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Abstract: The number of superheavy particles with the mass of the Grand Unification scale with
trans-Planckian energy created at the epoch of superheavy particle creation from the vacuum
by the gravitation of the expanding Universe is calculated. In later collisions of these particles,
gravitational radiation is radiated playing the role of bremsstrahlung for gravity. The effective
background radiation of the Universe is evaluated.
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1. Introduction

In the paper published by one of the present authors (A.A.G.) together with S.G. Mamayev [1],
finite results for particle creation in the early expanding Friedmann Universe were obtained.
The important result was the calculation of the finite density and finite total number of particles
created in the Lagrange volume. Our results were obtained by using Fock quantization with the
vacuum defined as the ground state of the instantaneous Hamiltonian. These results have a simple
intuitive physical interpretation due to the work done on the virtual pair on the Compton length of
the particle by the tidal forces due to the gravity of the expanding Universe. The number of particles
depends on the mass of the particle and leads to observable numbers of visible and dark matter
particles if this mass identified with the mass of the dark matter particles is equal to the number close
to the Great Unification scale [2]. A possible explanation of the origin of ultra high energy cosmic rays
due to the decay of such particles was given in [3–6].

Therefore, the main idea is that superheavy particles were created by gravitation, then some
part of them decayed to visible particles at high energies; however, after the energy became smaller,
the decays were frozen, and surviving superheavy particles formed the observed dark matter [3].
However, the mathematical calculation of particle creation makes possible the calculation of the
distribution function depending on the momenta, i.e., density not in coordinate, but in momentum
space. Surely, the finiteness of the particle density in coordinate space means that this function is going
to zero at very high values of the momentum. This means that the larger the momentum, the smaller
will be the number of created particles.

In this paper, we shall answer the question about the number of superheavy particles with Grand
Unification mass, but with the energy close to the Planckian mass. How many trans-Planckian particles
are created? Surely, their number is much smaller than the general number of created particles, but how
much? For the case of inflationary models, a similar question was asked for same particles called
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wimpzillas [7]. Why are this question and the answer to it important? This is because in our recent
paper [8], it was found that at trans-Planckian energies of colliding particles, gravitation wave radiation
is produced. This radiation is much stronger than the comparable electromagnetic radiation if it could
exist. It plays the role of the bremsstrahlung for superheavy particle and can lead to the formation of
structures for them as is the case for electromagnetic radiation at small energies when galaxies, stars,
etc., can be formed. In the paper [9], it was also shown that collision of particles with trans-Planckian
energies can lead to the formation of mini black holes. The problem of the formation of primary
galactic nuclei during the phase transition in the early Universe was considered in [10].

In the book [11], it was mentioned that in a Friedmann expanding Universe, the number of
created particles is proportional to the number of causally disconnected parts of the Universe at the
Compton time of the existence of the Universe. However, later, these disconnected parts are united,
and collisions of particles and black holes occur. This makes possible the speculation of the possible
arising of the primordial black holes leading to the active nuclei of Galaxies by this mechanism.

2. Creation of Superheavy Particles with Planckian Energy in the Early Universe

Consider the creation of scalar and spinor particles in the early homogeneous isotropic Friedmann
Universe with metric:

ds2 = gikdxidxk = a2(η) (dη2 − dl2) , (1)

where dl2 is the metric of a three-dimensional space of constant curvature K = 0,±1.
In the theory of quantum effects in expanding curved space-time, one usually takes the following

equation (in the system of units in which the Planck constant and light velocity are equal to one:
h̄ = c = 1) for a scalar field of mass m:

(∇i∇i + ξR + m2) ϕ(x) = 0, (2)

corresponding to the Lagrangian:

L(x) =
√
|g|
[

gik∂i ϕ
∗∂k ϕ− (m2 + ξR) ϕ∗ϕ

]
, (3)

where g = det(gik) and R is the curvature scalar [12].
For ξ = ξc ≡ 1/6, the scalar field is called conformal coupled. Then, Equation (2) is

conformally invariant in the massless case [2]. However, the nonconformal case is also important
because (1) “gravitons” [13] and (2) longitudinal components of vector bosons [2] are nonconformal.
Minimal coupling ξ = 0 is popular in inflation theories [14].

We can find a complete set of solutions for Equation (2) in the following form:

ϕ(x) =
gλ(η)

a(η)
ΦJ(x), (4)

where:
g′′λ(η) + Ω2(η) gλ(η) = 0, (5)

Ω2(η) =
(

m2 + (ξ − ξc)R
)

a2 + λ2, (6)

∆ΦJ(x) = −
(

λ2 − K
)

ΦJ(x); (7)

the prime denotes a derivative with respect to conformal time η, and index J numbers the
eigenfunctions of Laplace–Beltrami operator ∆ in space x with metric dl2.

According to the Hamiltonian diagonalization method [2], the functions gλ(η) satisfy
initial conditions:

g′λ(η0) = i Ω(η0) gλ(η0), |gλ(η0)| =
1√

Ω(η0)
. (8)
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The number of pairs of scalar particles created up to the moment t in Lagrangian volume a3(t) of
a homogeneous isotropic Universe with flat space sections (K = 0) is equal [2]:

N(η) =
1

2π2

∞∫
0

sλ(η) λ2dλ, (9)

where:

sλ(η) =

∣∣g′λ(η)− iΩ gλ(η)
∣∣2

4Ω
. (10)

Function sλ(η) defines the distribution in dimensionless momentum λ particles created up to
moment η. The “physical” momentum is λ/a. For ultrarelativistic particles, λ � ma. To find the
number of created ultrarelativistic particles, one must find the asymptote of the function sλ(η) if
λ→ ∞.

Using (5) and (8), one can see that function sλ(t) satisfies the integral Volterra equation:

sλ(η) =
1
2

∫ η

η0

dη1 w(η1)
∫ η1

η0

dη2 w(η2) (1 + 2sλ(η)) cos [2Θ(η2, η1)] , (11)

where:

w(η) =
Ω′(η)

Ω
, Θ(η2, η1) =

∫ η2

η1

Ω(η) dη. (12)

To find the asymptote sλ(η) if λ→ ∞, one can confine one’s self to the first iteration of the integral
Equation (11) and take into account that Θ(η2, η1)→ λ(η1 − η2) if λ→ ∞. Then, (11) has the form:

sλ(η) =
1
4

∣∣∣∣∫ η

η0

w(η1) exp(2iλη1) dη1

∣∣∣∣2 . (13)

Integrating by parts the integral (13), one obtains in O(λ−2):

∫ η

η0

w(η1) exp(2iλη1) dη1 ≈
w(η)

2iλ
e2iλη

∣∣∣∣η
η0

. (14)

Therefore,

sλ(η) ≈
1

16λ2

∣∣∣w2(η) + w2(η0)− 2w(η)w(η0) cos(2λ(η − η0)
∣∣∣ . (15)

For λ→ ∞, one has that w ∼ λ−2, so sλ ∼ λ−6, and the integral in (9) is convergent. Therefore,
in the method of Hamiltonian diagonalization, the number of scalar particles created by gravitation is
finite for conformal as for nonconformal coupling with curvature.

Evaluate the number of created particles with the energy E ≥ Eb, where Eb � mc2. The cyclic
frequency Ω for the scalar field with conformal coupling with curvature is:

Ω(η) = ω(η) ≡
√

m2a2(η) + λ2. (16)

In this case:

w(η) =
a′/a

1 +
(

λ
ma

)2 . (17)

For large λ:

λ� ma ⇒ w ≈ m2a′a
λ2 . (18)
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Let us consider the situation when a′a is increasing in time and a′(η0)a(η0)� a′(η)a(η). Then:

sλ(η) ≈
w2(η)

16λ2 =
m4a2a′ 2

16λ6 , λ→ ∞. (19)

Find what limitations on the background matter of the Universe arise due to this condition.
Einstein’s equations:

Rik −
1
2

gikR = −8πG Tik, (20)

for homogeneous isotropic space in metric (1) are:

1
a2

((
a′

a

)2

+ K

)
=

8πG ε

3
, (21)

− 1
a2

[ (
a′

a

) ′
+

1
2

((
a′

a

)2

+ K

)]
= 4πGp, (22)

where ε and p are the energy density and pressure for background matter. From (21) and (22), one has:

(a′a)′ =
a2

2

[
3
(

1− p
ε

)( a′

a

)2

−
(

1 + 3
p
ε

)
K

]
. (23)

For realistic models of the Universe in the epoch when the effects of particle creation are
important (the Compton time of the particle [2]), one can neglect the space curvature and consider
|a′/a| � 1. Therefore,

(a′a)′ ≈ 3
2

(
1− p

ε

)
a′ 2 (24)

and a′a is increasing if p < ε. The important cases of dust p = 0, a = a1η = a0t2/3, and radiation
dominated Universes p = ε/3, a = a1η = a0

√
t are in this family. Here, t is the coordinate time

dt = adη. The limiting case with scale factor a = a1
√

η = a0t1/3 corresponds to the most rigid state
equation p = ε.

Using (19), one obtains that the number of particle pairs with momenta larger than some λb,
created in volume a3(t) of a homogeneous isotropic Universe is equal to:

Nb(η) ≈
1

32π2

∞∫
λb

m4a2(η)a′ 2(η) dλ

λ4 =
m4a2(η)a′ 2(η)

96π2λ3
b

. (25)

The usual unit system is made by:

m→ mc
h̄

, a′ → ȧa
c

, (26)

where the dot above the symbols is the derivative with respect to time t. For ultrarelativistic particles
with Eb = λb h̄c/a and so (25) in usual units:

Nb(t) ≈
m4c5aȧ2

96π2h̄ E3
b

. (27)

For the scale factor a ∼ tα, one obtains:

Nb(t) ≈
α2m4c5a3

96π2h̄ E3
b t2

. (28)
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For Planckian energy Eb = EPl ≡
√

h̄c5/G, where G is the gravitational constant and the Compton
time t = tC ≡ h̄/(mc2), one obtains:

Eb = EPl ⇒ Nb(tC) ≈
α2

96π2

(
lPl
lC

)3 ( a(tC)

lC

)3

, (29)

where lC = h̄/(mc) is the Compton length of the particle and lPl =
√

h̄G/c3 is the Planckian length.
For the radiation dominated case (α = 1/2), one obtains:

Nb(tC) ≈
1

384π2

(
lPl
lC

)3/2 ( a(tPl)

lC

)3

. (30)

Note that this result is valid not only for conformal, but also for nonconformal scalar particles
because for the radiation dominated case R = 0, and Formula (16) for the frequency (6) is correct for
any value ξ of the parameter of the connection of the scalar field with curvature.

For an observable Friedmann radiation dominated Universe, one obtains a(tPl) ≈ 10−5 m so
that for the scale of Grand Unification m = 1015 GeV, one has 1067 particles with the energy of the
Planckian order. The general number of all superheavy particles created in the early Universe is
close to the Eddington number 1080 [2]. Therefore, the number of trans-Planckian scalar particles is
relatively small.

Now, consider the case of the creation of fermion particles. In this case, the number of created
pairs is [2]:

N(1/2)(η) =
1

π2

∞∫
0

s(1/2)
λ (η) λ2dλ, (31)

but the expression for s(1/2)
λ does not coincide with Formula (10). However, the first iteration in the

integral equation for function sλ(η) coincides with Formula (13) if w for the spinor field is:

w(1/2) =
ma′λ
ω2 . (32)

For large values λ:

λ� ma ⇒ w(1/2) ≈ ma′

λ
, s(1/2)

λ ≈ m2a′ 2

16λ4 . (33)

The number of pairs of spinor particles with momenta larger than some λb, created in volume
a3(t) of a homogeneous isotropic universe is equal to:

N(1/2)
b (η) ≈ 1

16π2

∞∫
λb

m2a′ 2(η) dλ

λ2 =
m2a′ 2(η)
16π2λb

, (34)

in usual units:

N(1/2)
b (t) ≈ m2caȧ2

16π2h̄Eb
. (35)

For the scale factor a ∼ tα, one obtains that the number of created fermion pairs is:

N(1/2)
b (t) ≈ α2m2ca3

16π2h̄Ebt2 . (36)
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For Planckian energy Eb = EPl and the Compton time, one obtains:

Eb = EPl ⇒ N(1/2)
b (tC) ≈

α2

16π2
lPla3(tC)

l4
C

, (37)

in particular, for the radiation dominated case (α = 1/2), one obtains:

N(1/2)
b (tC) ≈

1
64π2

a3(tPl)

l1/2
Pl l5/2

C

. (38)

For an observable Friedmann radiation dominated Universe, one obtains a(tPl) ≈ 10−5 m, so that
for the scale of Grand Unification m = 1015 GeV, one has 1075 fermion particles with the energy of the
Planckian order.

3. Gravitational Radiation in Collisions of Trans-Planckian Superheavy Particles

In our paper [8], we obtained the following result for the gravitational radiation energy in
the collision of two particles with the energy Ec.m. < EPl in the centre of mass system:

E =
4
π

E 3
c.m.

E 2
Pl

ln
(

Ec.m.

EPl

MPl√
m1m2

)
, (39)

where MPl =
√

h̄c/G = 2.18× 10−8 kg is the Planck mass and m1 and m2 are the masses of colliding
particles. Note that even for such light particles as electrons, one has ln(MPl/m) < 52. Therefore,
one can see from (39) that if Ec.m. � EPl , then gravitational radiation is small:

Ec.m. � EPl ⇒
E

Ec.m.
� 1. (40)

However, for Ec.m. ≥ EPl , the result is different. One has:

E ≈ 4
π

Ec.m. ln
(

Ec.m.

EPl

MPl√
m1m2

)
. (41)

This means that the role of gravitational radiation becomes large, and it can play the role of
bremsstrahlung in electromagnetic radiation. In [8], it was shown that if colliding particles have
nonzero electric charges, then the bremsstrahlung due to electromagnetism is much smaller than the
gravitational one. Let us evaluate the order of the energy of this gravitational radiation.

Evaluate the gravitational background radiation of these particles supposing that the energy
of gravitation is radiated in collisions at Compton epoch t ≈ h̄/mc2 of the expanding Universe.
Taking into account the decrease of the energy of gravitational waves due to the expansion of the
Universe, one obtains in the modern epoch tmod ≈ 1018 s the value of the energy as 1067EPl

√
tC/tmod ≈

1048 J for scalar particles and ≈1056 J for fermion particles. Therefore, the density of this energy of
radiation ≈10−30 J/m3 for the case of scalar particles or ≈10−22 J/m3 for the case of fermion particles
is much less than the energy of the electromagnetic background radiation equal to ≈4× 10−14 J/m3.
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