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Abstract: In this review, we summarize the results of the analysis of the inherent relation between
the Higgs mechanism and spacetime symmetry provided by generic incorporation of the de Sitter
vacuum as a false vacuum with the equation of state p = −ρ. This relation has been verified by
the application for the interpretation of the experimental results on the negative mass squares for
neutrinos, and of the appearance of the minimal length in the annihilation reaction e+e− → γγ(γ).
An additional verification is expected for the dark matter candidates with the interior de Sitter
vacuum of the GUT scale, whose predicted observational signatures include the induced proton
decay in the matter of an underground detector, such as IceCUBE.
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1. Introduction

The Higgs mechanism generically involves the de Sitter vacuum as the false vacuum state of its
scalar field(s) with p = −ρ. As a result, mass generation involves gravity produced by the de Sitter
vacuum and the related de Sitter spacetime symmetry. The spontaneous symmetry breaking of scalar
fields leads then to breaking of spacetime symmetry from the de Sitter group in the gravito-electroweak
vertex to the Poincaré group in the region of a distant observer [1].

In the current literature, the relation between mass and the symmetry of spacetime has been
considered in the context of the Lorentz symmetry breaking [2], and in the alternative Higgs-like
mechanism for mass generation [3]. The relation of mass with gravity has been considered in the
framework of the ratio gravity, in which the gravitational interaction is considered not as a universal
interaction corresponding to a curved spacetime, but on an equal footing with other fields in the
flat spacetime [4,5], and lepton and quark masses originate from the relevant SU2 algebras of gauge
transformation [6] (for more details, see [1]).

In General Relativity, the mass of a regular object with de Sitter vacuum interior is generically
related with the breaking of spacetime symmetry from the de Sitter group in its origin [7] (for a review,
see [1]).

The inherent relation of the Higgs mechanism with the spacetime symmetry can be verified
by analysis of the experimental data on negative mass squares for neutrino obtained since 1991 [8].
Proposed in the literature are explanations involving the hypothesis that neutrinos are superluminal
fermions [9], a new theory of a mass as a dynamical variable [10], and an approach with an additional
charged current, more than an order of magnitude weaker than that in the standard model [11]. In our
analysis [12,13], we take into account that the interaction vertex should have to be gravito-electroweak
due to intrinsic involvement of gravity of the de Sitter vacuum, and apply the Casimir operators in the
de Sitter space for description of particle states in the vertex. This allows us to shed some light on the
origin of the negative mass squares and to evaluate a scale of the gravito-electroweak unification from
the currently reported experimental results on negative mass squares [13].

Another observational case applied for analysis of essential involvement of gravity in the
Higgs mechanism is revealing with the 5σ significance of the minimal length le = 1.57× 10−17cm
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in the annihilation reaction e+e− → γγ(γ) at the energy E = 1.253 TeV [14,15]. For analysis
of this reaction, we have to apply an approach involving some model of an extended electron,
because in this case both its classical radius re = e2/(mec2) = 2.8 × 10−13 cm and the Compton
wavelength λe = h̄/(mec) = 3.9× 10−11 cm exceed substantially the test distances characterized by
le = 1.57× 10−17 cm. The general approach is provided by Nonlinear Electrodynamics Coupled to
Gravity (NED-GR), which admit the class of regular solutions describing electrically charged spinning
electromagnetic solitons with the de Sitter vacuum interior and the gyromagnetic ratio g = 2 for
a distant observer [16,17] (for a review, see [18]).

Solitons are defined as the Coleman lumps, regular particle-like non-dissipative self-gravitating
objects [19]. NED-GR solitons are governed by the electromagnetic and gravitational self-interaction.

Electrically neutral solitons with the de Sitter interiors [20] are guided by the Einstein equations,
related by the gravitational interaction and for this reason called G-lumps [7]. They are described
by the regular solutions which belong to the Kerr–Schild class [21]. The source terms in the Einstein
equations are presented by stress–energy tensors with the algebraic structure such that [7,22]

Tt
t = Tr

r (pr = −ρ). (1)

The transversal pressure is related to the density as p⊥ = −ρ− rρ′/2.
Stress–energy tensors evolve from the de Sitter vacuum in the origin Ti

k = ρΛδi
k to the Minkowski

vacuum Ti
k = 0 in the asymptotically flat spacetime, either to the de Sitter vacuum Ti

k = ρλδi
k with

λ < Λ, in the spacetime with two vacuum scales, ρΛ = (8πG)−1Λ, ρλ = (8πG)−1λ.
The Kerr–Schild metric in the Schwarzschild coordinates reads

ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2; g(r) = 1− 2G

r
M(r); M(r) =

∫ r

0
ρ(x)x2dx (2)

where dΩ2 = r2(dθ2 + sin2 θdφ2).
The number of spacetime horizons is constrained by Nhorizons ≤ (2Nvacuum scales − 1) [23]. In the

asymptotically flat spacetime with the de Sitter center, which we overview below, Nhorizons ≤ 2,
and compact objects with the de Sitter vacuum interiors are presented by regular black (white) holes
with the event and internal horizons, G-lumps without horizons, and the extreme black hole states
with the double horizons, which are the stable remnants of the black hole evaporation (for a review,
see [24]).

Regular black hole remnants and G-lumps can be considered as heavy Dark Matter (DM)
candidates ([25] and references therein), whose observational signatures depend essentially on the
energy scale of the internal de Sitter vacuum.

For G-lumps and regular black hole remnants with the GUT scale interiors, the observational
signature has been predicted conditioned by non-conservation of the baryon and lepton numbers,
which may lead to an induced proton decay in the matter of an underground detector [26]. It can be
important for supergravity unified models in which the lifetime of the proton is found sensitive to the
mass of the Higgs boson [27].

In Section 2, we outline the analysis of negative mass squares for neutrino. Section 3 presents the
results of analysis of the origin of the minimal length in the annihilation reaction e+e− → γγ(γ) with
applying the basic properties of the spinning electromagnetic soliton. In Section 4, we overview the
basic properties and observational signatures of the heavy DM candidates with the de Sitter vacuum
interiors, and Section 5 contains the conclusions.

2. Negative Mass Squares for Neutrino

The results on the negative mass squares for neutrino reported first in 1991 [8] were summarized by
the Particle Data Group in 1994 to the average value m2

ν̄ = −54± 30 eV2/c4, qualified as anomalous due
to a shift to the unphysical region [28]. In 1995, the Lawrence Livermore National Laboratory reported
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the results of the experiment on neutrino mass searches in tritium β-decay, fitted, with the improved
accuracy, to a squared mass of m2(νe) = (−120± 20) eV2 [29]. The problem with the unphysical
negative value of m2 appeared also in this case despite the relatively small errors, suggesting some
unrecognised systematic error sources responsible for this effect. The values for the mass squares allow
to derive the limits on the neutrino masses. The existing experimental and cosmological neutrino data

constrain the heaviest neutrino mass m3 within the range 5× 10−2 eV '
√

∆m2
A ≤ m3 ≤ 1

3 ∑i mi '
3× 10−1 eV where ∆m2

A = ∆m2
23 = m2

3−m2
2 ' 2.5× 10−3 eV2 is the atmospheric neutrino mass square

difference [30].
The recent results of the Karlsruhe Tritium Neutrino experiment KATRIN gives the best fit for

an effective mass square value m2
ν = (−1.0+0.9

−1.1) eV2 corresponding to a 1σ statistical fluctuation
to negative values of m2

ν with p = 0.16. The total uncertainty is dominated by σ2
stat(0.97 eV2)

versus σ2
syst(0.32 eV2) [31]. From this value, an upper limit 1.1 eV is derived at the 90% confidence

level on the absolute mass scale of neutrinos [31], represented by the effective neutrino mass

mβ =
√
|Ue1|2m2

1 + |Ue2|2m2
2 + |Ue3|2m2

3, where Uei is the leptonic flavor mixing matrix and mi are the
absolute neutrino masses; the limit mβ < 1.1 eV is for now the most stringent upper limit ([32] and
references therein). (For a comprehensive review on the search for neutrino masses, see [30,32–34].)

Here we consider a possible origin of negative mass squares provided by spacetime symmetry.
The basic feature of the Higgs mechanism is the spontaneous symmetry breaking of the intrinsically
involved scalar fields from the false vacuum state p = −ρ to the true vacuum state p = ρ = 0. The key
point is that a false vacuum with the equation of state p = −ρ corresponds to the de Sitter vacuum
and generates, via the Einstein equations, Gµν = −(8πG/c2)Tµν, the de Sitter geometry, described by
line element (2) with the metric function

g(r) = 1− r2

r2
Λ

; r2
Λ =

3c2

8πGρΛ
; ρΛ = (8πG/c2)−1Λ (3)

where rΛ is the de Sitter curvature radius, ρΛ is the vacuum density related to the cosmological constant
Λ which is, constant by virtue of the contracted Bianchi identities Gµ

ν;µ = 0, and µ, ν = 0, 1, 2, 3.
The de Sitter geometry is characterized by the constant positive non-zero curvature R = 4Λ.

In the observer region spacetime is described by the Minkowski geometry with zero curvature R = 0.
Spontaneous symmetry breaking of scalar fields from the false to the true vacuum state involves thus
breaking of spacetime symmetry from the de Sitter group to the Poincaré group [1].

The de Sitter gravity induced in the interaction vertex implies that it should have to be
gravito-electroweak. The de Sitter spacetime symmetry requires description of a particle mass square
by the eigenvalue of the Casimir operator I1 in the de Sitter space, defined as [35]

I1 = −ΠµΠµ − 1
2r2

Λ
Jµν Jµν; Πµ =

(
1 +

r2 − c2t2

4r2
Λ

)
Pµ +

1
2r2

Λ
xν Jµν (4)

where Jij = −Jji = εijk Jk, Ji0 = −J0i = −Ki; i, j, k = 1, 2, 3. The operator I1 can be written as

I1 = PµPµ

(
1 +

r2 − c2t2

4r2
Λ

)2

− 1
r2

Λ

(
J2 −K2

)
. (5)

The operators J and K are generators of rotations and of the Lorentz boosts given by [36]

JR = h̄
σ

2
, KR = −ih̄

σ

2
; JL = h̄

σ

2
, KL = +ih̄

σ

2
. (6)

The indices R and L mark the right-handed and left-handed fields; σ denotes the Pauli matrices
(the Pauli vector).
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The Casimir operator I1 and its eigenvalue I′1 take the form [13]

I1 = PµPµ

(
1 +

r2 − c2t2

4r2
Λ

)2

− h̄2

2r2
Λ

σ2; I′1 = m2c2

(
1 +

r2 − c2t2

4r2
Λ

)2

− 3h̄2

2r2
Λ

. (7)

In the limit rΛ → ∞ corresponding to the Minkowski geometry, I′1 reduces to the Poincaré invariant
PµPµ = m2c2. The de Sitter invariant I′1 involves the Poincaré mass square and the angular
momentum of a particle [35]. The de Sitter eigenvalue is modified as compared with the Poincaré
eigenvalue. The modification includes the dependence on the curvature radius and appearance of an
additional negative term originated from the intrinsic involvement of the de Sitter geometry, which can
(but must not) dominate and then lead to the appearance of the negative mass squares [12,13]. The first
term in (7) depends on the curvature radius rΛ and essentially involves a neutrino (Poincar’e) mass,
still unknown. Therefore, we can choose the second term, which depends only on the geometry, as the
scale parameter characterizing the involvement of gravity and spacetime symmetry

m2
neg =

3h̄2

2r2
Λ

. (8)

to get some qualitative estimate for a gravito-electroweak scale at least by the order of magnitude.
The de Sitter curvature radius rΛ depends on the density of the de Sitter vacuum ρΛ as

r2
Λ = 3c2/(8πGρΛ), and provides the dependence of the mass square in (8) on the de Sitter vacuum

density ρΛ [13]

m2
neg =

4πh̄2G
c4 ρΛ. (9)

To connect ρΛ with a gravito-electroweak mass scale MGeW as compared with the Planck scale,
we express the relation between ρΛ and MGeW in the way corresponding to the relation between
ρPl and MPl , which is ρPl = MPl/(lPl)

3, where lPl = h̄/(MPlc) =
√

h̄G/c3 and MPl =
√

h̄c/G.
Applying ρΛ = MGeW/(h̄/MGeWc)3 we obtain ρΛ = (c3/h̄3)M4

GeW and find from Equation (9) the
relation between m2

neg and MGeW

m2
neg = 4π

(
MGeW
MPl

)4
M2

Pl (10)

The scale MGeW is expressed through m2
neg as

MGeW =

(
m2

neg

4πM2
Pl

)1/4

MPl . (11)

This formula relates the value of MGeW with the scale for the negative mass square value,
currently accessible from experiments. Choosing for the scale parameter the value m2

neg ' 1 eV2

from the recently reported value m2
ν = (−1.0+0.9

−1.1) eV2 [31] and taking into account that
MPl = 1.22× 1019 GeV , we get an estimate MGeW ' 58.7 TeV, consistent with predictions of theories
of the gravito-electroweak unification [37–39].

3. Minimal Length In e+e−→ γγ(γ) Annihilation

The data on the annihilation reaction e+e− → γγ(γ) from VENUS, TOPAZ, ALEPH, DELPHI,
L3, OPAL collaborations have been collected and worked out for about fifteen years at the energies
from

√
s = 55 GeV to 207 GeV [14,15]. The χ2 fit, shown in Figure 1, displays with the 5σ significance

at a minimum with a negative QED fit parameter (1/Λ4)best ' −1.1× 10−10 GeV−4 where Λ is the
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QED cutoff parameter, corresponding to the maximal resolution le ' 1.57× 10−17 cm at the energy
E = 1.253 TeV [14,15].

4Λ1/

-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4 0.5

-9
10×

2 χ

0

200

400

600

800

1000

1200

All Measurements

Figure 1. A minimum in the χ2 fit with P = 1/Λ4.

The χ2 test was performed with the QED hypotheses which predicted an increase in the total
QED-α3 cross section. Instead, we see in Figure 1 the minimum with the negative value of the QED
fit parameter. The applied standard QED techniques assume a point-like conception of a particle.
Cross section would be modified in the case when characteristic test distances are smaller than a particle
size. The Compton wavelength of the electron λe = h̄/(mec) = 3.9× 10−11 cm and its classical radius
re = e2/(mec2) = 2.8× 10−13 cm substantially exceed the test length le = 1.57× 10−17 cm, and description
of annihilating particles requires an approach of an extended particle.

The early studies on an extended electron models revealed the need in introducing cohesive
forces of non-electromagnetic origin [40] required to balance the Coulomb repulsion (for a review,
see [15]). In the Nonlinear Electrodynamics coupled to Gravity this role is played by the repulsive
gravity of the de Sitter vacuum. The regular NED-GR solutions describe in the self-consistent way,
without additional assumptions except the Weak Energy Condition (WEC), electrically charged
spinning solitons with the de Sitter vacuum interiors. Their electromagnetic fields are described
by the source-free dynamical field equations. The gravitational field is generated by stress–energy
tensors for the nonlinear electromagnetic fields which are defined by ([41] and references therein)

Tµ
ν = −2LFFναFµα +

1
2

δ
µ
νL; LF = dL/dF (12)

and generically satisfies the condition (1) which ensures the existence of the de Sitter interiors.
The regular axially symmetric metrics are obtained from the regular spherical metrics (2)
by the Gürses-Gürsey formalism [42] which includes the Newman–Janis complex coordinates
transformation [43] typically applied for obtaining the axial metrics.

In the Boyer–Lindquist coordinates, the metric is given by [42]

ds2 =
2 f − Σ

Σ
dt2 +

Σ
∆

dr2 + Σdθ2 − 4a f sin2 θ

Σ
dtdφ +

(
r2 + a2 +

2 f a2 sin2 θ

Σ

)
sin2 θdφ2 (13)

where
Σ = r2 + a2 cos2 θ; ∆ = r2 + a2 − 2 f (r); f (r) = rM(r) (14)
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and the Lorentz signature is [− + ++]. For spherical solutions satisfying WEC, an object has
the positive mass, and the mass function M(r) evolves monotonically from M(r) = 4πρ(0)r3/3
as r → 0 to M(r) = m − e2/2r as r → ∞ [41], where m is the gravitational mass, and the
metric (2) goes to the Kerr–Newman vacuum metric with the associated electromagnetic potential
Ai = −(er/Σ)[1; 0, 0,−a sin2 θ], published in 1965 [44].

Comprehensive analysis of the Kerr–Newman solution by Carter in 1968 revealed its remarkable
possibility to present the electron as seen by a distant observer, because the angular momentum J = ma
and the asymptotic magnetic momentum µ = ea result in the gyromagnetic ratio g = 2 corresponding
to a spinning particle [45]. The charge e as a constant of integration of dynamical equations for
electromagnetic fields.

Carter discovered the nontrivial causality violation in the Kerr–Newman spacetime due to
existence in the interior region of closed time-like curves which can be extended over the whole
manifold [45]. Since then, the electron models have been constructed by matching the Kerr–Newman
solution for the exterior fields with some interior material source (for a review, see [15,46]).
Contemporary models include the models with the superconducting interior with the Minkowski
geometry confined by the domain wall boundary ([47,48] and references therein), and the models
dominated by dynamical role of the electron spin ([49–51] and references therein).

The problem of matching the Kerr–Newman vacuum solution to a material interior source does
not have a unique solution, due to arbitrariness in the boundary between the exterior and interior [52].
In NED-GR, this problem does not arise. An electromagnetic spinning solution is made of a nonlinear
electromagnetic field and bound by the gravitational interaction. Its basic generic properties can be
found by the analysis of asymptotic behavior of regular solutions.

In geometry (13), the surfaces r = constant are the confocal ellipsoids

r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0 (15)

degenerated to the equatorial disk r = 0 defined by

x2 + y2 ≤ a2, z = 0 (16)

and confined by the ring x2 + y2 = a2, z = 0 [53].
The function f (r) in (13) and (14) provides the direct connection of the axial solution with the

density profile ρ̃(r) of an original spherical solution. The prime denotes the derivative with respect
to r. The eigenvalues of a stress–energy tensor (12) in the co-rotating references frame with the
angular velocity ω(r) = uφ/ut = a/(r2 + a2), are given by Σ2ρ = 2( f ′r − f ); pr = −ρ; Σ2 p⊥ =

2( f ′r− f )− f ′′Σ [42], where p⊥ is the transversal pressure.
In the equatorial plane (p⊥ + ρ) = −r3ρ̃′(r)/2Σ [16]. For the spherical solutions satisfying WEC

regularity requires rρ̃′(r)→ 0 as r → 0 [41]. As a result on the disk (16), p⊥ + ρ = 0→ p⊥ = pr = p,
and the equation of state

p = −ρ (17)

represents the rotating de Sitter vacuum in the co-rotating frame [16].
In geometry, with the metric (13) the non-zero field components F01, F02, F13, F23 are connected by

F31 = a sin2 θF10; aF23 = (r2 + a2)F02 (18)

so that the electromagnetic field is presented by two independent field functions. The field invariant
F = FikFik reads

F = 2

(
F2

20

a2 sin2 θ
− F2

10

)
. (19)
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The density and pressure are created by the electromagnetic fields and given by [16]

ρ =
1
2
L+ 2LFF2

10; pr = −ρ; p⊥ = −1
2
L+ 2LF

F2
20

a2 sin2 θ
. (20)

This leads to

p⊥ + ρ = 2LF

(
F2

10 +
F2

20

a2 sin2 θ

)
. (21)

Presented in the literature are regular spherical solutions with the non-zero electric
charge [41,54–57], which have been obtained in the alternative P-frame of nonlinear electrodynamics
connected with the standard Lagrangian F-form by the Legendre transformation [58]. The F-P duality
coincides with the usual electric–magnetic duality only in the Maxwell weak field limit. In general,
the Legendre transformation connects the different theories [59].

In the spherically symmetric case integration of the electromagnetic field equation yields
F = −2e2/L2

Fr4 [41,59], which leads to FL2
F → −∞ as r → 0. The form of a stress–energy tensor

implies p⊥ + ρ = FLF, regular solutions have obligatory de Sitter center, where p⊥ + ρ = 0 and hence
FLF = 0. Regularity requires thus LF → ∞ and F → −0 when r → 0 [41,59]. In the Maxwell region
F → −0 as r → ∞. Non-monotonic behavior of the invariant F results in branching of a Lagrangian
L(F) in the extremum F. Branching of a Lagrangian requires the description of the Lagrange dynamics
by the non-uniform variational problem with the action [60]

I = Iint + Iext =
1

16π

[∫
Ωint

(R−Lint(F))
√
−gd4x +

∫
Ωext

(R−Lext(F))
√
−gd4x

]
. (22)

The regions Ωint and Ωext are bounded by the space-like hypersurfaces t = tin and t = t f in.
The region Ωext is bounded at infinity by the time-like three-surface at which the electromagnetic fields
zero out in the Maxwell limit. Internal boundary between Ωint and Ωext is presented by a time-like
hypersurface Σc at the extremum of the field invariant F [60].

In the case of the minimal coupling variation in the action (22) results, in both Ωint and Ωext,
in the dynamical equations for the electromagnetic field

∇µ(LFFµν) = 0; (23)

∇µ
∗Fµν = 0; ?Fµν =

1
2

ηµναβFαβ; η0123 = − 1√−g
, (24)

and the Einstein equations Gµν = −8πGTµν with the stress–energy tensor of an electromagnetic
field (12). The standard boundary conditions on the surface Σc read [60]

∫
Σc

(
LF(int)Fµν(int) −LF(ext)Fµν(ext)

)√
−gδAµdσν = 0; Lint− 2LF(int)Fint = Lext− 2LF(ext)Fext (25)

The dynamic Equations (23) and (24) form the system of four equations.
In the axially symmetric case, the regular solutions to the dynamical Equation (23) are given

by [16,17]
Σ2(LFF01) = −e(r2 − a2 cos2 θ); Σ2(LFF02) = ea2r sin 2θ; (26)

Σ2(LFF31) = ae sin2 θ(r2 − a2 cos2 θ); Σ2(LFF23) = aer(r2 + a2) sin 2θ. (27)

In the Maxwell limit LF = 1, these functions are solutions to the system (23) and (24) and coincide
with the solutions obtained in the Kerr–Newman geometry [45,61].

The field components (26) and (27) satisfy two equations (23) and the condition of compatibility of
the system of four Equations (23) and (24) for two independent functions F20, F10 [17]. Detailed analysis
shows that, in addition to the Maxwell weak field limit, the functions (26) and (27) satisfy the total



Universe 2020, 6, 179 8 of 17

dynamical system (23) and (24) as the regular asymptotic solutions in the strongly nonlinear regime
LF → ∞ on the disk where the electromagnetic density achieves the maximal value [17,46].

Applying solutions (26) and (27) on the disk (16) we get relations [16,17]

LF =
2e2

Σ2(p⊥ + ρ)
; F = − (p⊥ + ρ)2Σ2

2e2 . (28)

It follows that F → −0 approaching the disk, while LF → ∞.
In terms of the field intensities defined by [16,62]

Ej = {Fj0}; Dj = {LFF0j}; Bj = {∗Fj0}; Hj = {LF
∗F0j}; j = 1, 2, 3 (29)

the dynamical Equations (23) and (24) take the standard form of the source-free Maxwell equations

∇ ·D = 0; ∇×H =
∂D
∂t

; ∇ · B = 0; ∇× E = −∂B
∂t

. (30)

The electric induction D and the magnetic induction B are related with the electric and magnetic
field intensities by

Dj = ε
j
kEk; Bj = µ

j
k Hk, (31)

where εk
j and µk

j are the tensors of the electric and magnetic permeability given by [16]

εr
r =

(r2 + a2)

∆
LF; εθ

θ = LF; µr
r =

(r2 + a2)

∆LF
; µθ

θ =
1
LF

. (32)

In accordance with the basic relations (28) LF → ∞ at the disk, and hence the magnetic
permeability µr

r = µθ
θ = 1/LF goes to zero, while the electric permeability εr

r = εθ
θ = LF goes

to infinity. The disk (16) displays the properties of a perfect conductor and ideal diamagnetic [16,17].
The surface current on the disk is defined by 4π jk = [eα

(k)Fαβnβ], where eα
(k) are the base vectors

related to the intrinsic coordinates t, φ, 0 ≤ ξ ≤ π/2, the vector nα = δ1
α(1 + q2/a2)−1/2 cos ξ is the

unit normal to the disk, and the symbol [..] denotes a jump in the orthogonal direction [52]. On the de
Sitter disk, where µr

r = µθ
θ = µ, this gives [63]

jφ = − ec
2πa

√
1 + e2/a2 sin2 ξ

µ

cos3 ξ
. (33)

The current jφ vanishes over the disk surface, due to µ = 0, but on the confining ring ξ = π/2,
both terms in the second fraction go to zero independently, so that the current can be any amount to
a non-zero total value, which is the basic general criterion for a superconducting current [64]. Since this
current flows without resistance in the perfect conductor region, it represents a non-dissipative source
of the electromagnetic fields, which can provide an unlimited lifetime of an object [63].

In the case of the electron mac = h̄/2, the superconducting current which produces its
electromagnetic fields, as well as geometry (13), can be calculated through its known magnetic
momentum µin, which is intrinsic because the dynamical Equations (23) and (24) are source-free [65].
Approaching the disk, 2 f (r) → r4/r2

Λ → 0 ( r2
Λ = 3/8πGρ(0), so the disk is intrinsically

flat [16] and µin = c−1 jφS where S is the disk area. Introducing the uncertain coefficient in (33),
jφ = −(ec/2πa)

√
1 + e2/a2U, so we restore it from the formula for the magnetic momentum,

µin = −(eS/2πa)
√

1 + q2/a2U, and obtain the superconducting current which powers the electron
at the value jφ = 79.277 A [65].

In the region of a distant observer r � λe it generates the electric and magnetic fields [63]

Er = −
e
r2

(
1− h̄2

m2
e c2

3 cos2 θ

4r2

)
; Eθ =

eh̄2

m2
e c2

sin 2θ

4r3 ; (34)



Universe 2020, 6, 179 9 of 17

Br = − eh̄
mec

cos θ

r3 = 2µe
cos θ

r3 ; Bθ = −µe
sin θ

r4 . (35)

In terms of the Coleman lump, the leading term in Er yields the Coulomb law in the classical limit
h̄ = 0, while the higher terms represent the quantum corrections [63].

For the purely electromagnetic interaction e+e− → γγ(γ), the case of the minimal length in
annihilation can be approached by generic properties of spinning electromagnetic soliton, which offer
a physical mechanism responsible for appearance of the minimal length due to involving gravity and
the de Sitter vacuum able to prevent a formation of singularities by its intrinsic negative pressure.
The gravitational acceleration, ä ∝ −a(ρ + 3p) in the de Sitter vacuum with p = −ρ is repulsive.

Regular NED-GR solutions provide the de Sitter cutoff on self-interaction.
Comparing electromagnetic self-energy density with the energy density of the de Sitter vacuum [41]

e2

r4
c
' 8πGρΛ =

3
r2

Λ
(36)

in which we obtain rc ' 1.05× 10−17 cm as a rough qualitative estimate, which appears close to le [15].
For more detailed analysis, we take into account that, at a certain stage of the annihilation process,

the interaction region becomes neutral and spinless and can be considered as a spherical bubble with
the de Sitter interior and the Schwarzschild exterior. The metric of this bubble is described by (2),
and the typical behavior of a metric function is shown in Figure 2 (left) [20]. The mass parameter is
normalized to the critical value, corresponding to the double horizon. The curve with m > 1 represents
a regular black hole, and the case m < 1 corresponds to a spherical bubble without horizons.

Figure 2. (Left) Typical behavior of a metric function g(r) for a spherical lump. (Right) Radius rc of
the surface of zero gravity and rs of the surface of zero curvature.

In geometry, with the de Sitter center, there exists the surface of the zero gravity surface
rc ∼ (r2

Λrg)1/3 where the rΛ is the de Sitter radius and rg = 2Gm is t|surface r = rs the curvature
scalar R = 8πGT changes its sign.

Adopting for the de Sitter vacuum, the electroweak scale EEW = 246 GeV responsible for the
electron mass [66], we obtain the value of the de Sitter radius rΛ = 1.374 cm. For a lump with the
energy E ' 1.253 TeV, the radius of zero gravity surface is rc ∼ 0.86× 10−16 cm, so that the length
le = 1.57× 10−17 cm fits within the region with the repulsive gravity.

The minimal length le can be understood as a characteristic distance at which the electromagnetic
attraction is balanced by the gravitational repulsion of the de Sitter vacuum [15].
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4. DM Candidates with the de Sitter Vacuum Interiors

Here we outline the more realistic (for our Universe) case of regular black hole remnants and
G-lumps in the space with non-zero cosmological constant, and their observational signatures related
to the Higgs mechanism and de Sitter spacetime symmetry.

Analysis of spherically symmeric Einstein equations has shown that regular solutions of the
Kerr–Schild class, specified by (1) and described by the merics (2), have obligatory de Sitter
centers [7,67]. Repulsive gravity of the de Sitter vacuum prevents the formation of a singularity
in accordance with the early hypothesis of a geometry self-regulation [68], of the existence of
the limiting value of spacetime curvature [69], of spacetime symmetry restoration on the GUT
scale [20,70,71]—confirmed later in the frame of quadratic gravity [72]—of renormalization group
improvement [73], of non-commutative geometry approach [74], and of an ultraviolet quantum
gravity [75,76] (for a recent review, see [25,77]).

Spacetime with the de Sitter center in the universe with the non-zero cosmological constant λ has
not more than three horizons [78]. The metric function g(r) in (2) has the form [79]

g(r) = 1− 2GM(r)
r

− λ

3
r2; M(r) = 4π

∫ r

0
ρ(x)x2dx (37)

where the density ρ(r) tends to the de Sitter density ρΛ as r → 0. A stress–energy tensor responsible
for this metric evolves from Ti

k = (ρΛ + ρλ)δ
i
k at the center to Ti

k = ρλδi
k at infinity.

The evolution between two de Sitter vacua is ensured by the algebraic structure of a stress–energy
tensor for this class of solutions, which is specified by (1), represents a particular case of a vacuum with
the reduced symmetry [22,70] (vacuum equation of state only in one or two spatial direction(s),
pα = −ρ), and can be identified as an anisotropic quintessence ([80] and references therein).
Quintessence was originally introduced as an isotropic medium by the equation of state p = wρ with
−1 < w < 0 [81]. In the anisotropic case, the definition extends to pα = wαρ, wα = −1 and pβ = wβρ,
β 6= α, where wβ ≥ −1. In general, it is coordinate-dependent and represents a time-evolving and
spatially inhomogeneous dark energy, which can provide evolution between de Sitter vacua with the
different values of the cosmological constant [80].

In the here-considered case, a medium specified by Tt
t = Tr

r satisfies the r−dependent equation
of state [70]

pr = −ρ; p⊥ = −ρ− rρ′/2 (38)

and is identified as an anisotropic quintessence defined by two EOS parameters, wr and w⊥, related to
principal pressures as pr = wrρ, wr = −1; p⊥ = w⊥ρ, w⊥ = −1− (r/2)d(ln ρ)/dr [23]. In our case,
Tk

i satisfies WEC, which requires p⊥ + ρ ≥ 0 and leads to ρ′ ≤ 0. As a result, the density increases
towards the center, where the spacetime symmetry restores to the de Sitter group [7,67] (see also [77]
and references therein).

Geometry has three basic length scales rg, rΛ, rλ and is characterized also by the parameter q
relating de Sitter vacuum scales

rg = 2GM; rΛ =
√

3/Λ; rλ =
√

3/λ; q = rλ/rΛ =
√

Λ/λ =
√

ρΛ/ρλ; ρΛ(λ) = (8πG)−1Λ(λ) (39)

where M = 4π
∫ ∞

0 ρ(r)r2dr is the mass.
The metric function tends for r → 0 to the de Sitter metric with g(r) = 1 − r2(Λ + λ)/3,

for rg/r → 0 to the Schwarzschild–de Sitter metric function g(r)Schw−deS = 1 − 2GM/r − λr2/3,
and for r → ∞ tends to the de Sitter metric function g(r) = 1− λr2/3.

The relevant spacetime configurations are shown in Figure 3.
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Figure 3. Typical behavior of the metric function g(r) for the case of two vacuum scales.

They include a regular cosmological black hole with the mass within the range Mcr1 < M < Mcr2,
bounded by the event horizon rb and the internal horizon ra in the universe with the cosmological
horizon rc (Figure 3, left); two double-horizon states, ra = rb (M = Mcr1) and rb = rc (M = Mcr2),
and two one-horizon states (Figure 3, right). The case M < Mcr1 (Figure 1, right) presents G-lumps
replacing naked singularities.

Mass of all objects is generically related to interior de Sitter vacuum and breaking of spacetime
symmetry from the de Sitter group [7].

The quantum temperature and the entropy of a horizon [82], and its specific heat [83] are given by:

kTh =
h̄c
4π
|g′(rh)|; Sh = 4πr2

h; Ch = dEh/dTh =
2πrh

g′(rh) + g′′(rh)rh
. (40)

Typical behavior of the temperature and the specific heat capacity during evaporation is shown
in Figure 4. As follows from (40), temperature vanishes on the double horizons, hence it must
have a maximum somewhere in between. In the maximum, a specific is broken and changes sign,
testifying for a 2nd order phase transition in the course of quantum evaporation [20,83,84].

Figure 4. Generic behavior of temperature (left) and of specific heat (right) of the black hole
event horizon.

The internal black hole horizon is the cosmological horizon for an observer in the region 0 ≤ r < ra.
It moves outwards in accordance with the 2nd Law of thermodynamics as well as the cosmological
horizon rc. Behavior of the total mass M is determined by the behavior of g′(r) and is directed to its
decreasing during evaporation. As a result, the black hole event horizon shrinks. This behavior imposes
a certain constraint on the density profile, which has to involve scaling r/r∗ [83,85] (for a review,
see [24,86]). The black hole evaporation stops at the double-horizon state, ra ⇀↽ rb (the curve M = Mcr1

in Figure 1, right), where the temperature zeroes out at the positive specific heat in accordance with (40).
A regular black hole leaves behind a thermodynamically stable double-horizon remnant with the
de Sitter vacuum interior. Its mass is given by Mremn = Mcr1 = βMPl

√
ρPl/ρΛ [20,83], where the

numerical coefficient β depends on the particular form of the density profile ρ(r).
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The density profile applied for plotting the pictures illustrating generic behavior, describes the
semiclassical model of the vacuum polarization in the spherical gravitational field [70]

ρ(r) = ρΛe−r3/r3
∗ ; M(r) = M(1− e−r3/r3

∗) (41)

in the frame of the hypothesis of symmetry restoration in a gravitational collapse due to the fact that
all fields are involved in a collapse and contribute to vacuum polarization [7,20,70]. In this geometry
the scale r∗ determines the radius of the surface of zero gravity by rc = (2/3)1/3r∗ and the radius of
the surface of zero curvature by rs = (4/3)1/3r∗ [20,70].

Observational Signatures of Remnants and G-lumps

Black hole remnants have been considered as a reliable source of dark matter for more than
three decades [87,88] (for a recent review, see Reference [89]). Regular black hole remnants are free
of the existential problem encountered by singular remnants because of the absence of a reliable
mechanism preventing complete evaporation [90,91]. Regular remnants and G-lumps are stable
DM candidates with the de Sitter vacuum interiors, which can be confirmed by their observational
signatures. Their stability to external perturbations are regulated by the general criteria applicable for
a wide class of the density profiles [92,93].

Regular primordial black holes, their remnants and G-lumps with the interior de Sitter vacuum
can arise in a quantum collapse of primordial fluctuations during the phase transition in the early
Universe, including the first and second (100–200 MeV [94]) inflationary stages, supported by the de
Sitter vacuum. They can capture available charged particles and form graviatoms—gravitationally
bound, αG = GMm/h̄c, quantum systems [95].

The mass of regular remnants with the de Sitter vacuum at the GUT scale is estimated as
102–103 g [20]. Therefore, remnants, G-lumps and graviatoms are classified as heavy DM candidates
with DE interiors (for a review, see [25]).

Information on the interior de Sitter vacuum can be presented by the observational
signature for graviatoms. The characteristic frequency of their electromagnetic radiation
depends on the scale of the de Sitter vacuum Eint [95]. For the density profile (41) the energy
h̄ω = 0.678 h̄c/rΛ = 0.678× 1011 GeV(Eint/EGUT)

2 fits within the range available for observations
possibilities (cosmic photons are detected for energy up to 1011.5 GeV [96]).

The most promising observational signature of the regular remnants, G-lumps and graviatoms
with the GUT scale interiors is directly related to the de Sitter vacuum p = −ρ which is the false
vacuum of the Higgs mechanism. In the GUT false vacuum interiors of regular remnants and G-lumps,
non-conservation of the baryon and lepton numbers may lead to the gravitational capture of the
proton in an underground detector, followed by induced proton decay [26]. For the cross-section of
induced proton decay σi ∼ 10−26 cm2, one can expect about one event per 107 years in one ton of
an underground detector. In the matter of a 1 km3 detector, such as IceCUBE, there should be up to
300 events per year. In the graviatom, its remnant component can induce nucleon decay, while the
charged component provides the enhancement of the cross section [26].

This observational signature makes heavy DM search at the IceCUBE experiment challenging,
also in connection with the predicted in supergravity unified model’s [27] sensitivity of the proton
lifetime to the Higgs boson mass. A small (few GeV) shift in its mass can change the proton decay
lifetime up to two orders of magnitude [27].

5. Conclusions

The basic essential feature of the Higgs mechanism is spontaneous symmetry breaking of scalar
fields from a false vacuum state p = −ρ to the true vacuum state p = ρ = 0. The false vacuum
equation of state p = −ρ corresponds to the maximally symmetric de Sitter vacuum with the nonzero
constant vacuum density related to the cosmological constant, Λ = 8πGρΛ. The de Sitter vacuum
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generates, by the Einstein equations, the de Sitter geometry with nonzero positive constant curvature
R = 4Λ. Hence the Higgs mechanism intrinsically incorporates the de Sitter spacetime symmetry in
the region of interaction and breaking of spacetime symmetry from the de Sitter group to the Poincaré
group, which corresponds to the Minkowski geometry with zero curvature, R = 0. Spontaneous
symmetry breaking of scalar fields involves thus the relevant breaking of the spacetime symmetry.

The generic relation of the Higgs mechanism with the spacetime symmetry and with the de Sitter
gravity is displayed in the currently reported data on negative mass squares for neutrinos and in the
appearance of the minimal length in the electron–positron annihilation e+e− → γγ(γ).

The de Sitter spacetime symmetry in the interaction vertex makes it gravito-electroweak and
requires application of the Casimir operators in the de Sitter geometry for description of a particle state.
The first Casimir invariant responsible for a particle mass, PµPµ = m2c2 in the Minkowski geometry,
involves the dependence on the de Sitter curvature radius rΛ =

√
3/(8πGρΛ), including the additional

negative term which depends only on geometry. In the case of neutrinos, this term can dominate
due to extreme smallness of the neutrino Poincaré masses mν, resulting in the negative effective mass
squares directly related to the scale of the gravito-electroweak unification [13]. This relation allows us
to evaluate the gravito-electroweak scale from the currently reported experimental values for negative
mass squares.

On the other hand, for now these data come with the statistical and systematic errors comparable
with the reported values [31]. It is possible that the reduction in systematic and statistical errors will
lead to shifting experimental values for mass squares to the positive region. However, the relation of the
modified by geometry mass square with a gravito-electroweak scale is generic and model-independent,
and we can expect that a gravito-electroweak scale would be estimated from the mass square data of
the refined future experiments with the value close, at least by the order of magnitude, to the value
obtained from the current data, MGeW ∼ 60 TeV.

The relation of a particle mass with the spacetime symmetry is required not only by the Higgs
mechanism for a particle acquiring its mass via spontaneous symmetry breaking of a scalar field,
but also by General Relativity, in which masses of regular objects with the de Sitter vacuum interiors
are generically related to breaking of spacetime symmetry from the de Sitter group in their interiors [7].

Our above analysis of the spacetime origin of negative mass squares for neutrinos was based on
the relation of their masses with spacetime symmetry dictated by the Higgs mechanism. Analysis of the
annihilation reaction e+e− → γγ(γ) requires also appealing to the GR aspect of the mass–spacetime
relation, since the experimental results suggest involvement of possible internal structure of particles
participating in the reaction [15], while the Higgs mechanism provides the involvement of the de Sitter
vacuum in their internal structure required for GR mass–spacetime relation [1,7].

The key point is that the minimal length le = 1.57× 10−17 revealed in the experiments with
the 5σ significance is much less than characteristic length scales for a particle, the classical electron
radius re = e2/(mec2) = 2.8× 10−13 cm and its Compton wavelength λe = h̄/(mec) = 3.9× 10−11 cm.
Therefore, analysis of this reaction requires some model of an extended particle. Moreover, in this
case the predictions of the applied techniques of QED-α3 (based on the concept of a point-like dressed
particle) contradict to the experimental results. Among a lot of models for an extended electron
proposed during more than hundred years after its discovery by Sir Joseph John Thomson in 1897,
the model presented by the Nonlinear Electrodynamics coupled to Gravity, seems to be most general.
The NED-GR equations admit the class of regular solutions, which describe electrically charged
spinning solitons. In the case of the purely electromagnetic reaction e+e− → γγ(γ), the basic generic
features predicted by the NED-GR dynamical equations for all regular electrically charged spinning
objects provide certain general information about the origin of the minimal length in this reaction,
so that a particular detailed modeling of particles internal structure is not needed.

The basic ingredient of electromagnetic solitons with the positive energy density is the de Sitter
vacuum disk in their deep interiors. Asymptotic solutions for electromagnetic fields in the interior
region determine the behavior of fields on the disk, and the stress–energy tensor calculated with these
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asymptotic solutions, determines the equation of state and generates the geometry in the self-consistent
and model-independent way. The basic generic features of the NED-GR electromagnetic solitons,
found for an arbitrary gauge invariant electromagnetic lagrangian, suggest and allow us to explain the
existence of a certain minimal length in the purely electromagnetic reaction of the electron-positron
annihilation, as the characteristic length at which the electromagnetic attraction is balanced by the
repulsive gravity of the de Sitter vacuum.

Another case involving the Higgs mechanism concerns heavy DM candidates with the interior de
Sitter vacuum of the GUT scale: regular black hole remnants and G-lumps arising at the early stage of
the universe evolution from the primordial fluctuations, and graviatoms formed by capturing available
charged particles (for a detailed analysis, see [95]; for a review, see [25]). Their predicted observational
signatures include the electromagnetic radiation with the frequency directly dependent on the de Sitter
vacuum scale, and the induced proton decay in an underground detector, such as IceCUBE, due to the
non-conservation of the baryon and lepton numbers in the GUT scale false vacuum interiors [26] (for
a review, see [25]). This observational signature is challenging in the context of the Higgs mechanism
also due to that predicted in supergravity unified models sensitivity of the proton lifetime to the Higgs
boson mass [27].
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