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Abstract: Contemporary spectroscopic studies of astrophysical and laboratory plasmas frequently
deal with extremely large values of principle quantum numbers of atomic systems. These atomic states
are very sensitive to electric and magnetic fields of the surrounding medium. While interpreting
the spectra of such excited atomic systems, one faces the problem of a huge array of radiative
transitions between highly excited atomic levels. Moreover, external electric and magnetic fields
significantly complicate the problem because of the absence of standard selection rules typical for
the spherical quantization. The analytical expression in the parabolic representation for dipole
matrix elements obtained by Gordon contains hyper-geometric series and it has a very complex
structure. The matrix elements that involve the presence of electric and magnetic fields are calculated
while using a representation closely related to the parabolic quantization on two different axes.
This matrix element depends in a complex way on the transition probabilities in the parabolic
coordinate system (Gordon’s formulas) and the Wigner d-functions. This circumstance leads to
even greater computational difficulties. A method of simplification of these complicated expressions
for transition probabilities is demonstrated. The semiclassical approximation for coordinate matrix
elements (Gulayev) and recurrence properties of the Wigner d-functions are used. The Hnβ line
is under consideration. Specific calculations for the transition 10–8 in the case of parallel and
perpendicular fields are presented.

Keywords: atomic physics; rydberg atoms; stark-zeeman effect

1. Introduction

Investigation of spectra of a highly excited (Rydberg) hydrogen is an important tool for studying
the physical properties of the H II regions and the interstellar medium. The application of Rydberg
spectral lines to astrophysical problems is presented in [1–8]. Often, while studying astrophysical plasmas,
one has to deal with highly excited atomic levels [4–8]. However, one faces two fundamental problems.
The first one is connected with the influence of external electric F and magnetic B fields on spectra of
Rydberg atoms. This problem is related to the combined Stark–Zeeman effect. It turns out that a suitable
description of a hydrogen atom in external F− B fields requires a transition to a special basis that is
associated with taking the symmetry properties of the Coulomb field into account. The second problem is
related to the complicated structure of the array of radiative transitions between Rydberg atomic states.
Hence, it seems to be a very complicated problem to find a reasonable treatment for the array of spectral
lines transition probabilities in the parabolic quantum numbers presentation with respect to the adequate
description of the array. In the present work, we show how one can obtain universal formulas for the
radiation intensity of a hydrogen-like atom in external electric and magnetic fields.

In order to describe Stark broadening in plasmas, it is convenient to use the parabolic representation,
instead of the spherical coordinate system. However, the expressions for dipole matrix elements in this
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basis obtained by Gordon [9] contain hyper-geometric series, which makes calculations of intensities
very cumbersome. Moreover, one faces a huge growth of the transition array for Rydberg atomic states
(it grows proportionally to n4, where n is the principle quantum number). A solution to this problem was
given by Gulayev in [10,11]. He obtained the semiclassical approximation for coordinate matrix elements.
The problem of the joint action of crossed electric and magnetic fields on Rydberg atomic states still is not
solved properly—in the sense of making it possible to calculate such spectra.

Transition probabilities in the spherical coordinate system have been deeply studied in different
limits [12–14]. Additionally, the orbital quantum number l follows the selection rule, which allows for
one to make fast calculations of dipole matrix elements. However, the energy shift in a constant electric
field has a simple form in the parabolic representation. In the present paper, the problem of a large
transition array will be solved for highly exited energy levels by establishing approximate selection
rules for parabolic quantum numbers. For the first time a hydrogen atom in external electric F and
magnetic B fields was considered in the framework of classical mechanics in [15]. The quantum treatment
was presented in [16]. The symmetry of the Coulomb field can be used to change the representation.
The Hamiltonian of the electron in the Coulomb field and external F-B fields has the following form

H =
p2

2
− Z

r
+ Fr +

1
2c

BL (1)

Here, p,r and L are the momentum,the coordinate and the angular momentum operators of the
electron, respectively, Z is the nuclear charge. This Formula (1) and every other in this paper is written
in the atomic units. The perturbation Fr + 1

2c BL can be rewritten in another way.

∆H = Fr +
1
2c

BL = E1J1 + E2J2 (2)

where
J1,2 =

1
2
(L±A) (3)

A is the specific constant of motion in the Coulomb field—the Runge–Lenz vector.
The O(4) symmetry of the hydrogen atom allows one to change the representation to the quantum

numbers related to the projections of vectors (3) on arbitrary axis. The additional level of the symmetry
in the Coulomb field is connected with the conservation of the Runge–Lenz vector.

E1,2 =
1
2c

B∓ 3
2

nF (4)

We can do this, because in the Coulomb field there is a relation between the Runge–Lenz vector
and the radius-vector:

A = − 2
3n

r (5)

The energy shift is equal to
∆E = E1n′ + E2n′′ (6)

where n′ and n′′ are projections of (3) on vectors (4).
The vectors (3) have properties of an angular momentum(see for example [17]). Moreover,

projections of (3) on the same direction (z-axis) are related to the parabolic quantum numbers [17]{
i2 − i1 = n1 − n2

i2 + i1 = m
(7)

where i1,2 are projections of (3) on z direction(quantization axis) and m is the magnetic quantum number.
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Using the angular momentum properties of (3), one can change the representation from i1, i2 to
n′, n′′.

|n, n′, n′′ >=
j

∑
i1=−j

j

∑
i2=−j

dj
i1n′(α1)d

j
i2n′′(α2)|n, i1, i2 > (8)

where dj
m1m2(β) is the Wigner d-function.

j =
n− 1

2
(9)

Here, in (8), α1,2 are the angles between vectors J1,2 and E1,2.

cosα1,2 =
1
2c B∓ 3

2 nFcosθ

E1,2
(10)

where θ is the angle between the electric F and magnetic fields B.
We want to underline the fact that the additional degeneracy can be obtained in the case of

perpendicular crossed electric and magnetic fields. Particularly, the energy shift depends on n′ + n′′

when θ = π
2 . One can find a detailed consideration of this case in [18].

A calculation of dipole matrix elements in this representation was presented in [19]. The general
expression for coordinate matrix element in the basis of n′, n′′ has the following form

an̄n̄′ n̄′′
nn′n′′ =

j̄

∑
ī1=− j̄

j̄

∑
ī2=− j̄

j

∑
i1=−j

j

∑
i2=−j

d j̄
ī1n̄′(ᾱ1)d

j̄
ī2n̄′′(ᾱ2)d

j
i1n′(α1)d

j
i2n′′(α2)an̄ī1 ī2

ni1i2
(11)

where a = X, Y, Z. Here n relates to the upper atomic state.
As a result, the number of terms in (11) grows proportionally to n4. However, the use of Gulayev’s

results and the specific properties of the Wigner d-functions allows for one to make a significant
simplification of (11). In the present paper, we consider the Hnβ (∆n = n− n̄ = 2) lines.

2. Derivation of Dipole Matrix Elements

Our purpose is a simplification of the complicated Formula (11). The main problem with this
expression is the presence of four sums. The number of terms in this sum is proportional to n4.
The Wigner d-functions also have a complex structure. They can be analytically expressed in terms
of the Jacobi polynomials [20]. The main idea is to use the combination of the important results
from [10,11] and the d-function properties [20].

In works [10,11] the authors introduced a new quantum number K

K = (n1 − n2)− (n̄1 − n̄2) (12)

The energy shift can be rewritten by using the quantum number K as follows

∆E
ωF

= Kn + ∆nk (13)

where k = n̄1 − n̄2 and ωF = 3
2 F

It turns out that the intensity of the radiation in the dipole approximation strongly depends on
the number K from (12). The transitions with some specific values of K make a greater contribution to
the intensity of the radiation than the others. As for the Hnβ, lines one needs to calculate transitions
only with K = ±1 and K = ±2.

Zm
m =

1
4

b
[
(n̄1 + m + 2)(n̄1 + 2)δK,+2 + (n̄2 + m + 2)(n̄2 + 2)δK,−2

]
(14)
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where b2 = 4nn̄
(n−n̄)2 . Here, m is the absolute value of the magnetic quantum number and δk,l is the

Kronecker delta symbol.
We can split transitions into special series corresponding to specific values of K. Thus, we will

obtain two selection rules: the first one for the K-determination of series, the second one is the selection
rule for magnetic quantum number m. Proceeding to the i1, i2 representation, we obtain approximate
selection rules for the parabolic quantum numbers.{

(i2 − i1)− (ī2 − ī1) = ±2

i2 + i1 = ī2 + ī1
(15)

The solution of the system (15) has the following form{
i2 = ī2 ± 1

i1 = ī1 ∓ 1
(16)

The parabolic quantum numbers satisfy the following relation

n = n1 + n2 + |m|+ 1 (17)

Using (17) and (7), one can obtain the relation between n1, n2 and i1, i2{
n1 = n−|i1+i2|+i2−i1−1

2

n2 = n−|i1+i2|+i1−i2−1
2

(18)

Subsequently, it is necessary to substitute (14), (16) and (18) into (11).

Zn̄n̄′ n̄′′
1,2nn′n′′ =

j̄

∑
ī1=− j̄

j̄

∑
ī2=− j̄

d j̄
ī1n̄′(α1)d

j̄
ī2n̄′′(α2)d

j
ī1±1n′(α1)d

j
ī2∓1n′′(α2)G1,2(ī1, ī2) (19)

where
G1 = (

n
2
− ī1)(

n
2
+ ī2)

G2 = (
n
2
+ ī1)(

n
2
− ī2)

After that, we have to use recurrence relations for the d-functions [20]

dj
m1,m2(β) =

√
j−m2

j−m1
cos(

β

2
)dj− 1

2
m1+

1
2 ,m2+

1
2
(β)−

√
j + m2

j−m1
sin(

β

2
)dj− 1

2
m1+

1
2 ,m2− 1

2
(β) (20)

dj
m1,m2(β) =

√
j−m2

j−m1
sin(

β

2
)dj− 1

2
m1− 1

2 ,m2+
1
2
(β) +

√
j + m2

j−m1
cos(

β

2
)dj− 1

2
m1− 1

2 ,m2− 1
2
(β) (21)

In order to use (20) and (21), it is necessary to use these relations twice: for Zn̄n̄′ n̄′′
1nn′n′′ relation (20),

for Zn̄n̄′ n̄′′
2nn′n′′ (21). In the limit n, n̄ � 1, one can notice that factors in the recurrence relations and G1,2

coincide. It allows for one to use the orthogonality relation for d-functions

j

∑
m3=−j

(−1)m3−m2 dj
m2,m3(β)dj

m3,m1(β) = δm1,m2 (22)
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After that, we can obtain the Z-coordinate matrix element in the representation of states (8)

Zn̄n̄′ n̄′′
nn′n′′ =

1
4

b(−1)∆n̄′+∆n̄′′
[

Zn̄n̄′ n̄′′
1nn′n′′ − Zn̄,n̄′ ,n̄′′

2nn′n′′

]
(23)

Zn̄n̄′ n̄′′
1nn′n′′ =

[
(

n
2
− n′)cos2

(
α1

2

)
δn̄′ ,n′+1 − sin(α1)

√
(

n
2
− n′)(

n
2
+ n′)δn̄′ ,n′ +

+(
n
2
+ n′)sin2

(
α1

2

)
δn̄′ ,n′−1

]
×
[
(

n
2
− n′′)sin2

(
α2

2

)
δn̄′′ ,n′′+1 +

+sin(α2)

√
(

n
2
− n′′)(

n
2
+ n′′)δn̄′′ ,n′′ + (

n
2
+ n′′)cos2

(
α2

2

)
δn̄′′ ,n′′−1

]

Zn̄n̄′ n̄′′
2nn′n′′ =

[
(

n
2
− n′′)cos2

(
α2

2

)
δn̄′′ ,n′′+1 − sin(α2)

√
(

n
2
− n′′)(

n
2
+ n′′)δn̄′′ ,n′′ +

+(
n
2
+ n′′)sin2

(
α2

2

)
δn̄′′ ,n′′−1

]
×
[
(

n
2
− n′)sin2

(
α1

2

)
δn̄′ ,n′+1 +

+sin(α1)

√
(

n
2
− n′)(

n
2
+ n′)δn̄′ ,n′ + (

n
2
+ n′′)cos2

(
α1

2

)
δn̄′ ,n′−1

]
Derivation of the expression for the X-matrix element is similar to the Z-case. The selection rules

for K and for the magnetic quantum number are described by the following system{
(i2 − i1)− (ī2 − ī1) = ±1

|i2 + i1| = |ī2 + ī1| ± 1
(24)

System (24) leads to four possibilities{{
i2 = ī2 ± 1

i1 = ī1

{
i2 = ī2
i1 = ī1 ± 1

(25)

Expressions for the X-matrix elements correspond to K± 1

Xm−1
m =

1
4

b
[√

n1(n1 + m)(n̄1 + m)(n̄2 + m)δK,+1 +
√

n2(n2 + m)(n̄2 + m)(n̄2 + m)δK,−1

]
(26)

Xm+1
m =

1
4

b
[√

n1(n1 + m)n̄1n̄2δK,+1 +
√

n2(n2 + m)n̄2n̄2δK,−1

]
(27)

In the case of the X-dipole matrix element, one can obtain the expression that is similar to (19)

Xn̄n̄′ n̄′′
1,2,3,4nn′n′′ =

j̄

∑
ī1=− j̄

j̄

∑
ī2=− j̄

d j̄
ī1n̄′(α1)d

j̄
ī2n̄′′(α2)d

j
ī1±1n′(α1)d

j
ī2∓1n′′(α2)F1,2,3,4(ī1, ī2) (28)

where

F1 = (
n
2
+ ī2)

√
(

n
2
− i1)(

n
2
+ i2)

F2 = (
n
2
+ ī1)

√
(

n
2
+ i1)(

n
2
− i2)

F3 = (
n
2
− ī2)

√
(

n
2
+ i1)(

n
2
− i2)
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F4 = (
n
2
− ī1)

√
(

n
2
− i1)(

n
2
+ i2)

In order to achive the coincidence of mutual factors in the recurrence relations and expressions
((26) and (27)), one has to use ((20) and (21)), in a special way. For the first case in (25), it is necessary
to use relation (20) and, after that, relation (21). In distinction, for the second case in (25) one has to use
(20) after (21). After these manipulations, it is easy to obtain the X-matrix element

Xn̄n̄′ n̄′′
nn′n′′ =

1
4

b(−1)∆n̄′+∆n̄′′
[

Xn̄n̄′ n̄′′
1nn′n′′ − Xn̄,n̄′ ,n̄′′

2nn′n′′ − Xn̄n̄′ n̄′′
3nn′n′′ + Xn̄n̄′ n̄′′

4nn′n′′

]
(29)

Xn̄n̄′ n̄′′
1nn′n′′ =

[
(

n
2
− n′)cos2

(
α1

2

)
δn̄′ ,n′+1 − sin(α1)

√
(

n
2
− n′)(

n
2
+ n′)δn̄′ ,n′ +

+(
n
2
+ n′)sin2

(
α1

2

)
δn̄′ ,n′−1

]
×
[

1
2

sin(α2)

(
(

n
2
− n′′)δn̄′′ ,n′′+1 − (

n
2
+ n′′)δn̄′′ ,n′′−1

)
+

+δn̄′′ ,n′′cos(α2)

√
(

n
2
+ n′′)(

n
2
− n′′)

]

Xn̄n̄′ n̄′′
2nn′n′′ =

[
(

n
2
− n′′)sin2

(
α2

2

)
δn̄′′ ,n′′+1 + sin(α2)

√
(

n
2
− n′′)(

n
2
+ n′′)δn̄′′ ,n′′ +

+(
n
2
+ n′′)cos2

(
α2

2

)
δn̄′′ ,n′′−1

]
×
[

1
2

sin(α1)

(
(

n
2
− n′)δn̄′ ,n′+1 − (

n
2
+ n′)δn̄′ ,n′−1

)
+

+δn̄′ ,n′cos(α1)

√
(

n
2
+ n′)(

n
2
− n′)

]
Here, Xn̄n̄′ n̄′′

3nn′n′′ can be obtained by switching n′ ⇔ n′′(for bar values too) and α1 ⇔ α2 in Xn̄n̄′ n̄′′
1nn′n′′ .

The same connection exists between Xn̄n̄′ n̄′′
2nn′n′′ and Xn̄n̄′ n̄′′

4nn′n′′ .
Using the result for the X-dipole matrix element, one can obtain the expression for the Y-matrix

element. The hydrogen wave function is proportional to eimϕ, X ∼ cosϕ,Y ∼ sinϕ. Using well-known
relations cos(z) = eiz+e−iz

2 and sin(z) = eiz+e−iz

2i , one can obtain

Yn̄n̄′ n̄′′
nn′n′′ =

1
4i

b(−1)∆n̄′+∆n̄′′
[

Xn̄n̄′ n̄′′
1nn′n′′ − Xn̄,n̄′ ,n̄′′

2nn′n′′ − Xn̄n̄′ n̄′′
3nn′n′′ − Xn̄n̄′ n̄′′

4nn′n′′

]
(30)

3. Results

In order to analyze obtained results, we consider the ratio of Zeeman and Stark shifts denoted
below as u. The intensity is proportional to the square of the absolute value of coordinate matrix
element in the dipole approximation. As the intensity, we consider the function of the absolute value
of dipole matrix element divided by the sum of all (X,Y,Z) intensity components.

u =
B

3cnE
(31)

The reduced energy shift is equal to

ω = (Ē1n̄′ + Ē2n̄′′ − E1n′ − E2n′′)/ΩFB (32)

ΩFB =
1
2c

B +
3
2

nF (33)

Figure 1 presents calculations of the intensity in the case of parallel fields. In Figure 1a, one can see
pure Stark effect. This result is in agreement with [11]. The absence of the central component is typical



Universe 2020, 6, 157 7 of 9

for the lines Hnβ without a magnetic field. In the presence of the magnetic field B, one can observe
how intensity components merge together (Figure 1b,c). Finally, when the Zeeman shift becomes much
larger than the Stark shift, we obtain the picture of the pure Paschen—Back effect.

Expressions (14), (26), and (27) contain Kronecker delta symbols. This circumstance leads to the
fact that for highly excited levels the numbers n′, n′′ follow the selection rules.

(a) (b)

(c) (d)

Figure 1. Transition from n = 10 to n = 8. Intensity (divided by the sum of intensities of all components)
as the function of the reduced energy ((32) and (33)) in the case of parallel fields (θ = 0): (a) u = 0, (b) u
= 1 (c) u = 10 (d) u = 1000; u = B

3cnE .

In the absence of a magnetic field: α1 = π and α2 = 0 (see (10)). If one substitute these values
of the angles in expressions (23), (29) and(30), and change n′ ⇒ −n′ one would retrieve the usual
Stark effect and formulas (14), (26), and (27). In the opposite limit of the large Zeeman shift α1,2 = 0
and because of the selection rules for n′, n′′ expressions (23), (29) and (30), one would reproduce the
Paschen—Back effect. The intensity components of the radiation polarized in the X and Y directions
coincide due to the symmetry of the system.

Figure 2a presents the case of zero magnetic field and the electric field parallel to the x-axes. It is
seen that the intensity profiles, which corresponded to the X- and Z-polarizations, became interchanged.
Because of the decrease in the degree of the symmetry, the matrix elements begin to appear in pairs
of mismatched intensity components (Figure 2b). In comparison with the case of parallel fields,
the transition to the Paschen-–Back effect already occurs at u = 10 (Figure 2c).

The non-conservation of the full integrated intensity is related to the fact that all three types of
matrix elements (polarizations) are calculated instead of two.



Universe 2020, 6, 157 8 of 9

(a) (b)

(c) (d)

Figure 2. The same as in Figure 1 but for perpendicular fields (θ = π
2 ). (a) u = 0, (b) u = 1 (c) u = 10 (d)

u = 1000; u = B
3cnE .

4. Conclusions

Studies of astrophysical plasmas frequently employ analysis of hydrogen spectral lines. One faces
two fundamental problems while dealing with highly exited (Rydberg) atomic states. The first one is
related to the complex structure of accurate expressions for dipole-matrix elements in the parabolic
representation obtained by Gordon [9,14]. The second one is the influence of magnetic and electric
fields on spectra of a hydrogen-like atom. The solution to these problems is demonstrated in the
present paper. The simultaneous use of the specific properties of the Wigner d-functions and the results
that were obtained in [10,11] made it possible to simplify the complex expression (11). Practically,
while dealing with large principal quantum numbers, one faces again complicated sums (11) with n4

terms. It turns out that the coefficients in the recurrence relations for the Wigner d-functions coincide
with the factors in the semiclassical expressions from [11]. It allows for one to use the orthogonality
relation for the d-functions and get rid of four sums.

Using the semiclassical approximation for dipole matrix elements and the properties of
d-functions, we reduced the complicated formula (11), which contains the complex hyper geometric
series in an̄ī1 ī2

ni1i2
and the Jacobi polynomials in the d-functions, to expressions (23), (29) and(30).

These formulas contain trigonometric functions and Kroneker-delta symbols, which expresses new
selection rules for the quantum numbers n′, n′′. Moreover, we emphasize the universality of these
formulas. The new semiclassical expressions describe any transition with ∆n = 2.

In Figures 1 and 2, we presented specific calculations that were related to the transition 10− 8.
We considered the cases of parallel and perpendicular fields.Using Figures 1 and 2, it is possible to trace
the smooth transition from the pure Stark effect to the Zeeman components. By gradually increasing
the magnitude of the magnetic field, one can observe how the intensity components merge together.
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In summary, we derived the semiclassical approximation for dipole matrix elements, while using
Gulaev’s formulas and the recurrence relations for the Wigner d-functions. These expressions have
universal properties. The initial expression (11) contains n4 terms, the d-functions, and the complicated
Gordon’s ([9,14]) formulas. However, the simultaneous use of both semiclassical results and the
properties of d-functions leads to the simple, universal formulas (23) and (29) and (30).

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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