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Abstract: We review the results of investigations for brane-induced effects on the local properties of
quantum vacuum in background of AdS spacetime. Two geometries are considered: a brane parallel
to the AdS boundary and a brane intersecting the AdS boundary. For both cases, the contribution in
the vacuum expectation value (VEV) of the energy–momentum tensor is separated explicitly and its
behavior in various asymptotic regions of the parameters is studied. It is shown that the influence of
the gravitational field on the local properties of the quantum vacuum is essential at distance from the
brane larger than the AdS curvature radius. In the geometry with a brane parallel to the AdS boundary,
the VEV of the energy–momentum tensor is considered for scalar field with the Robin boundary condition,
for Dirac field with the bag boundary condition and for the electromagnetic field. In the latter case,
two types of boundary conditions are discussed. The first one is a generalization of the perfect conductor
boundary condition and the second one corresponds to the confining boundary condition used in
QCD for gluons. For the geometry of a brane intersecting the AdS boundary, the case of a scalar
field is considered. The corresponding energy–momentum tensor, apart from the diagonal components,
has nonzero off-diagonal component. As a consequence of the latter, in addition to the normal component,
the Casimir force acquires a component parallel to the brane.
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1. Introduction

Quantum field theory in anti-de Sitter (AdS) spacetime is an active area of research. This activity
is motivated by several reasons. First of all, the corresponding geometry is maximally symmetric and a
sufficiently large number of problems are exactly solvable on its background. This helps to give an idea of
the influence of the classical gravitational field on quantum phenomena in more complicated geometries.
Qualitatively new features in the dynamics of quantum fields on the AdS background are related to
the lack of global hyperbolicity and to the existence of both regular and irregular modes. In particular,
boundary conditions on propagating fields need to be imposed at timelike infinity to prevent loss of
unitarity. The different boundary conditions define different theories in the bulk. Another new feature,
which has no analog in Minkowskian field theories, is related to the possibility of regularization for
infrared divergences in interacting field theories without reducing the symmetries [1]. This is closely
related to the natural length scale of the AdS spacetime. The high interest to the AdS geometry is also
related to its natural appearance as a ground state in supergravity and as the near horizon geometry for
extremal black holes, black strings and domain walls.

The AdS spacetime plays a fundamental role in two exciting developments of contemporary theoretical
physics. The first one, the AdS/CFT correspondence (for reviews, see [2–4]), establishes duality between
string theories or supergravity in the AdS bulk and a conformal field theory localized on the AdS boundary.
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This duality provides an interesting possibility for the investigation of nonperturbative effects in both sides
of the correspondence by using the weak coupling regime of the dual theory. The recent developments
include applications in various condensed matter systems such as holographic superconductors and
topological insulators [5,6]. The second development is related to various types of braneworld models
with large extra dimensions [7]. In the corresponding setup, the standard model fields are localized on a
brane embedded in a higher dimensional AdS spacetime. Braneworlds naturally appear in string/M-theory
context and have been initially proposed for a geometrical resolution of the hierarchy problem between
the electroweak and Planck energy scales. They provide an alternative framework to address the problems
in particle physics and cosmology from different perspectives.

An inherent feature of field theories in AdS/CFT correspondence and in braneworld models is
the need to impose boundary conditions on fields propagating in the AdS bulk. They include the
conditions on the AdS boundary and the conditions on the branes in braneworld scenario. In particular,
in braneworld models of the Randall–Sundrum type the boundary conditions on the branes are dictated by
the Z2-symmetry. In quantum field theory, the boundary conditions modify the spectrum of the zero-point
fluctuations and, as a consequence, the vacuum expectation values (VEVs) are shifted by an amount
that depends on the bulk and boundary geometries and also on the boundary conditions. This is the
well-known Casimir effect [8–11]. In braneworld models the Casimir forces acting on the branes may
provide a mechanism for stabilization of the brane location (for mechanisms of moduli stabilization in
warped geometries, see, e.g., [12–18] and references therein). In particular, this stabilization is required
to prevent the variations of physical constants on the branes. In addition, the quantum effects of bulk
fields generate a cosmological constant on the brane. Motivated by these points, the Casimir effect in
braneworld models on the AdS bulk, with branes parallel to the AdS boundary, has been investigated
for scalar [19–38], fermionic [39–43] and vector fields [44–49]. The models with de Sitter branes have
been discussed in [50–58]. The brane-induced quantum vacuum effects in AdS spacetime with additional
compact subspaces were considered in [59–65].

The main part of the papers on the Casimir effect in the AdS bulk consider global quantities, such as
the Casimir energy and the forces acting on the branes. The local quantities carry more detailed information
about the properties of the quantum vacuum. In particular, the expectation value of the energy–momentum
tensor is of special interest. It appears as the source in the semiclassical Einstein equations and therefore
plays an important role in modeling self-consistent dynamics involving the gravitational field. The VEV
of the energy–momentum tensor for a conformally coupled scalar field in conformally-flat geometries
has been investigated in [28]. Massive scalar fields with general curvature coupling in the geometry of
two branes on AdS bulk were considered in [66,67]. The Casimir densities for a Z2-symmetric thick brane
for the general case of static plane symmetric interior structure have been discussed in [68]. The VEVs
of the energy–momentum tensor for Dirac spinor field and for the electromagnetic field are investigated
in [42,43,46–49]. The geometry of a brane intersecting the AdS boundary is considered in [69]. For a scalar
field with general curvature coupling, the background AdS geometry with an additional compact subspace
is discussed in [61,62].

In the present paper, we review the results for the VEV of the energy–momentum tensor in the
geometry of a single brane on background of (D + 1)-dimensional AdS spacetime. The cases of scalar,
Dirac and electromagnetic fields are considered. The organization of the paper is as follows. In Section 2,
for a planar brane parallel to the AdS boundary, we consider complete sets of orthonormalized mode
functions for both the regions between the AdS boundary and the brane and between the brane and the
AdS horizon. The VEVs of the energy–momentum tensors for scalar, Dirac and electromagnetic fields
are investigated in Section 3. The behavior in the asymptotic regions of the parameters is discussed in
detail. Section 4 considers the VEV of the surface energy–momentum tensor for a scalar field on a brane
parallel to the AdS boundary. Section 5 is devoted to the study of the vacuum energy–momentum tensor
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for a scalar field in the geometry with a brane perpendicular to the AdS boundary. The main results are
summarized in Section 6.

2. Mode Functions in the Geometry with a Brane Parallel to the AdS Boundary

In Poincaré coordinates (x0 = t, x1, . . . , xD−1, y), with −∞ < xi, y < +∞, i = 0, 1, . . . , D− 1, the line
element for the (D + 1)-dimensional AdS spacetime is presented as

ds2 = e−2y/a
[(

dx0
)2
−
(

dx1
)2
− · · · −

(
dxD−1

)2
]
− dy2, (1)

where a is the curvature radius of the background geometry sourced by a negative cosmological constant
Λ = −D(D− 1)/(2a2). For the curvature scalar and the Ricci tensor, one has R = −D(D + 1)/a2 and
Rµρ = −Dgµρ/a2, with the metric tensor gµρ defined from (1). Introducing a new coordinate z, 0 6 z < ∞,
in accordance with z = aey/a, the line element is written in conformally flat form

ds2 = gµρdxµdxρ = (a/z)2ηµρdxµdxρ, (2)

where xD = z and ηµρ = diag(1,−1, . . . ,−1) is the metric tensor for (D + 1)-dimensional Minkowski
spacetime. The hypersurfaces z = 0 and z = ∞ correspond to the AdS boundary and horizon, respectively.
In what follows, we work in the coordinate system defined by (2).

We are interested in the effects on the local properties of the quantum vacuum induced by a
codimension one brane. First, we consider the case where the brane is parallel to the AdS boundary
and is located at z = z0. It divides the space into two subspaces: the region between the AdS boundary
and the brane, 0 ≤ z ≤ z0 (L-region), and the region between the brane and AdS horizon, z0 ≤ z < ∞
(R-region). The brane has a nonzero extrinsic curvature tensor and, as a consequence, the properties of
the vacuum state in the L- and R-regions are different. The evaluation of the VEVs for local physical
observables in those regions requires different procedures and we will discuss them separately. The VEVs
are presented in the form of mode-sums over complete set of mode functions for quantum fields and we
start by considering the modes for scalar, Dirac and electromagnetic fields.

2.1. Scalar Field

First, we consider a scalar field ϕ(x) with the mass m. Assuming a general curvature coupling with
the parameter ξ, the field equation reads(

gµρ∇µ∇ρ + m2 + ξR
)

ϕ(x) = 0, (3)

where ∇µ is the covariant derivative operator. The most important special cases correspond to minimally

(ξ = 0) and conformally (ξ = ξD = (D− 1)/(4D)) coupled fields. Let ϕ
(±)
σ (x) be a complete set of positive

and negative energy mode functions specified by the set of quantum numbers σ. In accordance with the
problem symmetry, they can be presented in the form

ϕσ(x) = eikx∓iωt f (z), (4)

where x = (x1, x2, . . . , xD−1), k = (k1, k2, . . . , kD−1), and kx = ∑D−1
l=1 kixi. Plugging into the field equation,

we get an ordinary differential equation for the function f (z):

zD+1∂z

[
z1−D∂z f (z)

]
+
[
λ2z2 +

(
ξD(D + 1)− a2m2

)]
f (z) = 0, (5)
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where the energy ω is expressed in terms of λ and k2 = ∑D−1
i=1 k2

i as ω =
√

λ2 + k2. The general solution of
(5) is expressed in terms of the Bessel and Neumann functions Jν(λz) and Yν(λz):

f (z) = zD/2 [c1 Jν(λz) + c2Yν(λz)] , (6)

where c1 and c2 are constants and

ν =
√

D2/4− D(D + 1)ξ + m2a2. (7)

To have a stable vacuum we assume the values of the parameters in (7) for which ν > 0 (see [70,71]). For a
conformally coupled massless field, one has ν = 1/2 and the mode functions (4) with (6) are conformally
related to the modes in the Minkowski bulk. The scalar modes are normalized by the condition∫

dDx g00
√
|g|ϕ(s)

σ (x)ϕ
(s′)∗
σ′ (x) =

δss′

2ω
δλλ′δ(k− k′), (8)

where g is the determinant of the metric tensor. Here, δλλ′ is the Kronecker delta in the problems with
discrete eigenvalues of the quantum number λ and δλλ′ = δ(λ− λ′) in the problems with continuous
spectrum for λ.

We are interested in the effects of a codimension one brane, localized at z = z0, on the local properties
of the scalar vacuum. The Robin boundary condition is imposed for the field operator on the brane:

(βnµ∇µ + 1)ϕ(x) = 0, z = z0, (9)

where nµ is the inward pointing normal to the brane and β is a constant. The latter encodes the properties
of the brane. In the special cases β = 0 and β = ∞, the condition (9) is reduced to the Dirichlet and
Neumann boundary conditions, respectively. For the normal in (9) one has nµ = δ(J)δ

µ
Dz/a, where J = L,

δ(L) = −1 in the L-region and J = R, δ(R) = 1 in the R-region. In general, the values of the constant β could
be different for those regions.

First, let us consider the modes in the R-region. From the boundary condition (9), it follows that
c2/c1 = − J̄ν(λz0)/Ȳν(λz0) for the coefficients in (6). Here and below, for a given function F(x), we use
the notation with the bar defined in accordance with

F̄(x) = B0xF′(x) + A0F(x), (10)

with the coefficients
A0 = 1 + δ(J)

Dβ

2a
, B0 = δ(J)

β

a
. (11)

The mode functions in the R-region obeying the boundary condition (9) are presented as

ϕ
(±)
(R)σ(x) = C(R)σzD/2gν(λz0, λz)eikx∓iωt, (12)

with the function
gν(u, v) = Jν(v)Ȳν(u)− J̄ν(u)Yν(v). (13)

The spectrum for λ is continuous, and, from the normalization condition (8) with δλλ′ = δ(λ− λ′), we get

|C(R)σ|2 =
(2πa)1−D λ

2ω [ J̄2
ν(λz0) + Ȳ2

ν (λz0)]
. (14)
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The modes are specified by the set σ = (k, λ) with −∞ < ki < +∞, i = 1, . . . , D − 1, and 0 ≤ λ < ∞.
The analog of the mode functions (12) in the region between two parallel branes on the AdS bulk has been
considered in [67].

Note that we could also have modes with purely imaginary λ, λ = i|λ|. For those modes,
f (z) = c1zD/2Kν(|λ|z), where Kν(x) is the MacDonald function (the modes with the modified Bessel
function Iν(|λ|z) are not normalizable). From the boundary condition (9), we get the equation for
the allowed values of |λ|: K̄ν(|λ|z0) = 0. The energy corresponding to these modes is given by
ω =

√
k2 − |λ|2 and it becomes imaginary for k < |λ|. This leads to the instability of the vacuum

state. To exclude the unstable modes, we restrict the allowed values for the Robin coefficient in the
region where the equation K̄ν(|λ|z0) = 0 has no roots. It can be seen that, for non-Dirichlet boundary
conditions (β 6= 0), the corresponding condition is expressed as a/β < ν − D/2 (for more detailed
discussion in models with compact dimensions, see [72]). For a/β > ν − D/2 there is a single root.
For the special value β/a = 1/(ν− D/2), there exists a mode with λ = 0 and with the mode functions
ϕ
(±)
(R)σ(x) = C(R)σzD/2−νeikx∓ikt. For a minimally coupled massless scalar field, one has ν = D/2 and this

special value corresponds to the Neumann boundary condition. The corresponding mode functions do
not depend on z.

In the L-region, the integration over z in (8) goes over the interval z ∈ [0, z0]. For the solutions (4)
with (6) and c2 6= 0, the z-integral diverges at the lower limit z = 0 in the range ν ≥ 1. Hence, in that range,
from the normalizability condition for the mode functions it follows that we should take c2 = 0. In the
range 0 ≤ ν < 1, the solution (6) with c2 6= 0 is normalizable and in order to uniquely define the mode
functions an additional boundary condition at the AdS boundary is required [70,73]. The general class
of allowed boundary conditions has been discussed in [74,75]. In particular, they include the Dirichlet
and Neumann boundary conditions, the most frequently used in the literature. Here, for the values of the
parameters corresponding to the range 0 ≤ ν < 1, we choose the Dirichlet condition, which gives c2 = 0.
With this choice, the mode functions in the L-region are specified as

ϕ
(±)
(L)σ(x) = C(L)σzD/2 Jν(λz)eikx∓iωt. (15)

From the boundary condition (9) on the brane we get the equation for the eigenvalues of the quantum
number λ:

J̄ν(λz0) = 0. (16)

If we denote by x = λν,n the positive zeros of the functions J̄ν(x), numerated by n = 1, 2, . . ., then the
eigenvalues are given by λ = λν,n/z0. Note that the roots λν,n do not depend on the location of the brane.
From the normalization condition (8), with δλλ′ = δnn′ and with the z-integration over [0, z0], one finds

|Cσ|2 =
(2πa)1−D λν,nTν(λν,n)

z0

√
k2z2

0 + λ2
ν,n

, (17)

with the function Tν(x) = x[x2 J′2ν (x) + (x2 − ν2)J2
ν(x)]−1.

Similar to the R-region, the stability condition for the vacuum state in the L-region imposes restrictions
to the allowed values of the Robin coefficient β. That condition excludes the presence of purely imaginary
roots λ = i|λ| for the Equation (16). It can be shown that there are no such modes for a/β < D/2 + ν and
there is a single mode for a/β > D/2 + ν. As seen, the stability condition in the L-region is less restrictive
than that for the R-region. In the special case β/a = 1/ (D/2 + ν) one has a mode with λ = 0 with the
mode functions ϕ

(±)
(L)σ(x) = C(L)zD/2+νeikx∓ikt.
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2.2. Dirac Field

Now, we turn to a massive Dirac field ψ(x). The dynamics of the field is governed by the
Dirac equation [

iγµ
(
∂µ + Γµ

)
−m

]
ψ(x) = 0, (18)

where Γµ is the spin connection. The curved spacetime Dirac matrices γµ are expressed in terms of
the flat spacetime matrices γ(b) by the relation γµ = eµ

(b)γ
(b), with eµ

(b) being the tetrad fields. In the

coordinate system corresponding to (2), the latter can be taken as eµ

(b) = (z/a)δµ
b . For the components of

the spin connection, this gives ΓD = 0 and Γi = ηilγ
(D)γ(l)/(2z) for i = 0, . . . , D− 1. In an irreducible

representation of the Clifford algebra, the matrices γ(b) are N × N matrices, where N = 2[(D+1)/2] and the
square brackets in the exponent mean the integer part. Up to a similarity transformation, the irreducible
representation is unique in odd numbers of spatial dimension D. For even values of D, one has two
inequivalent irreducible representations. We use the flat spacetime gamma matrices in the representation

γ(0) =

(
0 χ0

χ†
0 0

)
, γ(l) =

(
0 χl
−χ†

l 0

)
, l = 1, 2, . . . , D− 1, (19)

and γ(D) = si diag(1,−1), where s = ±1. In odd spatial dimensions, the two values of the parameter s
correspond to two inequivalent representations. The commutation relations for the N/2×N/2 matrices χl
and for their hermitian conjugate matrices χ†

l are obtained from those for the Dirac matrices γ(l). They are
reduced to the relations χ0χ†

l = χlχ
†
0, χ†

0χl = χ†
l χ0, χ†

0χ0 = 1 and χlχ
†
i + χiχ

†
l = 2δli, χ†

l χi + χ†
i χl = 2δli,

for l, i = 1, 2, . . . , D − 1. The representation (19) for the construction of the gamma matrices in AdS
spacetime is considered in [76]. Another representation is taken in [43].

Assuming the dependence on the coordinates (t, x) in the form eikx∓iωt and decomposing the spinor
ψ(x) into the upper and lower components, in the representation (19), the corresponding equations
are separated. The dependence of those components on the z-coordinate is expressed in terms of the
function c1 Jma±s/2(λz) + c2Yma±s/2(λz), where the upper and lower signs correspond to the upper and
lower components. The coefficients are determined by the normalization condition and by the boundary
condition on the brane at z = z0. The positive and negative energy fermionic modes ψ

(±)
σ (x), specified by

the set of quantum numbers σ, are normalized by the condition∫
dDx (a/z)Dψ

(±)†
σ ψ

(±)
σ′ = δσσ′ . (20)

As in the case of a scalar field, here δσσ′ is understood as the Dirac delta function for the continuous
components of σ and the Kronecker delta for discrete ones. On the brane at z = z0, we impose the bag
boundary condition

(1 + iγµnµ)ψ(x) = 0, z = z0, (21)

where nµ = −δ(J)δ
D
µ a/z, J=R,L, with δ(R) = −δ(L) = 1 for the L- and R-regions.
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In the R-region, z0 ≤ z < ∞, from the boundary condition (21), for the ratio of the coefficients in the
linear combination of the Bessel and Neumann functions, one finds c2/c1 = −Jma+1/2(λz0)/Yma+1/2(λz0).
The positive and negative energy mode functions, obeying the boundary condition (21), are expressed as

ψ
(+)
(R)σ(x) = C(+)

(R)σz
D+1

2 eikx−iωt

 kχχ†
0+iλ−ω

ω gma+1/2,ma+s/2(λz0, λz)w(γ)

iχ†
0

kχχ†
0+iλ+ω

ω gma+1/2,ma−s/2(λz0, λz)w(γ)

 ,

ψ
(−)
(R)σ(x) = C(−)

(R)σz
D+1

2 eikx+iωt

(
iχ0

kχ†χ0−iλ+ω
ω gma+1/2,ma+s/2(λz0, λz)w(γ)

kχ†χ0−iλ−ω
ω gma+1/2,ma−s/2(λz0, λz)w(γ)

)
, (22)

where kχ = ∑D−1
l=1 klχl and

gµ,ρ(x, u) = Jµ(x)Yρ(u)− Jρ(u)Yµ(x). (23)

In (22), the one-column matrices w(γ), γ = 1, . . . , N/2 are introduced with the elements w(γ)
l = δlγ and

having N/2 rows. The normalization constant is determined from the condition (20):

∣∣∣C(±)
(R)σ

∣∣∣2 = λ

[
J2
ma+1/2(λz0) + Y2

ma+1/2(λz0)
]−1

4 (2π)D−1 aD
. (24)

The set of quantum numbers σ is specified as σ = (k, λ, γ).
In the L-region and for ma ≥ 1/2, from the normalizability condition, we get c2 = 0. In the range of

the mass corresponding to ma < 1/2, the modes with c2 6= 0 are normalizable as well, and an additional
boundary condition is required to uniquely define the mode functions. Here, we consider a special case
that corresponds to the choice c2 = 0 for all values of the mass. The fermionic modes are given by
the expressions

ψ
(+)
(L)σ(x) = C(+)

(L)σz
D+1

2 eikx−iωt

 kχχ†
0+iλ−ω

ω Jma+s/2(λz)w(γ)

iχ†
0

kχχ†
0+iλ+ω

ω Jma−s/2(λz)w(γ)

 ,

ψ
(−)
(L)σ(x) = C(−)

(L)σz
D+1

2 eikx+iωt

(
iχ0

kχ†χ0−iλ+ω
ω Jma+s/2(λz)w(γ)

kχ†χ0−iλ−ω
ω Jma−s/2(λz)w(γ)

)
. (25)

The allowed values of λ are determined from the boundary condition (21) on the brane. They are roots of
the equation

Jma−1/2(λz0) = 0, (26)

and are expressed as λ = λma−1/2,n/z0. The normalization coefficient is obtained from (20) and is given by

|C(±)
(L)σ|

2 =
J−2
ma+1/2(λma−1/2,n)

2(2π)D−1aDz2
0

. (27)

Note that the eigenvalues for λ are the same for both the representations of the Clifford algebra.

2.3. Electromagnetic Field

For the electromagnetic field with the vector potential Aµ(x), µ = 0, 1, . . . , D, the field equation reads

∇ρFµρ = 0, (28)



Universe 2020, 6, 181 8 of 35

where Fµρ = ∂µ Aρ − ∂ρ Aµ is the field strength tensor. To find a complete set of mode functions Aσµ(x)
for the vector potential, we impose the Lorenz condition ∇µ Aµ = 0 and an additional gauge condition
AD = 0. For the positive energy modes, presenting the dependence on the coordinates (t, x1, . . . , xD−1) in
the form eikx−iωt, from the field equation, we can see that

Aσµ(x) = ε(γ)µzD/2−1 [c1 JD/2−1(λz) + c2YD/2−1(λz)] eikx−iωt. (29)

Here, γ = 1, . . . , D − 1 correspond to different polarizations specified by the polarization vector ε(γ)µ.
For the latter, one has the normalization condition ηµρε(γ)µε(γ′)ρ = −δγγ′ and the constraints ε(γ)D = 0
and ηµρkµε(γ)ρ = 0. The latter two relations follow from the gauge conditions. The modes (29) are
normalized by the condition∫

dDx
√
|g|[A∗σ′µ∇

0 Aµ
σ − (∇0 A∗σ′µ)Aµ

σ ] = 4iπδσσ′ , (30)

where the set of quantum numbers is given by σ = (k, λ, γ).
The coefficients c1 and c2 in (29) are determined from (30) and from the boundary condition on the

brane. We consider two types of gauge invariant constraints. The first condition is the analog of the perfect
conductor boundary condition in D = 3 Maxwell electrodynamics and is given by

nµ1 ∗Fµ1···µD−1 = 0, z = z0, (31)

with ∗Fµ1···µD−1 being the dual of the field tensor and nµ is the normal vector to the boundary. The second
boundary conditions is expressed as

nµFµρ = 0, z = z0. (32)

This type of condition has been used in quantum chromodynamics to confine the gluons. In the gauge
under consideration and for the mode functions (29), the boundary condition (31) yields AσD|z=z0 = 0,
whereas the condition (32) gives ∂D Aσl |z=z0 = 0.

In the R-region, from the boundary condition on the brane, we get c2/c1 = −Jν(λz0)/Yν(λz0), where

ν =

{
D/2− 1, for (31),
D/2− 2, for (32).

(33)

The corresponding mode functions for the vector potential are presented as

Aσµ = C(R)σε(γ)µzD/2−1gν,D/2−1(λz0, λz)eikx−iωt, (34)

where the function gµ,ρ(x, u) is given by (23). The normalization constant is found from (30):

C2
(R)σ = λ

[
J2
ν(λz0) + Y2

ν (λz0)
]−1

(2π)D−2 aD−3
√

k2 + λ2
, (35)

with 0 ≤ λ < ∞.
In the L-region, from the normalizability of the mode functions, it follows that in (29) c2 = 0 for D ≥ 4.

For D = 3, an additional condition on the AdS boundary is required in order to uniquely define the modes.
Here, we consider a special case with c2 = 0 for D = 3 as well. For the mode functions, we obtain

Aσµ(x) = C(L)σε(γ)µzD/2−1 JD/2−1(λz)eikx−iωt. (36)
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The allowed values for λ are determined by the boundary condition on the brane and they are the roots of
the equation

Jν(λz0) = 0, (37)

with ν from (33). Hence, we have λ = λν,n/z0. For the normalization coefficient, one gets

C2
(L)σ =

2 (2π)2−D a3−D

z0

√
k2z2

0 + λ2
ν,n J′2ν (λν,n)

. (38)

The mode functions in the region between two branes have recently been considered [49].

2.4. Boundary Conditions in Z2-Symmetric Braneworlds

An example of the Z2-symmetric braneworld is provided by the Randall–Sundrum model with a
single brane (RSII model) formulated in background of (4+1)-dimensional AdS spacetime (see [77,78]
and the review [7] for the RSI and RSII models). For an arbitrary number of spatial dimensions, the line
element is given by (1) with e−2y/a replaced by e−2|y|/a. The regions −∞ < y < 0 and 0 < y < +∞
are identified by the Z2-symmetry. The brane is located at y = 0. Hence, in the corresponding setup,
two copies of the R-region are employed with z0 = a. The boundary conditions on the bulk fields at the
location of the brane are obtained by integrating the field equations about y = 0 (see, e.g., the discussions
in [26,40,67,76,79,80]).

For scalar fields, even under the reflection with respect to the brane, the Robin boundary condition is
obtained with the coefficient β = −2/(cb + 4Dξ/a), where cb is the brane mass term. The latter appears
in the part of the action located on the brane, Sb = −cb

∫
dDxdy

√
|g|δ(y)ϕ2/2. For odd scalar fields,

the Dirichlet boundary condition is obtained. For fermionic fields two types of boundary conditions are
obtained. The first one is reduced to the bag boundary condition (21) and the second one is obtained
from (21) by the change of the sign in the term containing the normal to the brane. For vector fields,
even under the reflection with respect to the brane, the boundary condition is reduced to (32) and for
odd fields the condition (31) is obtained. For fermionic fields with the boundary condition obtained from
(21) by the change of the sign in the second term, the VEV of the energy–momentum tensor is evaluated
in a way similar to that we have demonstrated for the bag boundary condition. The corresponding
mode functions are obtained from (22) by the replacement ma + 1/2→ ma− 1/2 in the first index of the
functions gµ,ρ(x, u), gma+1/2,ma+s/2(λz0, λz)→ gma−1/2,ma+s/2(λz0, λz), and in the expression (24) for the
normalization coefficient.

Hence, we conclude that the VEVs of the energy–momentum tensors for scalar, Dirac and
electromagnetic fields in Z2-symmetric braneworlds with a single brane are obtained from the results
given below for the R-region by an appropriate choice of the boundary conditions on the brane. The only
difference is that an additional factor 1/2 should be added. The latter is related to the presence of two
copies of the R-region.

3. Vacuum Energy—Momentum Tensor

3.1. General Properties

Having the mode functions for quantum fields, we can investigate the VEVs of the local characteristics
of the vacuum state. Among the most important characteristics is the VEV of the energy–momentum
tensor. In particular, it determines the distribution of the vacuum energy density and the forces acting on
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the boundaries (the Casimir forces). For a free field Ψ(x) (the only interaction is that with background
gravitational field), the operator of the energy–momentum tensor is a bilinear form in the field operator:

Tµρ = Tµρ {Ψ(x), Ψ(x)} . (39)

The corresponding expressions of the bilinear form in the right-hand side for scalar, Dirac and vector
fields can be found, for example, in [81,82]. Expanding the field operator in terms of a complete set
(Ψ(+)

σ (x), Ψ(−)
σ (x)) of the positive and negative energy mode functions, specified by quantum numbers

σ, using the commutation relations for the creation and annihilation operators and the definition of
the vacuum state |0〉, for the VEV of the energy–momentum tensor the following sum over the modes
is obtained:

〈0| Tµρ |0〉 ≡
〈

Tµρ

〉
=

1
2 ∑

σ
∑

s=±
Tµρ

{
Ψ(s)

σ (x), Ψ(s)∗
σ (x)

}
. (40)

Here, ∑σ is understood as summation for discrete components of σ and as integration over the continuous
components. The expression in the right-hand side of (40) is divergent and a regularization procedure is
required. The regularization can be made by point splitting, by using the local zeta function technique
or by introducing a cutoff function [81–86]. In the presence of boundaries, the VEV (40) is decomposed
into the boundary-free and boundary-induced contributions. The structure of the divergences is uniquely
determined by the local geometric characteristics of the background spacetime. For points away from
boundaries, the local geometry in the problems without and with boundaries is the same and, hence,
the divergences are the same as well. From here it follows that at those points the boundary-induced
contributions in the VEVs of local observables are finite and the renormalization procedure is the same as
that in the boundary-free geometry. Consequently, for points outside the boundaries, the renormalization
in (40) is reduced to that for the boundary-free part and the regularization dependences may appear in
that part only. For definiteness, we will assume that a cutoff function is introduced in (40) without writing
it explicitly. In [47–49,61,62,67], the point-splitting regularization technique is used. The details of the
evaluation for the boundary-induced contributions at points outside the boundaries do not depend on the
specific regularization scheme.

In the geometry with a brane, we decompose the vacuum energy–momentum tensor into
two contributions: 〈

Tµρ

〉
=
〈

Tµρ

〉
0 +

〈
Tµρ

〉
b , (41)

where
〈

Tµρ

〉
0 is the VEV in the absence of the brane and the part

〈
Tµρ

〉
b is induced by the brane. The VEV

in the brane-free AdS geometry has been widely discussed in the literature (for recent discussion see,
for example, [87,88]) and here we are mainly interested in the brane-induced effects. From the maximal
symmetry of the AdS spacetime it follows that

〈
Tµρ

〉
0 = const · gµρ. On the basis of the symmetry of the

problem with a brane parallel to the AdS boundary, we expect that the VEV
〈

Tµρ

〉
b is diagonal. From the

Lorentz invariance in the subspace (t, x1, . . . , xD−1), one concludes that the stresses in the directions
parallel to the brane are equal to the energy density:〈

T0
0

〉
b
=
〈

T1
1

〉
b
= · · · =

〈
TD−1

D−1

〉
b

. (42)

An additional relation between the components of the brane-induced VEV is obtained from the covariant
continuity equation ∇µ

〈
Tµ

ρ

〉
b
= 0. The latter is reduced to

zD+1∂z

(
z−D

〈
TD

D

〉
b

)
+ D

〈
T0

0

〉
b
= 0. (43)
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As shown below, the brane-induced contribution in the VEVs depend on the coordinate z and on the
location of the brane through the ratio z/z0. This property is a consequence of the maximal symmetry of
the AdS spacetime and of the vacuum state we consider here. In addition, for points outside the brane,
the following trace relations take place for scalar, Dirac and electromagnetic fields:

〈Tµ
µ 〉

(s)
b =

[
D(ξ − ξD)∇µ∇µ + m2

]
〈ϕ2〉b,

〈Tµ
µ 〉

(f)
b = m 〈ψ̄ψ〉b ,

〈Tµ
µ 〉

(v)
b = −D− 3

16π

〈
FµρFµρ

〉
b . (44)

Here and below, we use the superscripts (s),(f),(v) for the brane-induced energy–momentum tensors in the
cases of scalar, Dirac and electromagnetic fields. On the right-hand sides of (44) the subscript b stands for
the brane-induced contributions in the corresponding VEVs. For conformally coupled fields (conformally
coupled massless scalar field (ξ = ξD, m = 0), massless Dirac field, the electromagnetic field in D = 3
spatial dimensions) the brane-induced energy–momentum tensor is traceless. For points away from the
brane the trace anomaly is contained in the part

〈
Tµρ

〉
0 only (on trace anomalies for different fields see,

for example, [82]). The procedure for the evaluation of the brane-induced contribution in the VEV of the
energy–momentum tensor follows similar steps for scalar, fermion and electromagnetic fields and we
illustrate it on the example of the fermionic field.

The geometry given by (2) is conformally flat and for conformally coupled fields the problem under
consideration is conformally related to the corresponding problem in the Minkowski bulk. Denoting by〈

Tρ
µ

〉(M)

b
the boundary-induced VEV in the Minkowskian problem, we have the following relation

〈
Tρ

µ

〉
b
= (z/a)D+1

〈
Tρ

µ

〉(M)

b
. (45)

For the R-region, the problem with a brane in AdS bulk parallel to the AdS boundary is conformally
related to the problem in the Minkowski bulk with the line element ds2

M = ηµρdxµdxρ, xD = z, and with
a single boundary at z = z0. For the L-region, the Minkowskian counterpart contains two boundaries.
The first one is located at z = z0 and is the conformal image of the brane and the second one is located at
z = 0 and is the conformal image of the AdS boundary. The boundary conditions on z = 0 for fields in
the Minkowskian problem are related to the special boundary conditions we have imposed on the AdS
boundary.

3.2. R-Region

We describe the procedure for the evaluation of the brane-induced energy–momentum tensor on the
example of the Dirac field. The procedure for scalar and electromagnetic fields follows similar steps.
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3.2.1. Dirac Field

By using the expression for the energy–momentum tensor of the Dirac field and the corresponding
mode functions from the previous section, the diagonal components in the R-region are presented in
the form

〈Tρ
µ〉(f) =

δ
ρ
µNa−D−1(z/z0)

D+2

2(4π)(D−1)/2Γ((D− 1)/2)

∫ ∞

0
du uD−2

×
∫ ∞

0
dx

x√
x2 + u2

f (µ)
(R) (x, xz/z0)

J2
ma+1/2(x) + Y2

ma+1/2(x)
, (46)

where

f (0)
(R)(x, y) = −

(
x2 + u2

) [
g2

ma+1/2,ma+s/2(x, y) + g2
ma+1/2,ma−s/2(x, y)

]
,

f (D)
(R) (x, y) = x2

[
g2

ma+1/2,ma+s/2(x, y) + g2
ma+1/2,ma−s/2(x, y)

−2ma
y

gma+1/2,ma+s/2(x, y)gma+1/2,ma−s/2(x, y)
]

. (47)

As seen from (47), the VEVs for s = +1 and s = −1 coincide. For the separation of the brane-induced part,
we use the relation

gµ,ρ(x, u)gµ,ρ′(x, u)
J2
µ(x) + Y2

µ(x)
= Jρ(u)Jρ′(u)−

1
2 ∑

s=1,2

Jµ(x)

H(s)
µ (x)

H(s)
ρ (u)H(s)

ρ′ (u), (48)

where H(s)
ρ (u), s = 1, 2, are the Hankel functions. For the separate terms in the integrand of (46), one has

µ = ma + 1/2, ρ, ρ′ = ma± s/2 and u = xz/z0. The part in the VEV coming from the first term in the
right-hand side of (48) is the vacuum energy–momentum tensor in the geometry where the brane is absent
(the part

〈
Tµρ

〉
0 in (41)). In the complex plane x = reiφ, with r being the modulus of x, for z > z0 and for

large values of r the s = 1 term in (48) (with u = xz/z0) is exponentially small in the quarter 0 < φ ≤ π/2
and the s = 2 term is exponentially small in the quarter −π/2 ≤ φ < 0. On the basis of these properties,
in the parts of the energy–momentum tensor with the last term in (48), we rotate the integration contour
over x by the angle π/2 for s = 1 terms and by the angle−π/2 for s = −1 terms. Introducing the modified
Bessel functions Iµ(x) and Kµ(x), we get

〈Tρ
µ〉

(f)
b = −

2−Dδ
ρ
µN

πD/2Γ(D/2)aD+1

∫ ∞

0
dx xD+1 Ima+1/2(xz0/z)

Kma+1/2(xz0/z)
F(µ)
(R) (x), (49)

with the notations

F(0)
(R)(x) =

1
D

[
K2

ma+1/2(x)− K2
ma−1/2(x)

]
,

F(D)
(R) (x) = K2

ma−1/2(x)− K2
ma+1/2(x) +

2ma
x

Kma+1/2(x)Kma−1/2(x). (50)

For massive fields both the energy density 〈T0
0 〉

(f)
b and the normal stress 〈TD

D 〉
(f)
b are negative. As seen from

(49), the brane-induced contribution depends on the coordinates z and z0 through the ratio z/z0 = e(y−y0)/a,
where y0 = a ln(z0/a) is the location of the brane in terms of the coordinate y. Note that y− y0 is the
proper distance from the brane. For a massless field, the brane-induced contribution vanishes, 〈Tρ

µ〉b = 0.
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The massless fermionic field is conformally invariant and this result could be directly obtained from the
corresponding result for a single boundary in the Minkowski bulk by using the relation (45).

The Minkowskian result for a massive field is obtained from (49) in the limit a → ∞ for fixed y
(see (1)). From the relation z = aey/a, it follows that z ≈ a + y and the values for the coordinate z are large.
By using the uniform asymptotic expansions for the modified Bessel functions for large values of the order,
the leading term in the expansion of the components with µ = 0, 1, . . . , D− 1 coincides with the VEV for a
planar boundary in the Minkowski bulk:

〈Tρ
µ〉

(Mf)
b = −

2−Dδ
ρ
µNm

πD/2DΓ(D/2)

∫ ∞

m
dx (x2 −m2)D/2 e−2x(y−y0)

x + m
, (51)

and the normal stress vanishes, 〈TD
D 〉

(Mf)
b = 0.

The general formula (49) for the brane-induced contribution in the energy–momentum tensor is
simplified in the region near the brane and at large distances from it (near-horizon limit). For large values
x, the integrand in (49) behaves as xD−1e−2x(1−z0/z), and the integral is divergent for points on the brane.
These surface divergences are well-known in quantum field theory with boundaries and have been widely
discussed in the literature for different geometries of boundaries (see, for instance, [8–11]). Near the brane,
assuming that z/z0 − 1� 1, the contribution of large values of x dominate in the integral, and, by making
use of the corresponding asymptotic formulas for the modified Bessel functions, in the leading order,
we obtain

〈T0
0 〉

(f)
b ≈ −

NmΓ((D + 1)/2)

(4π)(D+1)/2D (y− y0)
D , 〈TD

D 〉
(f)
b ≈ −

DNmΓ((D− 1)/2)
2(4π)(D+1)/2Da(y− y0)D−1

. (52)

In terms of the coordinate y, these asymptotics are valid under the conditions y− y0 � a, m−1. The leading
terms for the energy density and for the stresses parallel to the brane coincide with those for a boundary
in the Minkowski bulk. This is related to the fact that near the brane the dominant contribution to the
VEV comes from the vacuum fluctuations with wavelengths smaller than the curvatures radius and
the influence of the gravitational field on those fluctuations is weak. The effects of gravity are essential
at distances from the brane larger than the curvature radius, z/z0 � 1 or y− y0 � a. In that region,
the leading term in the asymptotic expansion for the energy density is expressed as

〈T0
0 〉

(f)
b ≈ −Nm

exp[− (2m + 1/a) (y− y0)]

2D+2ma+1π(D−1)/2aD

× Γ(ma + (D + 3)/2)Γ(2ma + D/2 + 1)
(2ma + 1)Γ2(ma + 1/2)Γ(ma + D/2 + 2)

, (53)

and for the normal stress we get 〈TD
D 〉

(f)
b ≈ D〈T0

0 〉
(f)
b / (D + 2ma + 1). Note that, for a boundary in the

Minkowski bulk and for y− y0 � 1/m, the VEV decays as e−2m(y−y0). In the AdS spacetime, the decay of
the boundary-induced contribution, as a function of the proper distance from the boundary, is stronger.

The left panel of Figure 1 presents the dependence of the brane-induced contributions to the energy
density and the normal stress (in units of 1/aD+1), 〈Tµ

µ 〉
(f)
b (no summation over µ), µ = 0, D, on the ratio

z/z0 for fixed value ma = 1. In the right panel, we display the brane-induced parts as functions of the
field mass for fixed z/z0 = 2. For both panels, the full and dashed curves correspond to D = 3 and D = 4,
respectively.
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Figure 1. The brane-induced contributions in the VEVs of the energy density and the normal stress as
functions: of z/z0 (left); and of ma (right). For the left panel, we take ma = 1 and for the right panel
z/z0 = 2. The full and dashed curves correspond to D = 3 and D = 4.

3.2.2. Scalar Field

In a similar way, for the brane-induced contribution in the case of a scalar field with the boundary
condition (9), one obtains

〈Tρ
µ〉

(s)
b = −

2−Dδ
ρ
µ

πD/2Γ(D/2)aD+1

∫ ∞

0
dx xD+1 Īν(xz0/z)

K̄ν(xz0/z)
S(µ) [Kν(x)] , (54)

where the notation with the bar is defined as (10) and

S(0)[g(x)] = −ξ1

[
g′2(x) +

D + 4ξ/ξ1

x
g(x)g′(x) +

(
1 +

2
Dξ1

+
ν2

x2

)
g2(x)

]
,

S(D)[g(x)] = −g′2(x) +
Dξ1

x
g(x)g′(x) +

(
1 +

2m2a2 − ν2

x2

)
g2(x), (55)

with
ξ1 = 4ξ − 1. (56)

For a conformally coupled massless scalar field, the brane-induced contribution (54) vanishes. In the limit
a→ ∞, with fixed y and y0, from (54), we get the vacuum energy–momentum tensor for a Robin boundary
in the Minkowski bulk:

〈Tρ
µ〉

(Ms)
b =

2−Dδ
ρ
µ

πD/2Γ(D/2)

∫ ∞

m
dx
(

x2 −m2
)D/2−1

[
m2

D
− 4 (ξ − ξD) x2

]
βx + 1
βx− 1

e−2x(y−y0), (57)

for µ = 0, 1, 2, . . . , D− 1 and 〈TD
D 〉

(Ms)
b = 0.

For points near the brane, y− y0 � a, m−1, |β|, the leading term in the asymptotic expansion of the
energy density is given by the expression

〈T0
0 〉

(s)
b ≈ ±

DΓ ((D + 1)/2) (ξ − ξD)

2Dπ(D+1)/2(y− y0)D+1
, (58)
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where the upper and lower signs correspond to β = 0 (Dirichlet boundary condition) and β 6= 0
(non-Dirichlet boundary conditions), respectively. The leading term in (58) coincides with that for the
Minkowski bulk. For the normal stress we find 〈TD

D 〉
(s)
b ≈ 〈T

0
0 〉

(s)
b (y− y0)/a. In the case of a conformally

coupled field, the leading terms vanish and the divergences on the brane are weaker. At large distances
from the brane and for ν > 0, the energy density is approximated as

〈T0
0 〉

(s)
b ≈ (2ν− 1)e−2ν(y−y0)/a

22ν+D−1π(D−1)/2aD+1

A0 + B0ν

A0 − B0ν

(
4ξ − D + 2ν

D + 2ν + 1

)
× Γ(D/2 + ν + 1)Γ(D/2 + 2ν)

Γ(ν + 1)Γ(D/2 + 1/2 + ν)
. (59)

For the normal stress, we get 〈TD
D 〉

(s)
b ≈ D〈T0

0 〉
(s)
b /(D + 2ν). Note that for ν > 0 the decay of the

brane-induced VEV is exponential for both massless and massive fields. In the Minkowski bulk,
the boundary-induced contribution decays as e−2m(y−y0) for massive fields and as power-law (y− y0)

−D−1

for non-conformally coupled massless fields.
In the left panel of Figure 2, we display the brane-induced energy density in the R-region as a function

of z/z0 for D = 4 minimally coupled scalar field with ma = 1. The graphs are plotted for the Dirichlet
and Neumann boundary conditions and for the Robin boundary conditions with β/a = −0.1,−0.15,−0.5.
The graphs for the Robin boundary conditions are located between the curves corresponding to the
Dirichlet and Neumann conditions and for them 〈T0

0 〉
(s)
b increases with increasing |β|. The normal stress

displays a similar behavior as a function of z/z0. The right panel in Figure 2 presents the brane-induced
contributions to the energy density (µ = 0, full curves) and normal stress (µ = D, dashed curves) for fixed
z/z0 = 2 as functions of ma for D = 4 minimally coupled field. The graphs are plotted for the Dirichlet
and Neumann boundary conditions and for the Robin boundary condition with β/a = −0.15. In the latter
case, the energy density changes the sign at ma ≈ 3.13 and the normal stress changes the sign at ma ≈ 3.34.
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Figure 2. The brane-induced contributions in the VEVs of the energy density and the normal stress for
D = 4 minimally coupled scalar field and for: (left) ma = 1; and (right) z/z0 = 2. The full and dashed
curves on the right panel correspond to the energy density and normal stress, respectively (for the boundary
conditions chosen, see the text).

Figure 3 presents similar results for D = 4 conformally coupled field (ξ = 3/16). Note that in this
case the stability condition a/β < ν− D/2 on the Robin coefficient is stronger. For the left panel, we take
ma = 2. With this value, for all the boundary conditions with β ≤ 0, the vacuum is stable. The right panel
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is plotted for z/z0 = 2. There is a range for the values of ma in which the Neumann boundary condition
for a conformally coupled field leads to the vacuum instability.

An interesting feature that is seen from the graphs is the sign change and nonmonotonicity of the
brane-induced energy density (as a function of the distance from the brane) for the Robin boundary
condition. For a boundary in the Minkowski bulk, such behavior is easily obtained from the integral
representation (57). Indeed, for points near the boundary, the dominant contribution to the integral in (57)
comes from large values of x, and for β 6= 0 the leading term coincides with that for the Neumann boundary
condition. It is given by (58) with the lower sign. At large distances from the boundary, the contribution of
the integration range near the lower limit dominates and to the leading order one gets

〈T0
0 〉

(Ms)
b ≈ (1− 4ξ)mD/2+1e−2m(y−y0)

2D+1πD/2(y− y0)D/2
βm + 1
βm− 1

. (60)

For a given curvature coupling parameter, depending on the Robin coefficient, the energy density
corresponding to (60) can be either negative or positive. In particular, for a minimally coupled field,
we see that the energy density is positive near the boundary for β 6= 0 and negative at large distances in
the range |β| < 1/m. This means that the energy density changes the sign at some intermediate value
of the distance from the boundary. Similar analysis can be provided for a brane in AdS bulk. Near the
brane, the leading term in the asymptotic expansion is the same and the energy density is positive for
non-Dirichlet boundary conditions. At large distances, the asymptotic of the brane-induced VEV is given
by (59). For massive minimally and conformally coupled fields, one has ν > 1/2, and the sign of the energy
density in (59) is determined by the sign of the fraction containing the Robin coefficient. In particular,
at large distances, the energy density is negative for |a/β + D/2| > ν. Under this constraint and for
non-Dirichlet boundary conditions, the brane-induced energy density is positive near the brane and
negative at large distances. Examples of this kind of behavior are given in Figures 2 and 3.
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Figure 3. The same as in Figure 2 for D = 4 conformally coupled scalar field: (left) ma = 2; and (right)
z/z0 = 2.

3.2.3. Electromagnetic Field

For the electromagnetic field with the boundary conditions (31) and (32) on the brane, the brane-
induced VEV has the form

〈Tρ
µ〉

(v)
b = −

δνδ
ρ
µ (D− 1)

2DπD/2Γ(D/2)aD+1

∫ ∞

0
dx xD+1 Iν(xz0/z)

Kν(xz0/z)
V(µ)
(R) (x), (61)
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where δν = 1 for ν = D/2 − 1 (boundary condition (31)), δν = −1 for ν = D/2 − 2 (boundary
condition (32)), and

V(0)
(R)(x) =

(
1− 4

D

)
K2

D/2−1(x) +
(

1− 2
D

)
K2

D/2−2(x),

V(D)
(R) (x) = K2

D/2−1(x)− K2
D/2−2(x). (62)

Note that the VEV has different signs for the boundary conditions (31) and (32). For D = 3,
the electromagnetic field is conformally invariant and the VEV (61) is zero. One has (no summation
over µ) 〈Tµ

µ 〉
(v)
b < 0 for the boundary condition (31) and 〈Tµ

µ 〉
(v)
b > 0 for the condition (31). The VEVs for a

plate in the Minkowski bulk are obtained from (61) in the limit a→ ∞:

〈Tρ
µ〉

(Mv)
b = ∓δ

ρ
µ
(D− 1)(D− 3)Γ((D + 1)/2)

2 (4π)(D+1)/2 (y− y0)
D+1

, (63)

for µ = 0, 1, 2, . . . , D− 1 and 〈TD
D 〉

(Mv)
b = 0. The upper and lower signs in (63) correspond to the conditions

(31) and (32), respectively.
For D > 3, the VEV (61) diverges on the brane. The leading terms in the asymptotic expansions for

the energy density and for the normal stress over the distance from the brane are expressed as

〈T0
0 〉

(v)
b ≈ −δν

(D− 1) (D− 3) Γ((D + 1)/2)

2 (4π)(D+1)/2 (y− y0)
D+1

, 〈TD
D 〉

(v)
b ≈

y− yj

a
〈T0

0 〉. (64)

The leading term for the energy density coincides with the exact result for a boundary in the Minkowski
bulk, given by (63). At large distances from the brane, assuming that z0/z� 1, for ν > 0 to the leading
order, one gets

〈Tρ
µ〉

(v)
b ≈ −δ

ρ
µ

21−D−2νδν (D− 1) e−2ν(y−y0)

πD/2Γ(D/2)νΓ2(ν)aD+1

∫ ∞

0
dx xD+2ν+1V(µ)

(R) (x), (65)

where the integral is expressed in terms of the product of the gamma functions (see [89]). For D = 4
and the boundary condition (32), one has ν > 0 and at large distances the brane-induced part in the
energy–momentum tensor falls as 1/(y− y0).

In Figure 4, we present the brane-induced energy density and the normal stress versus z/z0 for D = 4
(left panel) and D = 5 (right panel) electromagnetic fields. The full and dashed curves correspond to the
boundary conditions (31) and (32), respectively, and near the curves the value of the index µ is given for
〈Tµ

µ 〉
(v)
b (no summation over µ) from (61).
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Figure 4. The brane-induced VEVs of the energy density and the normal stress as functions of z/z0 for:
D = 4 electromagnetic field (left); and D = 5 electromagnetic field (right). The full and dashed curves
correspond to the conditions (31) and (32).

3.3. L-Region

In the L-region, the eigenvalues for the quantum number λ are discrete. Again, we illustrate the
evaluation procedure for the example of the Dirac field. The VEVs for scalar and electromagnetic fields are
evaluated in a similar way.

3.3.1. Dirac Field

By using the mode functions (25), the mode sum for the energy–momentum tensor is presented in
the form

〈Tρ
µ〉(f) = −

δ
ρ
µ(4π)(1−D)/2NzD

Γ ((D− 1)/2) aD+1z0

∫ ∞

0
dk kD−2

∞

∑
n=1

f (µ)
(L) (λma−1/2,nz/z0)√

k2z2
0 + λ2

ma−1/2,n J2
ma+1/2(λma−1/2,n)

, (66)

with the functions

f (0)
(L)(x) = −(k2z2 + x2)

[
J2
ma+s/2(x) + J2

ma−s/2(x)
]

,

f (D)
(L) (x) = x2

[
J2
ma+s/2(x) + J2

ma−s/2(x)− 2ma
x

Jma+s/2(x)Jma−s/2(x)
]

. (67)

By taking into account that the eigenvalues λma−1/2,n do not depend on s, we conclude that, similar to the
R-region, the VEV of the energy–momentum tensor is the same for both inequivalent representations of
the Clifford algebra.

For the summation of the series over the roots λma−1/2,n, we use the Abel–Plana type formul [90,91]

∞

∑
n=1

f (λma−1/2,n)/λma−1/2,n

J2
ma+1/2(λma−1/2,n)

=
1
2

∫ ∞

0
dx f (x)− 1

2π

∫ ∞

0
dx

Kma−1/2(x)
Ima−1/2(x)

×
[
e(1/2−ma)πi f (ix) + e(ma−1/2)πi f (−ix)

]
. (68)
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The part of the VEV corresponding to the first term on the right-hand side of (68) gives the VEV in the
geometry without the brane. For the brane-induced contribution coming from the second integral in (68),
we get

〈Tρ
µ〉

(f)
b = −

2−Dδ
ρ
µN

πD/2Γ(D/2)aD+1

∫ ∞

0
dx xD+1 Kma−1/2(xz0/z)

Ima−1/2(xz0/z)
F(µ)
(L) (x), (69)

where the functions in the integrand are defined as

F(0)
(L)(x) =

1
D

[
I2
ma−1/2(x)− I2

ma+1/2(x)
]

,

F(D)
(L) (x) = I2

ma+1/2(x)− I2
ma−1/2(x) +

2ma
x

Ima+1/2(x)Ima−1/2(x). (70)

The energy density and the parallel stresses corresponding to (69) are negative, 〈Tµ
µ 〉

(f)
b < 0 (no summation

over µ), µ = 0, 1, . . . , D − 1, whereas the normal stress is positive. Comparing with the results for the
R-region, we see that the energy densities in the R- and L-regions have the same sign and the normal
stresses have opposite signs.

For a massless field one obtains 〈TD
D 〉

(f)
b = −D〈T0

0 〉
(f)
b and the expression for the energy density is

simplified to

〈T0
0 〉

(f)
b = −

(
z

az0

)D+1 NΓ((D + 1)/2)

(4π)(D+1)/2
(1− 2−D)ζ(D + 1), (71)

where ζ(x) is the Riemann zeta function. In this case the brane-induced part is traceless. The massless
fermionic field is conformally invariant and (71) corresponds to the conformal relation (45). In the
Minkowskian counterpart, z0 is the separation between two parallel planar boundaries. For a massive
field and in the Minkowskian limit a→ 0 we obtain the expression (51) for the energy density and parallel
stresses, with the replacement y− y0 → y0 − y, and the normal stress vanishes.

The VEV (69) depends on z and z0 in the form of the ration z/z0. Let us consider its behavior in
the asymptotic regions. The limit z/z0 → 1 corresponds to the points on the brane. The brane-induced
contribution (69) diverges on the brane. The leading terms in the asymptotic expansions over the distance
from the brane are obtained from the corresponding expressions (52) for the R-region by the replacement
y− y0 → y0 − y and by an additional change of the sign for the normal stress. For z/z0 � 1 we use the
small argument asymptotics for the functions F(µ)

(L) (x). To the leading order this gives

〈T0
0 〉

(f)
b ≈ −

2−D−2maπ−D/2N(z/z0)
D+2ma+1

Γ(D/2 + 1)Γ2 (ma + 1/2) aD+1

∫ ∞

0
dx xD+2ma Kma−1/2(x)

Ima−1/2(x)
,

for the energy density and

〈TD
D 〉

(f)
b ≈ −

D
2ma + 1

〈T0
0 〉

(f)
b ,

for the normal stress. In particular, the brane-induced VEV tends to zero on the AdS boundary as zD+2ma+1.
The brane-induced contributions for the energy density and the normal stress in the L-region, 〈Tµ

µ 〉
(f)
b

(no summation over µ), µ = 0, D, for D = 3 (full curves) and D = 4 (dashed curves) Dirac fields are
presented in Figure 5 as functions of z/z0 and ma. The left and right panels are plotted for ma = 1 and
z/z0 = 0.6, respectively.
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Figure 5. The same as in Figure 1 for the L-region. The left and right panels are plotted for ma = 1 and
z/z0 = 0.6, respectively.

3.3.2. Scalar Field

For a scalar field, the mode-sum formula for the VEV of the energy–momentum tensor contains series
over the zeros of the function J̄ν(x) = B0xJ′ν(x) + A0 Jν(x). The corresponding summation formula can be
found in [90,91]. The brane-induced contribution for a scalar field is presented as

〈Tρ
µ〉

(s)
b = −

2−Dδ
ρ
µ

πD/2Γ(D/2)aD+1

∫ ∞

0
dx xD+1 K̄ν(xz0/z)

Īν(xz0/z)
S(µ) [Iν(x)] , (72)

where the functions S(µ)[g(x)] are given by (55). For a conformally coupled massless field, one has ν = 1/2
and S(0)[I1/2(x)] = 2/(πDx), S(D)[I1/2(x)] = −2/(πx). For the energy density, we get

〈T0
0 〉

(s)
b = −

(z/a)D+1z−D−1
0

22D+1πD/2Γ(D/2 + 1)

∫ ∞

0
dx

xD

2a/β+1−D−x
2a/β+1−D+x ex − 1

, (73)

and for the normal stress 〈TD
D 〉

(s)
b = −D〈T0

0 〉
(s)
b . Note that one has the conformal relation ϕ(x) =

(z/a)(D−1)/2 ϕM(x) between the fields in the AdS and Minkowski bulk. From here, it follows that the
conformal image of the boundary condition (9) is the condition (βMnµ

M∇µ + 1)ϕM(x) = 0, z = z0, with the
relation between the Robin coefficients

z0

βM
=

a
β
− D− 1

2
. (74)

By taking into account (74), we can see that (73) corresponds to the conformal relation (45) with the
Minkowskian problem of two boundaries with the Dirichlet boundary condition on the plate z = 0
(conformal image of the AdS boundary) and the Robin condition with the coefficient βM on the plate at
z = z0. In the Minkowskian limit the result (57) is obtained for the energy density and parallel stresses and
the normal stress becomes zero.

Let us consider the behavior of the brane-induced VEV (72) near the brane and near the AdS boundary.
Near the brane, one has 1− z/z0 � 1 and the contribution of large x dominates in the integral of (72).
For non-conformally coupled fields, the leading term in the expansion of the energy density is given by
(58) with the replacement y− y0 → y0 − y and the relation between the energy density and the normal
stress remain the same. In particular, we see that near the brane the energy density has the same sign in
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the R- and L-regions, whereas the normal stresses have opposite signs. For points near the AdS boundary,
one has z/z0 � 1 and the leading term in the asymptotic expansion is given by

〈T0
0 〉

(s)
b ≈

(z/z0)
D+2ν

πD/2Γ(D/2)
(D + 2ν + 1) ξ1 + 1

2D+2νΓ(ν)Γ(ν + 1)aD+1

∫ ∞

0
dxxD+2ν−1 K̄ν(x)

Īν(x)
. (75)

In the same order, the normal stress is found from 〈TD
D 〉

(s)
b ≈ −D〈T0

0 〉
(s)
b /(2ν). Hence, the brane-induced

VEVs vanish on the AdS boundary as zD+2ν. Note that the factor (D + 2ν + 1) ξ1 + 1 is negative for both
minimally and conformally coupled field and for the Dirichlet boundary condition the energy density is
negative near the AdS boundary. In general, depending on the Robin coefficient, the energy density can be
either negative or positive.

The brane-induced energy density for D = 4 minimally coupled scalar field is presented in the left
panel of Figure 6 as a function of z/z0. The graphs are plotted for ma = 1, for the Dirichlet and Neumann
boundary conditions (the labels Dir and Neu near the curves), and for the Robin boundary conditions with
β/a = −0.5,−0.15,−0.1. For the latter cases, the energy density 〈T0

0 〉
(s)
b increases with increasing |β/a|.

In the right panel, we display the energy density and the normal stress as functions of the mass for the
Dirichlet and Neumann boundary conditions, and for the Robin condition with β/a = −0.15. The graphs
are plotted for z/z0 = 0.6. For the Robin boundary condition the brane-induced VEVs may change the
sign as functions of the mass.
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Figure 6. The same as in Figure 2 for a minimally coupled scalar field in the L-region. The left and right
panels are plotted for ma = 1 and z/z0 = 0.6, respectively.

It is of interest to compare the boundary-induced VEVs in AdS and dS spacetimes. The scalar Casimir
densities in background of dS spacetime are investigated in [92,93] for a single and two parallel Robin
boundaries, respectively. The corresponding line element is taken in planar coordinates,

ds2 = dt2 − e2t/a
D

∑
i=1

(dzi)2, (76)

with −∞ < t, zi < +∞, and it is assumed that the field is prepared in the Bunch-Davies vacuum state.
In the geometry of a single boundary at zD = 0, the boundary-induced VEV of the energy–momentum
tensor is expressed in terms of integrals that contain the products of the modified Bessel functions
with the order νdS =

[
D2/4− D(D + 1)ξ −m2a2]1/2 (compare with (7)). The VEV, in addition to
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the diagonal components, has also nonzero off-diagonal component 〈TD
0 〉

(s)
b that describes the energy

flux along the direction normal to the boundary. Depending on the boundary condition, the flux
can be either positive or negative. Another qualitatively new effect of the gravity, compared with
the corresponding problem in the Minkowski bulk, is the appearance of the nonzero normal stress
〈TD

D 〉
(s)
b . All the components 〈Tρ

µ〉
(s)
b depend on the spacetime coordinates t and zD in the form of the

combination |zD|et/a. The latter is the proper distance from the boundary measured in units of the
curvature radius a. Similar to the case of the AdS bulk, for small values of that combination, the influence
of the gravitational field on the energy density and stresses parallel to the boundary is weak. At large
proper distances from the boundary, |zD|et/a � a, the decay of the boundary-induced VEV is qualitatively
different for real and purely imaginary values of νdS. For νdS > 0, the VEV tends to zero monotonically,
as (|zD|et/a)2νdS−D−χ, where χ = 0 for the diagonal components and χ = 1 for the component 〈TD

0 〉
(s)
b .

For imaginary νdS, the behavior of the boundary-induced VEV at large proper distances is damping
oscillatory, as (|zD|et/a)−D−χ sin

[
2|νdS| ln(|zD|et/a) + φ

]
, with φ being a constant phase. Recall that for

the AdS bulk the decay of the boundary-induced VEV of the energy–momentum tensor, as a function of
the proper distance |y− y0|, was exponential at large distances (see (59) and (75)).

3.3.3. Electromagnetic Field

For the electromagnetic field, the eigenmodes of the quantum number λ are roots of the Equation (37),
where ν is given by (33) for the boundary conditions (31) and (32). The corresponding summation formula
for the series in the mode-sum of the energy–momentum tensor is obtained from (68) by the replacement
ma− 1/2→ ν. The brane-induced contribution is expressed as

〈Tρ
µ〉

(v)
b = −

δνδ
ρ
µ (D− 1)

2DπD/2Γ(D/2)aD+1

∫ ∞

0
dx xD+1 Kν(xz0/z)

Iν(xz0/z)
V(µ)
(L) (x), (77)

where we have defined the functions

V(0)
(L) (x) =

(
1− 4

D

)
I2
D/2−1(x) +

(
1− 2

D

)
I2
D/2−2(x),

V(D)
(L) (x) = I2

D/2−1(x)− I2
D/2−2(x). (78)

For D ≥ 4, the energy density is negative for the boundary condition (31) and positive for the condition (32).
For the normal stress, one has 〈TD

D 〉
(v)
b > 0 in the case of the condition (31) and 〈TD

D 〉
(v)
b < 0 for (32). In the

Minkowskian limit a→ ∞, with fixed y, y0, we obtain the result (63).
Unlike the R-region, in the L-region, the brane-induced contribution is different from zero for D = 3.

For the boundary condition (31) one gets

〈Tρ
µ〉

(v)
b = − π2

720

(
z

az0

)4
diag(1, 1, 1,−3). (79)

This determines the Casimir force per unit surface of the brane equal to−π2a−4/240. The latter is attractive
with respect to the AdS boundary and does not depend on the location of the brane. In the case of the
boundary condition (32), we obtain the expression

〈Tρ
µ〉

(v)
b =

7π2

5760

(
z

az0

)4
diag(1, 1, 1,−3). (80)
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The corresponding force per unit surface of the brane is given by 7π2α−4/1920 and is repulsive with
respect to the AdS boundary.

The near-brane asymptotics in the L-region are given by (64) with the replacement y− y0 → y0 − y
in the expression for the energy density. Near the AdS boundary, one has z/z0 � 1, and, by using the
expression of the modified Bessel function for small arguments, in the leading order, we get

〈T0
0 〉

(v)
b ≈ − 8δν (D− 1) (z/2z0)

2D−2

πD/2DΓ3(D/2− 1)aD+1

∫ ∞

0
dx x2D−3 Kν(x)

Iν(x)
,

〈TD
D 〉

(v)
b ≈ − D

D− 2
〈T0

0 〉
(v)
b . (81)

In spatial dimension D = 3, the integral is equal to π5/240 for the boundary condition (31) and 7π5/1920
for (32). In this special case, the asymptotics (81) coincide with the exact results (79) and (80).

For D = 4 and D = 5 electromagnetic fields, the brane contributions to the vacuum energy density
and the normal stress are plotted in the left and right panels of Figure 7 (the values of the index µ for
〈Tµ

µ 〉
(v)
b (no summation over µ) are displayed near the curves), respectively. The full and dashed curves

correspond to the boundary conditions (31) and (32), respectively.
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Figure 7. The brane-induced VEVs of the energy density and the normal stress in the L-region as functions
of z/z0 for: D = 4 electromagnetic field (left); and D = 5 electromagnetic field (right). The full and dashed
curves correspond to the conditions (31) and (32).

The electromagnetic Casimir densities for the boundary condition (31) on a single and two parallel
plates in dS spacetime with the line element (76) have been investigated in [94,95]. It was assumed that
the field is prepared in the Bunch-Davies vacuum. For D = 3, the electromagnetic field is conformally
invariant and the plate-induced contribution in the VEV of the energy–momentum tensor is conformally
related to that for the Minkowski bulk. In particular, it vanishes in the geometry of a single plate. In spatial
dimensions D ≥ 4, the components of the plate-induced VEV are expressed in terms of the hypergeometric
function. For these dimensions, similar to the case of a scalar field, the VEV of the energy–momentum
tensor has nonzero off-diagonal component 〈TD

0 〉
(v)
b . For a single plate, the corresponding energy flux

is directed from the plate. At large proper distances from the plate, located at zD = 0, the vacuum

stresses are isotropic and for D > 4 the diagonal components decay as
(
|zD|et/a

)−4
and the off-diagonal

component behaves like (|zD|et/a)−5. For D = 4 the asymptotics for 〈T0
0 〉b and 〈TD

0 〉b remain the same

and the stresses behave as (|zD|et/a)−6 ln
(
|zD|et/a

)
. In dS spacetime, we have a power-law decay of the
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boundary-induced VEV as a function of the proper distance from the plate. In the AdS bulk, the decay is
exponential.

4. VEV of the Surface Energy—Momentum Tensor for a Scalar Field

In the discussion above, we consider the VEV of the bulk energy–momentum tensor. In manifolds
with boundaries, in addition to the latter, a surface energy–momentum tensor may present, which is
localized on the boundaries. In the general case of bulk and boundary geometries, the expression of the
surface energy–momentum tensor for a scalar field with general curvature coupling has been obtained
in [96] by using the standard variational procedure. The VEV of the surface energy–momentum tensor for
branes parallel to the AdS boundary is investigated in [97] by using the generalized zeta function technique.

For a given field, the expression for the surface energy–momentum tensor T(surf)
µρ , in addition to the

bulk action, depends on the surface action. In [96], for a spacetime region M with boundary ∂M, the
surface action for a scalar field is taken in the form

Ss = −ε
∫

∂M
dDx

√
|h| (ξK + ms) ϕ2, (82)

where ε = 1 for spacelike and ε− 1 for timelike elements of the boundary, and h is the determinant of
the induced metric hµρ = gµρ − εnµnρ, with nµ being the inward pointing unit normal to ∂M, nµnµ = ε.
In (82), K = gµρKµρ is the trace of the extrinsic curvature tensor Kµρ = hσ

µhτ
ρ∇σnτ of the boundary and ms

is a parameter. ∂M consists of the initial and final spacelike hypersurfaces and a timelike smooth boundary
∂Ms. The variation of the total action with respect to the field ϕ(x) leads to the standard field Equation (3)
in the bulk and to the boundary condition(

2ξK + 2ms + nµ∇µ

)
ϕ(x) = 0, x ∈ ∂Ms. (83)

The variation of the action with respect to the metric tensor gives the metric energy–momentum tensor.
In addition to the bulk part, the latter contains a contribution T(surf)

µρ located on the boundary ∂Ms:

T(surf)
µρ = τµρδ(x; ∂Ms), where δ(x; ∂Ms) is the ’one-sided’ δ-function. By using the boundary condition (83),

the expression for τµρ is presented in the form [96]

τµρ = ξϕ2Kµρ −
(

2ξ − 1
2

)
hµρ ϕnσ∇σ ϕ. (84)

Note that the boundary condition (83) is of the Robin type. By using the boundary condition, one can
exclude the derivative term for the field in (84).

In the geometry (2) with a single brane at z = z0, the extrinsic curvature tensor for the R-
and L-regions (J=R,L) has the form K(J)

µρ = −δ(J)gµρ/a for µ, ρ = 0, 1, . . . , D − 1, and K(J)
DD = 0.

The boundary condition (83) is reduced to (9) with 1/β = 2ms − 2δ(J)Dξ/a. The VEV of the surface
energy–momentum tensor, 〈0| τµρ |0〉 ≡

〈
τµρ

〉
, is evaluated by using the mode-sum formula

〈
τµρ

〉
=

∑σ ∑s=± τµρ{ϕ
(s)
σ (x), ϕ

(s)∗
σ (x)}/2 with the mode functions given by (12) and (15) for the R- and L-regions,

respectively. The VEV has the form
〈

τ
ρ
µ

〉
= const · δρ

µ, µ, ρ = 0, 1, . . . , D− 1,
〈

τD
µ

〉
= 0 and, from the point

of view of an observer living on the brane it corresponds to a gravitational source of the cosmological
constant type. An essential difference compared with the bulk energy–momentum tensor is that the
subtraction of the part corresponding to the geometry without a brane is not sufficient and an additional
renormalization is required. The latter is reduced to the renormalization of the VEV for the field squared
on the brane. In [97], the generalized zeta function technique is used.
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The VEV of the surface energy–momentum tensor for the region J = R,L,
〈
τµρ

〉(J), is expressed in

terms of the VEV of the field squared on the brane,
〈

ϕ2〉(J)
z=z0

, as

〈
τ

ρ
µ

〉(J)
= δ

ρ
µδ(J) [(2ξ − 1/2)/β− ξ/a]

〈
ϕ2
〉(J)

z=z0
, (85)

The VEV
〈

ϕ2〉(J)
z=z0

is obtained by the analytic continuation of the function (the details can be found in [97])

F(J)(s) = −
δ(J)(
√

4πa)1−Dβ(µz0)
−s−1

Γ (−s/2) Γ ((D + 1 + s)/2)

∫ ∞

0
dx xD+sU(J)ν(x), (86)

to the physical point s = −1. Here, the parameter µ is the renormalization scale, ν is defined by (7) and

U(R)ν(x) =
Kν(x)
K̄ν(x)

, U(L)ν(x) =
Iν(x)
Īν(x)

. (87)

The representation (86) is valid in the slice −(D + 1) < Re s < −D of the complex s-plane. In the first
step of the analytic continuation, the integral in (86) is presented in the form of the sum of the integrals
over the regions [0, 1] and [1, ∞). In the first integral the substitution s = −1 can be made directly. In the
second integral, we subtract and add to the function U(J)ν(x) in the integrand the N leading terms of the
corresponding asymptotic expansion for large values of x and integrate the asymptotic part. For β 6= 0 the
asymptotic expansion has the form βU(J)ν(x) ∼ ∑∞

l=0 wl(ν)(−δ(J)x)−l−1, where the coefficients wl(ν) are
found from those for the expansions of the modified Bessel functions. The function F(J)(s) has a simple
pole at s = −1 and the leading term in the Laurent expansion is given by

−2(−δ(J)a)1−DwD−1(ν)

(4π)D/2Γ (D/2) (s + 1)
. (88)

In this way, the VEVs
〈

ϕ2〉(J)
z=z0

for J = R and J = L are decomposed into the pole and finite contributions.
The pole terms can be absorbed by adding to the brane action the respective counterterms. The expressions
for the finite parts in separate regions will not be given here and can be found in [97]. We will consider the
total energy density.

Combining the results for the R- and L-regions, one obtains the total surface energy density
〈
τ0

0
〉
=〈

τ0
0
〉(R)

+
〈
τ0

0
〉(L). Comparing the pole parts (88) for

〈
ϕ2〉(J)

z=z0
in those regions, we can see that in odd

spatial dimensions the pole parts in the energy density cancel out and the finite part does not depend
on the renormalization scale µ. Taking N = D− 1 for the number of the terms taken in the asymptotic
expansions of the function U(J)ν(x), for the total surface energy density in odd dimensions D, one gets
the formula

〈
τ0

0

〉
=

2ξβ/a + 1− 4ξ

(4π)D/2Γ (D/2) aD

[∫ 1

0
dx xD−1 ∑

J=R,L
U(J)ν(x)− 2

β

(D−3)/2

∑
l=0

w2l+1(ν)

D− 2l − 2

+
∫ ∞

1
dx xD−1

(
∑

J=R,L
U(J)ν(x)− 2

β

(D−3)/2

∑
l=0

w2l+1(ν)

x2l+2

)]
. (89)

Note that this quantity does not depend on the location of the brane. Depending on the value of the Robin
coefficient β, the surface energy density (89) can be either positive or negative (see the graphs in [97] for
minimally and conformally coupled scalar fields).
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In the geometry of two branes, the VEV of the surface energy–momentum tensor on a given brane is
decomposed into two parts. The first one corresponds to the VEV in the problem where the second brane is
absent and the corresponding evaluation procedure has been described in this section. The second part is
induced by the presence of the second brane and it requires no additional renormalization. As it has been
discussed in [97], in the Randall–Sundrum model the surface energy density induced on the visible brane
by the presence of the hidden brane gives rise to naturally suppressed cosmological constant. The surface
energy density in models with additional compact dimensions is discussed in [98,99] for neutral and
charged scalar fields. In the latter case, the value of the induced cosmological constant on the brane is
additionally controlled by tuning the magnetic flux enclosed by compact dimensions.

5. Geometry with a Brane Perpendicular to the AdS Boundary

In a number of recent developments of the AdS/CFT correspondence, branes intersecting the AdS
boundary are considered. They include the extensions of the correspondence for conformal field theories
with boundaries (AdS/BCFT correspondence) [100,101] and the geometric procedure for the evaluation of
the entanglement entropy for a bounded region in CFT [102,103]. In this section, based on [69], we consider
the effects on the scalar vacuum induced by a brane perpendicular to the AdS boundary.

The background geometry is described by the line element (2) and the brane is located at x1 = 0.
The problem is symmetric with respect to the brane and we will consider the region x1 ≥ 0. The scalar
field ϕ(x) obeys the field Equation (3) and the boundary condition

(β∂1 + 1) ϕ(x) = 0, (90)

on the brane. Introducing the notations x = (x2, . . . , xD−1) and k = (k2, . . . , kD−1), the normalized mode
functions obeying the boundary condition have the form

ϕ
(±)
σ (x) =

√
2k1/ω

(2πa)(D−1)/2
zD/2 Jν(λz) cos[k1x1 + α0(k1)]eikx∓iωt, (91)

where 0 ≤ k1, λ < ∞, the energy is given by ω =
√

k2 + k2
1 + λ2 with k2 = ∑D

i=2 k2
i and ν is defined by (7).

The function α0(k1) is determined from the relation

e2iα0(k1) =
iβk1 − 1
iβk1 + 1

. (92)

Note that in the case 0 ≤ ν < 1 we impose the same boundary condition on the AdS boundary as that in
Section 2 for the L-region.

For positive values of the Robin parameter β in (90), in addition to (91), there is a mode for
which the part depending on the coordinate x1 is expressed in terms of the exponential function e−x1/β.
The corresponding energy is given by ω =

√
k2 + λ2 − 1/β2. In the subspace k2 + λ2 < 1/β2 of the

quantum numbers, the energy is imaginary and the vacuum state is unstable. Note that for a Robin plate
in the Minkowski bulk the energy for the corresponding bound states is positive in the range β > 1/m.
To have a stable vacuum in the AdS bulk, we assume that β ≤ 0.

With the mode functions (91), the VEV of the energy–momentum tensor is evaluated by using the
mode-sum formula (40) (for the procedure based on the point-splitting regularization technique see [69]).
The mode-sum contains the integration over the region k1 ∈ [0, ∞). In the integrand, we write the parts
containing the products of the trigonometric functions with the arguments k1x1 + α0(k1) in the form of the
sum of three terms. The first one does not depend on x1 and its contribution corresponds to the VEV in
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the AdS spacetime when the brane is absent. The second and third terms depend on the x1-coordinate
in the form of the exponents e2ik1x1

and e−2ik1x1
. By taking into account that those terms exponentially

decay in the upper and lower half-planes of the complex variable k1, we rotate the integration contour
over k1 ∈ [0, ∞) by the angle π/2 for the part with the exponent e2ik1x1

and by the angle −π/2 for the part
with e−2ik1x1

. The VEV of the energy–momentum tensor is presented in the decomposed form (41), where
the diagonal components of the brane-induced part are given by the expression (no summation over µ)

〈Tµ
µ 〉

(s)
b = − (4π)(1−D)/2

22ν+1aD+1

∫ ∞

0
dx xe−2xx1/z βx/z + 1

βx/z− 1

×
[

AµxD+2νFD/2+1
ν (x) + B̂µ(x)xD+2νFD/2

ν (x)
]

, (93)

with A1 = 0, AD = (1− D)/2, Al = 1/2 for l = 0, 2, . . . , D− 1. The operators B̂µ(x) are defined as

B̂l(x) =
ξ1

4
B̂(x) +

ξ

x

(
∂x −

D
x

)
− ξ1δ1l , l = 0, 1, 2, . . . , D− 1,

B̂D(x) =
1
4

B̂(x)− D
ξ

x

(
∂x −

D
x

)
− m2a2

x2 + ξ1, (94)

with B̂(x) = ∂2
x − ((D− 1)/x)∂x + 4 and ξ1 is given by (56). In (93), we introduce the function

Fµ
ν (x) =

22ν+1x−2ν

Γ(µ− 1/2)

∫ 1

0
du u(1− u2)µ−3/2 J2

ν(xu)

=
1F2
(
ν + 1/2; ν + µ + 1/2, 2ν + 1;−x2)

Γ(ν + µ + 1/2)Γ(ν + 1)
, (95)

where 1F2(a; b, c; y) is the hypergeometric function. The diagonal components in the region x1 < 0 are
given by the expression (93) with x1 replaced by |x1|.

An important difference from the geometry with a brane parallel to the AdS boundary is the presence
of the off-diagonal component of the vacuum energy–momentum tensor:

〈T1
D〉

(s)
b = − (4π)(1−D)/2

22ν+2aD+1

∫ ∞

0
dx e−2xx1/z βx/z + 1

βx/z− 1
(ξ1x∂x + 4ξ) xD+2νFD/2

ν (x). (96)

This expression for the off-diagonal component in the region x1 < 0 is obtained from (96) changing the sign
and replacing x1 → |x1|. Note that 〈T1

D〉
(s)
b = 〈TD

1 〉
(s)
b . Due to the nonzero off-diagonal component 〈T1

D〉
(s)
b ,

the Casimir force acting on the brane has two components. The first one is determined by the stress 〈T1
1 〉

(s)
b

and corresponds to the component normal to the brane. The second one is obtained from 〈T1
D〉

(s)
b and is

directed along the z-axis. It corresponds to the shear force. Of course, because of the surface divergences in
the local VEVs, both these components require an additional renormalization. Note that the Casimir forces
acting tangential to the boundaries (lateral Casimir forces) may arise also in condensed matter systems if
the properties of the corresponding surfaces are anisotropic or inhomogeneous (see, for example, [104,105]
and references therein). In the problem under consideration, the tangential force is a consequence of the
z-dependence of the background geometry.
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From the expressions (93) and (96), it follows that for the Dirichlet and Neumann boundary conditions
the brane-induced contributions to the VEV of the energy–momentum tensor differ by the signs. In these
special cases the corresponding expressions are further simplified as (no summation over µ)

〈Tµ
µ 〉

(s)
b = ± a−D−1

2D/2+ν+1πD/2 [Ĉµ(u)− Dξ] fν(u),

〈T1
D〉

(s)
b = ± 2a−D−1x1/z

2D/2+ν+1πD/2

[
ξ1 (u− 1) ∂2

u + (2ξ − 1) ∂u

]
fν(u), (97)

where the upper and lower signs correspond to the Dirichlet and Neumann boundary conditions,
respectively, and u = 1 + 2(x1/z)2. The operators Ĉµ(u) in the expressions for the diagonal components
are given by

Ĉl(u) = ξ1

(
u2 − 1

)
∂2

u +

[
4ξ − 2 +

(
D + 1

2
ξ1 −

1
2

)
(u− 1)

]
∂u, (98)

for l = 0, 2, . . . , D− 1, and

Ĉ1(u) = ξ1 (u− 1)2 ∂2
u +

(
D + 1

2
ξ1 −

1
2

)
(u− 1) ∂u,

ĈD(u) = 2ξ1 (u− 1) ∂2
u +

[
4ξ − 2 +

D
2

ξ1 (u− 1)
]

∂u. (99)

The function fν(u) is expressed in terms of the hypergeometric function 2F1 (a, b; c; x):

fν(u) =
Γ(ν + D/2)

Γ(ν + 1)uν+D/2 2F1

(
D + 2ν + 2

4
,

D + 2ν

4
; ν + 1;

1
u2

)
. (100)

For a conformally coupled massless field, one has ν = 1/2 and the problem under consideration is
conformally related to the problem in the Minkowski spacetime with the line element ds2 = ηµρdxµdxρ,
xD = z, and with planar codimension one boundaries located at z = 0 (the conformal image of the
AdS boundary) and x1 = 0 (the conformal image of the brane). The Minkowskian field obeys the
Dirichlet boundary condition at z = 0 and the Robin boundary condition (90) at x1 = 0. The Dirichlet
boundary condition at z = 0 is a consequence of the condition we have imposed on the AdS boundary.
Taking ν = 1/2, from the results given above, we can obtain the VEV of the energy–momentum tensor for a
conformally coupled massless field in the geometry of perpendicular planar boundaries in the Minkowski

bulk by using the relation
〈

Tρ
µ

〉(M)

b
= (a/z)D+1

〈
Tρ

µ

〉
b

(see (45)). In the Minkowskian limit we get the

result 57 (with the replacement y− y0 → x1) for the components µ = 0, 2, . . . , D.
Near the brane and for non-Dirichlet boundary conditions, x1 � z, |β|, the leading term in the

asymptotic expansions for diagonal components with µ = 0, 2, . . . , D is given by (no summation over µ)

〈Tµ
µ 〉

(s)
b ≈ −

DΓ((D + 1)/2) (ξ − ξD)

2Dπ(D+1)/2 (ax1/z)D+1 . (101)

This coincides with the Minkowskian result where the distance from the boundary is replaced by the ratio
ax1/z (compare with (58)). Note that, in accordance with (2), the latter is the proper distance from the
brane measured by an observer at rest with respect to the brane. Note that the proper distance ax1/z
is different from the geodesic distance σ(x, x′). The latter between the spacetime points x = (t, 0, x, z)
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and x′ = (t, x1, x, z) is given as cosh(σ(x, x′)/a) = 1 + (x1/z)2/2. For the normal stress and for the
off-diagonal component near the brane one gets

〈T1
1 〉

(s)
b ≈ −

(
x1/z

)2

D− 1
〈T0

0 〉
(s)
b , 〈T1

D〉
(s)
b ≈

x1

z
〈T0

0 〉
(s)
b . (102)

The leading terms for the Dirichlet boundary condition differ from the ones given above by the sign.
The expressions (101) and (102) also describe the asymptotic behavior of the brane-induced VEV near the
AdS horizon (large values of z for fixed x1).

Now, let us consider the asymptotics at large distances from the brane, x1 � z. For non-Neumann
boundary conditions, additionally assuming that x1 � |β|, for the components µ = 0, . . . , D − 1,
the leading term is given by (no summation over µ)

〈Tµ
µ 〉

(s)
b ≈

(ξ − 1/4) (D + 2ν) + ξ

πD/2Γ(ν)aD+1(2x1/z)D+2ν
Γ(D/2 + ν). (103)

The asymptotics for the remaining components are expressed as

〈TD
D 〉

(s)
b ≈ −

D
2ν
〈T0

0 〉
(s)
b , 〈T1

D〉
(s)
b ≈

D/2 + ν

νx1/z
〈T0

0 〉
(s)
b . (104)

As seen, the leading order terms for 0 < |β| < ∞ coincide with those for the Dirichlet boundary condition.
For a scalar field with the Neumann boundary condition (β = 0), the leading terms differ from those
for the Dirichlet condition by the signs. Hence, the Dirichlet boundary condition is the attractor in a
class of Robin boundary conditions with β 6= 0. At large distances, the brane-induced contributions,
considered as functions of the proper distance from the brane, exhibit a power-law fall-off for both massless
and massive fields. This behavior is in clear contrast with the case of the Minkowski bulk, where the
boundary-induced VEVs decay exponentially for massive fields, as e−2mx1

(see (57)). Note that for large
x1/z one has the relation (x1/z)2 = exp[σ(x, x′)/a], with σ(x, x′) being the geodesic distance. For fixed
x1, the asymptotic formulas (103) and (104) describe the behavior of the VEVs near the AdS boundary.
The diagonal components decay as zD+2ν, whereas the off-diagonal component tends to zero as zD+2ν+1.
The qualitative behavior of the brane-induced energy density, as a function of the distance from the brane,
is similar to what we describe in the previous section for a scalar field with the Robin boundary condition
on the brane parallel to the AdS boundary.

6. Summary

We consider the influence of a brane in AdS bulk on the properties of quantum vacuum.
Two geometries are discussed: (i) a brane parallel to the AdS boundary; and (ii) a brane perpendicular
to the AdS boundary. In the first geometry, as a local characteristic of the vacuum state, the VEV of the
energy–momentum tensor is investigated for scalar, Dirac and electromagnetic fields. For calar field,
a general Robin boundary condition is considered and the Dirac field is constrained by the bag boundary
condition. In the case of the electromagnetic field, two types of boundary conditions are discussed.
The first one corresponds to the perfect conductor boundary conditions in 3D electrodynamics and the
second one is the analog of the boundary condition used in bag models of hadrons to confine the gluons.
The VEV of the energy–momentum tensor is expressed as a mode-sum over complete set of mode functions
and for all these cases the corresponding sets are given. The brane divides the background geometry
into two regions: the region between the brane and AdS horizon (R-region) and the region between
the brane and AdS boundary (L-region). Although the AdS spacetime is homogeneous, the brane has
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a nonzero extrinsic curvature tensor and the properties of the quantum vacuum in those regions are
different. In particular, the spectrum of the quantum number λ, corresponding to the momentum along
the direction normal to the AdS boundary, is continuous in the R-region and discrete in the L-region.
In the latter region, the eigenvalues are zeros of cylinder functions. The mode-sum for the VEV of the
energy–momentum tensor contains series over those zeros and for the summation we have employed
the generalized Abel–Plana formula. That allows extracting from the VEV the part corresponding to the
geometry without a brane and to present the brane-induced contribution in terms of integral, exponentially
convergent for points away form the brane. A similar decomposition is provided for the R-region.

Near the brane, the leading terms in the asymptotic expansions for the energy density and parallel
stresses coincide with the corresponding expressions for a single boundary in the Minkowski bulk, where
the distance from the boundary is replaced by the proper distance from the brane on the AdS bulk.
For those VEVs, the effect of gravity is weak. This is related to the fact that, near the brane, the main
contribution to the corresponding VEVs come from the vacuum fluctuations with the wavelengths smaller
than the curvature radius of the background geometry and influence of the gravitational field on those
modes is weak. For a boundary in the Minkowski bulk, the normal stress is zero. The nonzero normal
stress in the geometry of a brane on the AdS bulk is a purely gravitational effect. The effect of gravity
on the brane-induced VEVs is essential at distances from the brane larger than the curvature radius.
In particular, for the R-region, at large distances, the decay of the brane-induced contribution in the
vacuum energy–momentum tensor, as a function of the proper distance, is exponential for both massless
and massive fields. For the Minkowski bulk and for massless fields, the fall-off of the boundary-induced
contribution is as power-law. On the AdS boundary, the brane-induced contributions tend to zero as zD+β,
where β = 2ν for scalar field (with ν given by (7)), β = 2ma + 1 for the Dirac field and β = D − 2 for
the electromagnetic field. Near the AdS boundary, one has a simple relation between the energy density
and the normal stress, given by 〈TD

D 〉b ≈ −(D/β)〈T0
0 〉b. This correspond to the barotropic equation

of state for the vacuum pressure −〈TD
D 〉b along the z-direction and vacuum energy density. Note that,

for the pressures along the directions parallel to the brane, the equation of state is of the cosmological
constant type. By using the generalized zeta function technique, we also investigate the VEV of the surface
energy–momentum tensor. From the viewpoint of the observer living on the brane, the latter corresponds
to a gravitational source of cosmological constant type. Depending on the value of the coefficient in the
boundary condition, the induced cosmological constant can be either positive and negative.

The brane-induced effects on the quantum vacuum for Geometry (ii), we consider the example of
a scalar field with general curvature coupling parameter. For the Robin boundary condition the mode
functions have the form (91). The diagonal components of the brane-induced energy–momentum tensor
are given by the expressions (93). An important difference from the problem with a brane parallel to the
AdS boundary is the presence of nonzero off-diagonal component (96) of the vacuum energy–momentum
tensor. As a consequence, the Casimir force acting on the brane, in addition to the normal component,
contains a component directed parallel to the brane (shear force). At large distances from the brane, the
decay of the brane-induced contribution to the energy–momentum tensor, as a function of the proper
distance from the brane, is as power-law for both massive and massless field. As mentioned above, in the
Minkowski bulk, the decay for massive fields is exponential.

For charged fields, another important local characteristic of the vacuum state is the expectation
value of the current density. This VEV in models with local AdS geometry and with toroidally compact
spatial dimensions, in the presence of single and two branes has been investigated in [72,76,106,107] for
charged scalar and fermionic fields. The vacuum currents have nonzero components along the compact
dimensions only. They are periodic functions of the magnetic flux with the period equal to the flux
quantum. Depending on the boundary conditions imposed on the fields at the locations of the branes,
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the brane-induced effects lead to increase or decrease of the current density. Applications are discussed to
Randall–Sundrum type braneworld models as well as curved graphene tubes.

In the discussion above, we assume that the background geometry is fixed. Among the interesting
directions for the further research is the investigation of the back-reaction of quantum effects on the
geometry by using the semiclassical Einstein equations with the VEV of the energy–momentum tensor
in the right-hand side. The vacuum energy–momentum tensor may violate the energy conditions in the
singularity theorems, and this leads to interesting cosmological dynamics of the bulk and on the brane.
In this regard, the next step in the study of local quantum effects in braneworlds could be the investigation
of the vacuum energy–momentum tensor in models with dS branes.
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