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Abstract: To get exact solutions to Einstein’s field equations in general relativity, one has
to impose some symmetry requirements. Otherwise, the equations are too difficult to solve.
However, sometimes, the imposition of too much extra symmetry can cause the problem to become
somewhat trivial. As a typical example to illustrate this, the effects of conharmonic flatness are studied
and applied to Friedmann–Lemaitre–Robertson–Walker spacetime. Hence, we need to impose some
symmetry to make the problem tractable, but not too much so as to make it too simple.
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1. Introduction

In 1915, Einstein formulated his theory of general relativity, whose field equations with
cosmological term can be written in suitable units as:

Rab −
1
2

Rgab + Λgab = Tab, (1)

where Rab is the Ricci tensor, R the Ricci scalar, gab the metric tensor, Λ the cosmological parameter,
and Tab the energy–momentum tensor. The field Equations (1) consist of a set of ten partial differential
equations, which need to be solved. Despite great progress, it is worth noting that a clear definition of
an exact solution does not exist [1]. What we usually understand by a solution in general relativity
is the metric given in terms of elementary functions, such as polynomial, trigonometric, hyperbolic,
etc. The idea is to try and find a complete general solution, or, alternatively, as many exact solutions
as possible. Then, the physical interpretation of these solutions is presented. It must be borne in mind
that, in general relativity, it is not only a local solution to the differential equations that is sought,
but also a global analysis and topological methods are also required.

Any metric is a solution to the field Equation (1) if no restriction is placed on the
energy–momentum tensor Tab, but in all likelihood, the resulting solution will be unphysical.
Thus, what is the alternative? There are various techniques that can be employed. A symmetry
can be imposed on the metric, the algebraic structure of the Riemann tensor Rabcd or the
Weyl tensor Cabcd can be restricted, and one can impose initial/boundary conditions, groups of
motions, null tetrad methods, spinor, or generating techniques. From a historical point of view,
using symmetry considerations, several important solutions have been found. These are static spherical
symmetric (e.g., Schwarzschild [2]), stationary axi-symmetric (e.g., Kerr [3]), axisymmetric static
(e.g., Weyl solution [4,5]), non-static spherically symmetric (e.g., FLRW [6–9]), and plane symmetric
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(e.g., gravitational waves [10]). There do exist some solutions in general relativity which do not have
any symmetry [11–16], but these solutions do not appear to be physically applicable as they stand.
Some symmetry has to be imposed for physical applications.

In this paper, we consider the symmetry of conformal transformations, and, specifically, a subgroup
of this class which imposes an extra symmetry, viz., conharmonic flatness. This symmetry has
attracted the attention of several researchers recently. Ma and Pei [17] investigated generalized
Lorentzian space-forms, in particular the necessary and sufficient conditions for them to be
projectively flat, conformally flat, conharmonically flat, and Ricci semisymmetric, and their
relationships amongst one another. Shaikh et al. [18] have studied the curvature properties of the
Vaidya metric in several manifolds, including conharmonically flat ones. The scalar curvature
of a projectively flat and conharminically flat eta-Einstein nearly Kenmotsu manifold have been
obtained by Tekin and Atkan [19]. Tripathi and Rastogi [20] investigated an Einstein semisymmetric
conharminically flat N(k)-contact metric manifold. Baishya and Eyasmin [21] proved that a
conharmonically flat generalized weakly Ricci-symmetric (CS)(4)-spacetime is infinitesimally spatially
isotropic relative to the unit timelike vector field ξ.

The metric connections with torsion of a conformally flat cotangent bundle were studied by Bilen
and Gezer [22]. Singh and Kishor [23] provided the conditions to obtain solitons on conharmonically
flat Lorentzian paraSasakian mainifolds. The conharmonic curvature tensor with respect to the
generalized Tanaka–Webster connection was studied by Prakasha and Hadimani [24]. Caliskan [25]
investigated quasi-conharmonically flat, xi-conharmonically flat, and phi-conharmonically flat
Sasakian Finsler structures on tangent bundles. Using the Schoutenvan Kampen connection, Yildiz [26]
studied conharmonically flat three-dimensional f-Kenmotsu manifolds. De et al. [27] showed that, in
a conharmonically flat spacetime with cyclic parallel Ricci tensor, the energy–momentum tensor is
cyclic parallel and conversely. The flatness conditions of the conharmonic curvature tensor on normal
complex contact metric manifolds were studied by Vanli and Unal [28]. Yildirim [29] proved that
certain types of complex κµ spaces cannot be conharmonically flat.

The full implications of this additional symmetry of conharmonic flatness on exact solutions in
cosmology do not seem to have been fully appreciated by several authors.

2. Conharmonic Curvature Tensor

A conformal transformation between two manifolds is well-known:

ḡab = e2σgab, (2)

where σ is a scalar function of the coordinates xc. There have been theories constructed from
this transformation, e.g., the scale covariant theory [30] and Weyl gravity [4,5], or which obey the
transformation in some way, e.g., Brans–Dicke theory [31]. What is the motivation to study the
conharmonic curvature tensor, and conharmonically flat mainifolds? A harmonic function A(xa) is
one with zero Laplacian. In tensor notation, this can be written as

gab A;ab = 0, (3)

where the semicolon denotes the covariant derivative with respect to the metric gab. A harmonic
function is not invariant in general under a conformal transformation. Ishii [32] was searching for the
conditions under which a harmonic function remains invariant? To determine the condition upon σ,
let us assume that, under the conformal transformation Equation (2), the function A transforms as

Ā = e−σ A. (4)

We now search for the condition that the function Ā is a harmonic function with respect to the
metric ḡab, i.e., we require
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ḡab Ā?ab = 0, (5)

where, by ?, we mean the covariant derivative with respect to the metric ḡab.
Now, the Christoffel symbols Γc

ab transform as [30]:

Γ̄c
ab = Γc

ab + δc
aσ,b + δc

bσ,a − gabσ,
c , (6)

where the comma refers to the ordinary derivative. From Equations (2) and (5), we obtain

ḡab Ā?ab = e−3σ[A;a
a − σ,aσ,

a A− σ;a
a A]. (7)

Finally, from Equations (3) and (7), we obtain our required condition on σ as

σ;a
a + σ,aσ,

a = 0. (8)

The subgroup of the transformation Equation (2) satisfying the condition Equation (8) constitutes
a conharmonic transformation. Such transformations preserve the harmonicity property of smooth
functions. This answered the question of when a harmonic function is invariant under a
conformal transformation

The conharmonic curvature tensor is defined as:

La
bcd = Ra

bcd −
1
2
(gbcRa

d − gbdRa
c + δa

dRbc − δa
c Rbd). (9)

This is invariant under a conharmonic transformation, and has the same symmetry properties as
the Riemann tensor. A spacetime in which La

bcd vanishes everywhere is called conharmonically flat, i.e.,

La
bcd = 0 ⇐⇒ conharm f lat. (10)

The contraction of Equation (9):

Lab ≡ Lc
acb = −1

2
Rgab (11)

is also invariant under a conharmonic transformation. There have been several mathematical results
which have been obtained for such manifolds, e.g., a conharmonically flat manifold is an Einstein
space (Rab ∝ gab), and also a space of constant curvature [33].

3. Application to Cosmology

For conharmonically flat spacetime, we have Equation (9):

La
bcd = Ra

bcd −
1
2
(gbcRa

d − gbdRa
c + δa

dRbc − δa
c Rbd) = 0. (12)

Contracting this, we get

Rgab = −4Rab, (13)

Substituting this into the field Equations (1), we get

3Rab + Λgab = Tab, (14)

or

− 3
4

Rgab + Λgab = Tab. (15)
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Several authors have found solutions to the modified field Equations (14) [34–38]. However,
there is a serious problem with these solutions. They do not satisfy the “constraint” condition
Equation (13).

We illustrate this by means of an example studied by Kumar and Srivastava [39]. For the
Robertson–Walker metric

ds2 = −dt2 + a(t)2
[

dr2

(1 + kr2)
+ r2(dθ2 + sin2θdφ2)

]
, (16)

the field Equations (14) yield

9
ä
a
= −ρ + Λ, (17)

3
(

ä
a
+ 2

ȧ2

a2 + 2
k
a2

)
= p−Λ. (18)

In the two equations above, ρ and p refer to the density and pressure, respectively, of a perfect fluid.
These are determined from the diagonal components of the corresponding energy–momentum tensor
Tab in a comoving coordinate system. By assuming that H = const ≡ B, one of the solutions they
found was a = AeBt. Let us check if Equation (13) is satisfied. Let us examine the (00) component
(Rgoo = −4Roo) of Equation (13). The left side is:

LHS = Rgoo = −12B2 − 6k
A2e2Bt , (19)

whereas the right side is

RHS = −4Roo = 12B2. (20)

We see that the constraint Equation (13) is not satisfied UNLESS k = 0, B = 0, i.e., a static solution.
This is also consistent with the other components of Equation (13).

The other solution found by these authors by taking H ∝ a−n was a power law solution,
a = (nαt + β)1/n. Again, it may be shown from Equation (13) that the only possible solution is the
Milne universe (a ∝ t).

4. Additional Symmetry Requirement

For conharmonic flatness, Equation (13) must be satisfied, i.e., Rgab = −4Rab. However, if we
contract this equation, we find that we end up with the "vacuum" condition Rab = 0. This is a very
strong imposition. Hence, the additional symmetry requirement of conharmonic flatness reduces the
space of solutions to some “vacuum” solutions in general relativity. For FLRW spacetimes, we can
only get a static (a = const) or Milne-type solution (a ∝ t). Even if we include a cosmological term,
we do not change the above two solutions. This is in contrast to general relativity where, if we include
a cosmological term, we have the deSitter exponential solution (ρ = p = 0, Λ = constant). A curious
feature of conharmonic flatness is that with Λ 6= 0, we can get solutions with nonzero density ρ and
pressure p.

5. Conclusions

Since Einstein’s equations are difficult to solve, we usually have to impose some symmetry
requirements. In this work, we have imposed the requirement of conharmonic flatness, and studied
its effect in cosmology. It is found that such solutions are reduced to vacuum solutions of general
relativistic cosmology. The imposition of too much symmetry can thus make the problem almost trivial.
Thus, we have to strike a balance between the complexity of the problem and the symmetry imposed.
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