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Abstract: It is well known that static wormhole configurations in general relativity (GR) are possible
only if matter threading the wormhole throat is “exotic”—i.e., violates a number of energy conditions.
For this reason, it is impossible to construct static wormholes supported only by dust-like matter
which satisfies all usual energy conditions. However, this is not the case for non-static configurations.
In 1934, Tolman found a general solution describing the evolution of a spherical dust shell in GR.
In this particular case, Tolman’s solution describes the collapsing dust ball; the inner space-time
structure of the ball corresponds to the Friedmann universe filled by a dust. In the present work we
use the general Tolman’s solution in order to construct a dynamic spherically symmetric wormhole
solution in GR with dust-like matter. The solution constructed represents the collapsing dust ball
with the inner wormhole space-time structure. It is worth noting that, with the dust-like matter,
the ball is made of satisfies the usual energy conditions and cannot prevent the collapse. We discuss
in detail the properties of the collapsing dust wormhole.
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1. Introduction

Wormholes are solutions of general relativity which possess a throat. We define a wormhole
throat as a closed 2-dimensional hypersurface of minimal area. Such solutions were first mentioned in
the works [1–4], but the greatest interest in these objects arose after the work of Michael Morris and
Kip Thorne in 1988 [5]. As noted by the authors, one of the “exotic” properties of these objects is that
the presence of a throat leads to a violation of the energy conditions for the energy-momentum tensor
of matter. An overview of research on wormholes can be found, for example, in [6,7]. Wormholes
have been considered in various theories of gravity, including the Brans-Dicke theory of gravity [8],
in the Einstein-Born-Infeld theory of gravity [9], in the Einstein-Gauss-Bonnet theory [10], in f (R)
gravity [11], in Rastall’s theory of gravity [12] and many other theories. Various models of matter were
considered as a source of wormholes: scalar and electromagnetic fields [9,13,14], Chaplygin gas [15],
various models of phantom energy and quintessence, including models of matter with the structure of
the energy–momentum tensor of a perfect fluid [16–20]. Models of wormholes were also built using
the thin-shell formalism, the works of [21,22] being among the first.

Most of the literature is devoted to the study of static and spherically symmetric wormholes.
An important generalization of these studies is the study of dynamic solutions. Dynamic wormholes
have been considered in various aspects. One of the ways for building dynamic models [23–27] is to
add a time-dependent scaling factor to the metric. Dynamic models of wormholes were constructed
using the thin shell formalism [28]. General properties of an arbitrary dynamic wormhole are
considered in the papers [29,30]. In recent papers [31–33], dynamic solutions have been constructed on
the basis of a family of solutions describing regular black holes.

It is worth noting that the throat of a wormhole is defined differently by different authors. In the
static case, the different definitions agree with each other; in the dynamic case contradictions may arise.

Universe 2020, 6, 186; doi:10.3390/universe6100186 www.mdpi.com/journal/universe

http://www.mdpi.com/journal/universe
http://www.mdpi.com
https://orcid.org/0000-0001-7509-0264
http://dx.doi.org/10.3390/universe6100186
http://www.mdpi.com/journal/universe
https://www.mdpi.com/2218-1997/6/10/186?type=check_update&version=2


Universe 2020, 6, 186 2 of 11

The general defenition of the throat, including for time-dependent metrics, is considered, for example,
in the following works [30,34,35]. We will use the definition that was used in the works [23,25,26].

The aim of this work is to construct a solution describing a dynamic wormhole in the theory of
gravity with dust-like matter. The general solution of Einstein’s equations in the theory of gravity
with dust-like matter for a spherically symmetric metric was obtained by Tolman in 1934 [36–40];
the solution will be summarized in Section 2. This solution contains three arbitrary functions.
In Section 3 we construct a solution that describes a collapsing wormhole, choosing these functions in
a certain way. In Section 4 we investigate the properties of the obtained solution.

2. Gravitational Collapse of a Dust-Like Spherical Shell

The spherically symmetric solution of the Einstein equations in the theory of gravity with dust-like
matter was obtained by Tolman in 1934 [36–40]. Briefly, the solution will be presented in this section.
Dust-like matter allows the choice of a frame that is both synchronous and co-moving. In this case,
the spherically symmetric metric has the form 1:

ds2 = dτ2 − eλ(τ,R)dR2 − r2(τ, R)
[
dθ2 + sin2 θdϕ2], (1)

where λ(τ, r) and r(τ, R) are functions of τ and R. The energy–momentum tensor of dust-like matter
in the co-moving frame has the form

T j
i = εuiuj, (2)

where (ui) = (1, 0, 0, 0) is a velocity four vector, and ε is the energy density. Below, we present the
solution of the Einstein equations for the metric (1) and the energy-momentum tensor (2). The function
λ(τ, R) has the form

eλ(τ,R) =
r′2

1 + f (R)
, (3)

where the prime means differentiation with respect to the coordinate R, the dot means differentiation
with respect to the coordinate τ, f (R) is an arbitrary function, and f (R) satisfies the condition 1+ f > 0.
Function r(τ, R) can be represented in parametric form. In case f > 0, the function has the form:

r =
F(R)

2 f (R)
[cosh η − 1] , τ0(R)− τ =

F(R)
2 f (R)3/2 [sinh η − η] ; (4)

in the case of f < 0, the function has the form:

r =
F(R)

2| f (R)| [1− cos η] , τ0(R)− τ =
F(R)

2| f (R)|3/2 [η − sin η] , (5)

where F(R) and τ0(R) are an arbitrary functions. In the case of f = 0, the function has the form:

r =
(

9F
4

)1/3

[τ0(R)− τ]2/3 . (6)

The energy density ε is:

8πkε =
F′

r′r2 . (7)

The scalar curvatureR and the Kretschman scalar K for the Tolman solution (1)–(5) read

1 Henceforth, we denote the speed of light as c = 1.
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R =
F′

r2r′
, (8)

K =
3F′2

r4r′2
+

16F2

r6 − 8FF′

r5r′
. (9)

The scalar curvature and the Kretschmann scalar diverge at r = 0 or r′ = 0 (in the case F′ 6= 0),
the solution in this case has a singularity.

The general solution (1)–(5) depends on three arbitrary functions f (R), F(R) and τ0(R).
The solution allows an arbitrary transformation of the radial coordinate R̃ = R̃(R), where R̃(R)
is a differentiable function. Using this, we can give any of the three functions f (R), F(R) or τ0(R)
some specific form. Thus, only two of the three functions can be considered arbitrary. The particular
cases of the solution are the Schwarzschild solution and the Friedmann model with dust.

3. Throat Conditions

In this section, we will obtain the conditions under which general solutions (1)–(5) will describe the
wormhole geometry. A characteristic feature of wormholes is the presence of a throat—i.e., the presence
of a space-like closed two-dimensional surface of the minimum area. Various definitions of the mouth
of a wormhole are considered in the literature [23,25,26,30,34,35], we will follow the approach used,
for example, in works [23,25,26].

In order to determine the throat conditions, following the approach used in [26], we constructed
an embedding diagram for the metric (1). For convenience, we rewrote the function f (R) in the
form f (R) = −b(R)/R, where b(R) is an arbitrary function. Taking into account the relation (3),
the metric (1) can be represented as

ds2 = dτ2 − r′2dR2

1− b/R
− r2[dθ2 + sin2 θdϕ2]. (10)

Metric (10) is defined for 1− b(R)/R > 0, and for b(R) = R has a singularity. Consider the
metric (10) on the spatial slice τ = const and θ = π/2

dl2 =
r′2dR2

1− b/R
+ r2dϕ2, (11)

as a metric on a surface of revolution ρ = ρ(z) embedded in a three-dimensional space with an
Euclidean metric

dl2 = dz2 + dρ2 + ρ2dϕ2, (12)

where z, ρ and ϕ are cylindrical coordinates (see Figure 1). Comparing (11) and (12), we get

ρ2 = r2, (13)

dz2 + dρ2 =
r′2dR2

1− b/R
. (14)

Taking into account that for constant τ = const

dρ|τ0 = r′RdR, (15)

we have

dρ

dz
=

(
R
b
− 1
)1/2

,
d2ρ

dz2 =
b− Rb′

2r′b2 . (16)
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z

ρ

Figure 1. The embedding diagram. The function ρ(z) is shown on the left panel, and the surface
obtained by rotating the curve ρ(z) about the axis Oz is shown on the right panel.

The throat of the wormhole will have the shape of a sphere, which is located at a certain value
of the radial coordinates R = Rth. On the embedding diagram, the sphere R = Rth corresponds to a
circle of radius ρ on the surface of revolution; at the throat the radius of the circle ρ(z) has a minimum.
Conditions for the minimum of the function ρ(z) at R = Rth have the form:

dρ

dz

∣∣∣
Rth

= 0,
d2ρ

dz2

∣∣∣
Rth

> 0. (17)

Comparing (16) and (17), we get throat conditions for the metric (10):

b(Rth) = Rth, (18)
1− b′(Rth)

r′b(Rth)
> 0. (19)

We will assume that the radial coordinate takes the following positive range of values: 0 < Rth <

R < +∞, where the value R = Rth corresponds to the throat. The condition (18) implies that the
function b(R) is positive at the throat: b(Rth) > 0. Therefore, b(R) is positive in some neighborhood of
the throat by continuity. Therefore, the function f = −b/R is negative in the vicinity of the throat, and
to construct a wormhole model we will consider the solution (5) with a negative value of f .

4. Collapsing Wormhole Model with Dust-Like Matter

General solutions (1)–(5) of the Einstein equations for a spherically symmetric metric in the theory
of gravity with dust-like matter depend on three arbitrary functions f (R), F(R) and τ0(R). In this
section, we will consider a special case describing a wormhole. We choose arbitrary functions as
follows 2:

F = R, τ0(R) = τ0, f (R) = − b
R

, (20)

where τ0, b are constants, b > 0 and f < 0. The solution takes the form:

2 This case is not the only one possible. Further we will restrict ourselves to considering this example as one of the simplest.
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ds2 = dτ2 − r′2dR2

1− b/R
− r2(t, R)

[
dθ2 + sin2 θdϕ2], (21)

r =
R2

2b
[1− cos η] , τ0 − τ =

R5/2

2b3/2 [η − sin η] , (22)

where R ∈ [b,+∞). In this case, the first throat condition (18) is satisfied for R = b. The second
condition (19) will be satisfied when r′|R=b > 0. We calculate the derivative of the function r(τ, R) (22):

r′ =
R

b(1− cos η)

[
(1− cos η)2 − 5

4
sin η(η − sin η)

]
. (23)

For η ∈ (0, 2π) and R ∈ [b,+∞) the expression (23) is positive: r′ > 0. Therefore, for the
solution (21) and (22), the throat conditions (18) and (19) are satisfied for R = b.

To build a model of a wormhole, two identical sets M+ and M− are required, each of which has a
metric (21) and (22) with the same parameter b (b+ = b−):

M± = {(τ, R, θ, ϕ)| R ∈ [b,+∞)} .

M+ and M− are manifolds with boundaries. The boundary is a timelike hypersurface

Σ± = {(τ, R, θ, ϕ)| R = b} .

We identify M+ and M− by boundaries. We get a new manifold M = M+ ∪M−. The resulting
space M has a wormhole geometry that connects two space-times, in each of which the radial coordinate
takes the values R ∈ [b,+∞). The throat of the wormhole corresponds to the value of the radial
coordinate R = b.

As R→ b, one of the metric coefficients in (21), approaches infinity. However, the values of r′ (23)
and r (22) are nonzero for η ∈ (0, 2π), and the scalar curvature (8) and the Kretschmann scalar (9) are
regular in this case. Thus, the singularity of the metric at the throat has a purely coordinate character.

It is known [21,22,41–45], that the energy-momentum tensor on the shell Sij is proportinal to the
Dirac delta function:

Tij = T+
ij + T−ij + δ(R− b)Sij,

where T±ij is the energy-momentum tensor in the corresponding region M±. Sij is calculated as follows:

Sij =
1

8πG
(
[kij]− [k]hij

)
where kij is the second fundamental form of Σ, [kij] is the difference of limiting values of the second
fundamental form on both sides of the surface Σ in M±

[kij] = kij|+ − kij|− =
[

hα
i hβ

j ∇βnα

]
,

hαβ is a projection tensor on Σ,
hαβ = gαβ − nαnβ,

and nα is the normal vector to Σ. In our case, the unit normal vector to the surface has the form
(ni) =

(
0,±e−λ/2, 0, 0

)
. The tensor [kij] on the surface R = b

[kij] =


0 0 0 0
0 0 0 0
0 0 2r

√
1− b/R 0

0 0 0 2r
√

1− b/R sin2 θ
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equals zero. Consequently, the shell momentum energy tensor Sij = 0 is zero. Thus, there is no material
shell on the surface Σ, and the energy-momentum tensor of the model contains only dust-like matter.

5. Analysis of the Model

In this section, we will consider the dynamics of the model from the point of view of an
external observer. We will assume that the dusty matter is distributed inside some spherical layer.
Outside this layer, the geometry is described by the spherically symmetric Schwarzschild solution in
the vacuum [39]:

ds2 =
(

1−
rg

r

)
dt2 −

(
1−

rg

r

)−1
dr2 − r2dΩ2, (24)

where rg = 2 M is a gravitational radius, M is a mass that creates a gravitational field. In the absence of
pressure, each element of matter moves along a geodesic path. All geodesics are radial due to spherical
symmetry. From the point of view of an external observer, the radial coordinate of the surface of the
star is a function of time r = r(τ), where r(τ) is the radial geodesic in the Schwarzschild space-time.
It is convenient to represent the geodesic equation in parametric form [46]:

r =
r0

2
(1 + cos χ), (25)

τ =

(
r3

0
8M

)1/2

(χ + sin χ), (26)

ut =
dt
dτ

=
(1− 2M/r0)

1/2

1− 2M/R
, (27)

where the parameter χ ∈ [0, π], τ is a time coordinate in the co-moving coordinate system, r0 is the
value of the radial coordinate at the initial moment of time τ = 0 (χ = 0). Expressions (25)–(27) are
valid provided that at the initial moment of time τ = 0 the shell was at rest dr/dτ = 0. Substituting
expressions (25)–(27) into the metric (24), we find the 3-geometry of the surface of the star in the
external metric:

(3)ds2 = dτ2 − R2(τ)dΩ2 (28)

=
r3

0
8M

(1 + cos χ)2dχ2 −
r2

0
4
(1 + cos χ)2dΩ2.

Now we will consider the internal geometry of the dusty layer (21) and (22). Let us assume that
dust-like matter is enclosed in a spherical layer R ∈ [b, R0], where R0 is its outer radius. The internal
3-geometry of the surface of the star is found by substituting expression (22) into the metric (21) at
R = R0:

(3)ds2 = dτ2 − r2(R0, t)dΩ2 (29)

=
R5

0
4b3 (1− cos η)2dη2 −

R4
0

4b2 (1− cos η)2dΩ2.

On the surface of the star the Schwarzschild metric should be smoothly matched with the intrinsic
metric. Comparing (28) and (29), we see that these 3-geometries are smoothly sewn together if we
identify the following parameters

η = π − χ, r0 =
R2

0
b

, M =
R0

2
. (30)

At the initial moment of time τ = 0 (χ = 0), the dust-like layer with the outer radius r0 begins
to collapse from the rest position towards the center. As follows from Formulas (25) and (26), at the
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moment of collapse, the outer radius vanishes r = 0, and the watch of the co-moving observer shows

τ0 =
πr5/2

0
2b3/2 (χ = π). The time tau0 is the lifetime of the wormhole. At the moment of collapse,

solutions (21) and (22) are singular, since the scalar curvature and the Kretschmann scalar (8) and (9)
approach infinity. By construction, R0 > b, which means that due to the relations (30) the initial outer
radius of the shell will be greater than the gravitational radius—i.e., r0 > rg. From the point of view of
an infinitely distant observer, gravitational collapse will last an infinitely long time.

It is very important to answer the question: Is a photon able to cross the collapsing wormhole?
To solve this problem we need to find null geodesics inside the collapsing dust ball. An equation for
radial geodesics can be directly found from the condition ds2 = 0. The metric (21) yields

dR
dτ

= ∓ 1
r′

√
1− b

R
, (31)

where r′ is given by Equation (23). Using the relations (22), one can rewrite Equation (31) as follows

dr
dτ

=

(
b
R

)1/2
[
− sin η

1− cos η
∓
√

R
b
− 1

]
. (32)

Integrating this equation gives null geodesics in the coordinates (r, τ). Note that the sign “−”
corresponds to ingoing geodesics moving towards the wormhole throat, while “+” corresponds
to outgoing geodesics moving away from the throat. At the throat R = b Equation (32) reduces to

dr
dτ

∣∣∣∣
R=b

= − sin η

1− cos η
, (33)

therefore null geodesics are tangent to the cycloid R = b.
In the Figure 2 we illustrate the main features of the obtained solution. In particular,

the dependence of the radius r(R, t) of various layers of the dust-like shell R ∈ [b, R0] on time τ

for R0 = 1.2b (see Equation (22)) is shown. Region I is the empty space outside the dust-like shell.
Region II: R ∈ [b, R0] is filled with dust-like matter. Region III: R < b is not included in space-time
and is not considered. The three solid curves show the dynamics of the dust layers over time: curve at
R = R0 is the outer shell; curve at R = b is the wormhole throat; intermediate curve for the inner layer
b < R < R0, R = 1.1b. The dash-dotted line corresponds to the gravitational radius r = rg. In a finite
proper time τ0, the shell reaches the gravitational radius and collapses towards the singularity r = 0.
Red-blue lines are the null radial geodesics. The red curves are ingoing geodesic lines of photons who
started their travel towards the wormhole throat from the outer shell. These photons are reaching the
throat in a finite time; at the point where the photon is crossing the throat, its geodesic line becomes
tangent to the cycloid R = b. After crossing the throat, the photon continues its movement on the other
side of the wormhole space–time. In the Figure 2 the blue curves correspond to outgoing geodesic
lines of photons who started their travel towards the outer shell from the throat. In a finite time these
photons cross the outer shell of the dust ball and enter the empty region I under the event horizon.

Figure 3 shows the dependence (7) of the energy density ε on the time τ for different values of
R ∈ [b, R0]. The energy density is positive, and at the moment of collapse τ → τ0, the energy tends to
infinity. The energy-momentum tensor of “ordinary” matter satisfies certain physical requirements,
one of which is the null energy condition:

TµνVµVν 6 0

for any null vector Vµ. It is known [6], that the null energy condition can be violated in wormhole
space-time. Consider a region in the vicinity of the wormhole throat R ∈ [b, R0], where the model is
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described by solutions (21) and (22). We choose a null vector V mu =
(

1, e−λ/2, 0, 0
)

and calculate the
following contraction:

TµνVµVν = ε, (34)

which is positive for R ∈ [b, R0], τ ∈ [0, τ0]. Thus, in this model, the null energy condition is fulfilled.
We also present this metric in the limiting case τ → τ0 (η → +0, χ→ π − 0):

r(τ, R) = R1/3
[

3
2
(τ0 − τ)

]2/3
, (35)

ds2 = dτ2 −
(

3
2

τ0 − τ

R

)4/3 [ 1
122/3

dR2

1− b/R
+ R2 (dθ2 + sin2 θdϕ2)] (36)

singularity

Figure 2. The figure shows the graphs of the function r(R, τ)/b depending on τ/b for different values
of R: R = b, R = 1.1b and R = R0, R0 = 1.2b. Red-blue lines are the null radial geodesics. (See the text
for more details.)

t/b

0

0

R b

b R R

R R

=

< <

=

8p ek
2

b

t0

Figure 3. The figure shows the graphs of the energy density 8πkεb2 depending on τ/b for different
values of R: R = b, R = 1.1b and R = R0, R0 = 1.2b. As τ → τ0 the energy tends to infinity, the vertical
asymptote is shown by dash-dot on the right in the figure.
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6. Conclusions

It is well known that static wormhole configurations in general relativity (GR) are possible only
if matter threading the wormhole throat is “exotic”—i.e., violates a number of energy conditions.
For this reason, it is impossible to construct static wormholes supported only by dust-like matter
which satisfies all usual energy conditions. However, this is not the case for non-static configurations.
In 1934, Tolman found a general solution describing an evolution of a spherical dust shell in GR. In this
particular case, Tolman’s solution describes the collapsing dust ball; the inner space-time structure of
the ball corresponds to the Friedmann universe filled by a dust. In the present work we have used
Tolman’s solution in order to construct a dynamic spherically symmetric wormhole solution in GR
with dust-like matter. For this aim, we have considered the specific subclass of arbitrary functions
f (R), F(R) and t0(R) constituting Tolman’s solution, and written solutions (21)–(22), which satisfy
the throat conditions. The solution constructed represents the collapsing dust ball with the inner
wormhole space-time structure.

To construct a wormhole model we considered two identical solutions M+ and M− with
metrics (21), (22), in each of which the radial coordinate R takes the range of values R ∈ [b,+∞).
The sets M+ and M− are identified by their boundaries Σ. The result is a new manifold M = M+ ∪M−
that has a wormhole geometry. The throat of the wormhole corresponds to the junction surface Σ:
R = b. Due to the smoothness of the functions, the identity of M+ and M− and to the throat conditions,
the energy-momentum tensor Sij of the shell Σ is equal to zero. Thus, the energy-momentum tensor of
the constructed model contains only dust-like matter, and does not contain a contribution of the Dirac
delta function on the junction surface. For η ∈ (0, 2π), the scalar curvature (8) and the Kretschmann
scalar (9) are regular, and the solution does not have singularities.

We assumed that the dusty matter is enclosed inside some spherical layer and considered the
dynamics of a wormhole from the point of view of an external observer. Gluing solutions (21) and (22)
and the Schwarzschild solution, we obtained the condition (30) that connects the model parameters,
the gravitational radius and the mass of the dust ball. The dynamics of dust layers over time is depicted
in Figure 2. At the initial moment of time, a dusty layer begins to collapse towards the center, at the
moment of collapse the outer radius of the shell vanishes, and the clock of the co-moving observer

shows τ0 =
πr5/2

0
2b3/2 . The τ0 is the wormhole’s lifetime. From the point of view of an infinitely distant

observer, gravitational collapse will last indefinitely. At the moment of collapse, the scalar curvature
and the Kretschmann scalar (8) and (9) become singular and the solution has a singularity. Figure 3
shows the dependence of the energy density of the dust layer on time, the energy density is positive,
and tends to infinity at the moment of collapse. It is shown that the null energy condition for this
model is satisfied (34). Therefore, the dust-like matter that the ball is made of satisfies the usual energy
conditions and cannot prevent the collapse.
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