUp2q, see e.g., [29,30] for the proof. Thus, up to a normalization factor depending only on l, generators
of sup8q algebra L̂lm can be expanded as:

L̂lm “ R
ÿ

iα“1, 2, 3,α“1,¨¨¨ ,l

apmqi1,¨¨¨il
σi1 ¨ ¨ ¨ σil (A13)

where σiα ’s are N Ñ 8 representation of Pauli matrices [29]. Coefficients apmq are determined
from expansion of spherical harmonic functions with respect to spherical description of Cartesian
coordinates, see [29] for details. This explicit description shows that up to a constant factor L̂lm
operators can be considered as tensor product of 2ˆ 2 Pauli matrices, and SUp8q – SUp2qb Sp2qb . . ..
This relation can be understood from properties of SUpNq group. Specifically, SUpNq Ě SUpN ´ Kq b
SUpKq. For N Ñ 8 and finite K, SUpN ´ K Ñ 8q – SUp8q. Therefore SUp8q is homomorphic to
infinite tensor product of SU groups of finite rank, in particular SUp2q—the smallest non-abelian
SU group. This shows that SUp2q group, which has a key role in some quantum gravity models,
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notably in LQG, simply presents a mathematical description rather than a fundamental physical
entity. The description of SUp8q as tensor product of SUp2q is comparable with Fourier transform,
which presents the simplest decomposition to orthogonal functions, but can be replaced by another
orthogonal function. It is only the application that determines which one is more suitable.

Appendix E.1. Eigen Functions of L̂pθ, φq and L̂lm

We define eigen functions of L̂pθ, φq and L̂lm operators as the followings:

L̂pθ, φqηpθ, φq “ Nηpθ, φq (A14)

L̂lmζlm “ N1ζlm (A15)

where N and N1 are constants21, but N1 may depend on pl, mq. Using definition of L̂pθ, φq and L̂lm and
properties of spherical harmonic functions, solutions of Equations (A14) and (A15) are obtained as:

$

&

%

ηpθ, φq “ iN
ř

lm

pl`mq!
mAlpl´mq! rFlmpcos θq ´Flmpcos θ0ptqqs ` ηpθ0ptqq

φ` Hpcos θq “ ´rHpcos θ0ptqq ´ φ0ptqs
(A16)

Al ”

c

4π

2l ` 1
Flm ”

ż

dpcos θq|Plmpcos θq|´2, (A17)

Hpcos θq ”

ż

dpcos θq

ř

lm

Alpl´mq!
pl`mq!

B|Plm cos θ|2

2B cos θ

ř

l1m1

im1 Al1 pl1´m1q!
pl1`m1q! |Pl1m1pcos θq|2

(A18)

where t parameterizes tangent surface at initial point pθ0, φ0q. Elimination of this parameter from two
equations in (A16) determines ηpθ, φq for a set of initial conditions. Because the second equation does
not depend on N, without loss of generality we can scale initial value ηpθ0q Ñ iNηpθ0q. With this
choice the eigen value N can be factorized, and because Hilbert space is projective, N can be considered
as an overall normalization factor and irrelevant for physics. Therefore, each set of parameters pθ, φq

present a unique pointer state for the Hilbert space.
In the same way we can calculate eigen functions of L̂lm as a parametric function:

$

’

&

’

%

ζlmpθq “ ´N1em2Wlmpθ0q

c

pl`mq!
pl´mq! rZlmpθq ´ Zlmpθ0ptqqs ` ζlmpθ0ptqq

φ´ imWlmpθq “ φ0ptq ´ imWlmpθ0ptqq
(A19)

Wlm ”

ż

dpcos θq
p1´ cos θ2q Plmpcos θq

pl ´m` 1q Ppl`1qmpcos θq
´ pl ` 1qPlmpcos θq (A20)

Zlm ”

ż

dpcos θq
e´m2 Wlmpcos θq

pl ´m` 1q Ppl`1qmpcos θq
´ pl ` 1qPlmpcos θq (A21)

Similar to ηpθ, φq, redefinition of initial value Zlmpθ0ptqq Ñ Zlmpθ0ptqqN1em2Wlmpθ0q leads to a
unique eigen function for L̂lm.

21 A priori N and N1 can depend on pθ, φq. However, their dependence on angular parameters can be included in η. Therefore,
only constant eigen values matter.
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Considering diffeomorphism invariance of the model, it is always possible to redefine coordinates
such that θ “ const. and φ “ const. constitute a basis and any state can be written as:

|ψy “

ż

d2Ω ψpθ, φq|θ, φy (A22)

Thus, as explained in the main text, vectors of the Hilbert space representing SUp8q are complex
functions on 2D surfaces. As SUp8q – DiffpS2q, the range of pθ, φq is θ “ r0., πs and φ “ r0., 2πq.
However, SUp8qmay be represented by diffeo-surfaces of higher genus. In this case |θ` nπ, φ` 2n1πy
for any integer n and n1 may present different states. States can be also expanded with respect to
|l, my [29].

Appendix E.2. Dynamics Equations of the Universe before its Division to Subsystems

The equilibrium solution for Lagrangian LU in (3) can be determined by variation with respect to
Llm and components of the state ρ in an orthogonal basis of the Hilbert space. In absence of environment
for the whole Universe, ρ is pure and can be written as ρ “ |ψyxψ|, where ψy is an arbitrary vector in
the Hilbert space HU . As discussed in Section 2 and explicitly shown in Appendix E.1, vectors of
HU correspond to complex functions of angular coordinates pθ, φq of the diffeo-surface, and can be
expanded with respect to spherical harmonic functions. Nonetheless, here we follow the usual bracket
notation of quantum mechanics and call states of this orthogonal basis |l, my, where l P Z{2, ´ l ď m ď

`l. In this basis |ψy “
ř

l,m ψlm |l, my and ρ “
ř

l,m,l1,m1 ψl,mψ˚l1,m1 |l, myxl1, m1|. After this decomposition
dynamics equations are expressed as:

BLU
Bψlm

“
ÿ

l1,m1,l”,m”

Ll”m”ψ˚l1m1xl1m1|L̂l”m”|l, my (A23)

BLU
BLlm

“
ÿ

l1,m1,l”,m”

ψ˚l”m”ψl”m”xl1, m1|L̂lm|l”m”y ` 2LlmtrpL̂lm L̂lmq (A24)

Because L̂lm is a generator of SUp8q, the last term in (A24) is a constant depending only on l
and normalization of generators. Thus, we define Cl ” trpL̂lm L̂lmq. Using description of L̂lm in (A13)
to tensor product of Pauli matrices, we conclude that L̂lm|l1, m1y ‰ 0 only for l ě l1 and consists of
linear combination of |l2, m2y states. On the other hand, xl1, m1|l, my “ δll1 δmm1 . Thus, xl1, m1|L̂lm|l”m”y
is nonzero only for terms with equal l indices and we can solve (A24) for Llm as the following:

Llm “ ´
1

2Cl

ÿ

|m1|,|m2|ďl,m`m1`m2“0

ψ˚lm1 ψlm2xl, m1|L̂lm|lm”y (A25)

By applying this solution to (A23) and using properties of L̂lm and |l, mywe find:

ÿ

m2,m2

ψ˚l,´pm`m1q
ψ˚l,´pm`m2q

ψlm1xl,´pm`m2q|L̂lm2 |l, myxl,´pm1 `m2q|L̂lm2 |l, m1y “ 0.

|m1|, |m1|, |m`m2|, |m1 `m2|,ď l,@l P Z{2 (A26)

Considering independence and orthogonality of |l, my states, this equation is satisfied only if
ψlm “ 0, |m| ď l, @l. Thus, equilibrium solution of the Lagrangian LU is a trivial vacuum.
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