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Abstract: In this paper, we present the β-decay half-lives calculation for selected even-even nuclei that
decay through electron emission. The kinematical portion of the half-life calculation was performed
using a recently introduced technique for computation of phase space factors (PSFs). The dynamical
portion of our calculation was performed within the proton-neutron quasiparticle random phase
approximation (pn-QRPA) model. Six nuclei (20O, 24Ne, 34Si, 54Ti, 62Fe and 98Zr) were selected for
the present calculation. We compare the calculated PSFs for these cases against the traditionally used
recipe. In our new approach, the Dirac equation was numerically solved by employing a Coulomb
potential. This potential was adopted from a more realistic proton distribution of the daughter
nucleus. Thus, the finite size of the nucleus and the diffuse nuclear surface corrections are taken
into account. Moreover, a screened Coulomb potential was constructed to account for the effect of
atomic screening. The power series technique was used for the numerical solution. The calculated
values of half-lives, employing the recently developed method for computation of PSFs, were in good
agreement with the experimental data.
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1. Introduction

In the last few decades, the β-decay process shaped our perspective of modern physics. From
changing the evolution of the Standard Model and revealing the nature of left-handed ’V − A’ weak
interaction [1], the theoretical study of β-decay also performed a key part in the understanding
of astrophysical processes, such as nucleosynthesis (r−, rp−, s−, p−) processes and pre-supernova
evolution of massive stars [2–4]. Probing different observables of β-decay continue to be at the forefront
of new physics research, but dealing with the Hamiltonian that administers all types of β-decay is not
a trivial problem and involves approximations.

The weak interaction which produces the real decay is much weaker as compared to the
electromagnetic interaction of beta-particle with its neighborhood. Consequently, the later interaction
may not be treated in the perturbation theory for nuclear β-decay Hamiltonian [5,6]. The typical
approximation is to use the Dirac equation having an electrostatic potential instead of a plane-wave of
β-particle [7]. With this replacement, the half-life for nuclear β-decay is calculated after the computation
of associated nuclear matrix elements (NMEs) and PSFs.
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In the literature, various approaches for β spectrum description and PSF calculation were
reported [8–11]. Some of these calculations employed the point charge Fermi function [12]. A realistic
PSF must evaluate the β-particle radial wave function as solutions to the Dirac equation in a finite
charge distribution that adequately describe that of the real nucleus [13]. In this paper, we used
β-particle exact radial wave functions for the construction of the Fermi function acquired by solving
the Dirac equation numerically with realistic electrostatic potential. In this approach, we included
electrostatic finite-size corrections (finite size and diffuse nuclear surface) and atomic screening
corrections by constructing an appropriate Coulomb potential. The numerical recipe used to solve
the Dirac equation limited the truncation errors of solutions, and the only remaining discrepancies
were because of rounding errors and distortion of potential initiated by the interpolating spline [14,15].
The present technique for the calculation of PSFs could easily be developed for any arbitrary nucleus.
For further details about the new recipe of PSFs, we refer to [16].

Another consequence of the approximation discussed above is that the PSF calculation and β

spectrum predictions must include the electromagnetic correction. Examples for such correction are
the emission of internal bremsstrahlung during decay and the interaction of the β-particle with the
decaying nucleon. Hayen et al. [11] tabulated all corrections that should be applied on β spectrum
calculation. This type of correction is not included in the recently introduced recipe for calculation
of PSF [16].

For the current half-lives calculation of β-decay, NMEs were calculated within the framework of
the (pn-QRPA) model in a deformed basis and a schematic separable potential, both in particle-hole and
particle-particle channels. In this work, we compute PSFs and β−-decay half-lives for six even-even
nuclei (20O, 24Ne, 34Si, 54Ti, 62Fe and 98Zr). We compare our PSFs [16] with the ones computed by
Gove and Martin (GM) [17]. We later calculate the half-lives of β-decay for these selected nuclei using
the traditional [17] and newly introduced [16] recipes for the computation of PSFs. The half-lives are
further compared with the measured values.

We briefly describe the necessary formalism of reported work in Section 2. We discuss our results
and compare them with measured data in Section 3. We report our findings in Section 4.

2. Theoretical Framework

The theoretical framework for computation of PSFs for any type of nuclear β transition is presented
in detail in Ref. [17]. We included only the allowed transitions (Fermi and Gamow-Teller type) in our
calculations. The traditional PSF for an allowed β transition is given in natural units (h̄ = m = c = 1) by

f =
∫ E0

1
pE(E0 − E)2F(Z, E)dE. (1)

In “Equation (1)”, p denotes β-particle momentum, and E =
√

p2 + 1 stands for total energy, while
E0 is the maximum energy of the β-particle. Many authors [10,18] start from the point charge Fermi
function F(Z, E);

F(Z, E) = 4(2pR)2(γ−1)eπη |Γ(γ + iη)|2

[Γ(2γ + 1)]2
(2)

introduced in 1934 [12]. In “Equation (2)”, α ' 1/137 is the fine structure constant; γ =
√

1− α2Z2;
η = αZE/p; R is the radius of the nucleus in units of h̄/mec2; and Γ is the gamma function. The Fermi
function could be described in terms of the radial wave functions

F(Z, E, r) =
f 2
1 (Z, E, r) + g2

−1(Z, E, r)
2p2 , (3)
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which, historically, has been evaluated at the nuclear radius or the origin. In this paper, we consider
the evaluation at the nuclear surface. The functions f1(Z, E, r) and g−1(Z, E, r) are small and large
radial wave functions, respectively, and satisfy coupled equations [19],(

d
dr +

κ+1
r

)
gκ(E, r) = (E + V(r) + 1) fκ(E, r)(

d
dr +

κ−1
r

)
fκ(E, r) = −(E + V(r)− 1)gκ(E, r),

(4)

where V(r) is the central potential of the β-particle, while κ is the relativistic quantum number.
At this point, a comparison between our approach and the method presented by GM can be

made. There are two major differences between the approaches. The GM recipe used the analytical
radial wave function solutions of “Equation (4)” with V(r) given by −Ze2/r. The finite-size correction
introduced by Rose and Holmes [20] has been later applied analytically to the obtained Fermi function.
The advantage of numerically solving “Equation (4)” was that we introduced the finite-size correction
and the diffused nuclear surface correction by choosing a proper electrostatic potential, presented
below. The second difference between the two formalisms is the inclusion of the atomic screening
correction. Whereas GM used the change of variables in the radial wave functions, we implemented
this directly in the electrostatic potential.

The electrostatic potential used in this work was adopted from a more realistic proton density
distribution in the nucleus, in comparison with a uniform one. The charge density was introduced using

ρe(~r) = ∑
i
(2ji + 1)v2

i |ψi(~r)|2 , (5)

where ψi denotes the proton wave function for the spherical single-particle state i, and vi stands for
the amplitude of occupation. By solving the Schrödinger equation using the Woods-Saxon potential,
the wave functions ψi were obtained. The (2ji + 1) term in “Equation (5)” reflects the degeneracy of
spin. The difference between a uniform charge density and the one derived in this work can be found
in “Figure 1”.

Figure 1. (a) Realistic proton density for an atomic number Z = 40 represented in cylindrical coordinates;
(b) Profile of the realistic proton density for Z = 40 (thick line) compared with that given by a constant
density approximation (dot-dashed line).
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The Coulomb potential was obtained by integrating the realistic proton density distribution

V(Z, r) = αh̄c
∫

ρe(~r′)
|~r−~r′|

d~r′. (6)

The Coulomb potential obtained with the “Equation (6)” is represented in “Figure 2” with a
full curve for a residual nucleus with Z = 40 and A = 90. In the same figure, the Coulomb potential
obtained with a constant charge density in the volume of the residual nucleus is also displayed with a
dashed line. For some nuclei, the differences between the two potentials can lead to spreads which
amount to 0.5% in the Fermi function. One considers that the potential obtained within the calculated
proton density is more realistic.

Figure 2. Comparison between the Coulomb potential obtained with a realistic charge density displayed
with a full line, and a potential obtained within a constant charge density plotted with a dashed line
for a Z = 40 residual nucleus.

Solutions of “Equation (4)” with the electrostatic potential described by “Equation (6)” include
the finite-size and diffuse nuclear surface effects. Furthermore, we also consider the atomic
screening effect by changing the expression of V(r) with function φ(r), that is, the solution for the
Thomas-Fermi equation

d2φ

dx2 =
φ3/2
√

x
, (7)

with x = r/b, where b ≈ 0.8853rbZ−1/3 and rb is the Bohr radius. The solution φ(r) was calculated
using the Majorana recipe [21]. In the case of β−/β+, the effective potential Vβ∓ was improved with
the help of screening function φ(r), as

rVβ∓(Z, r) = (rV(Z, r) + 1)× φ(r)− 1. (8)

β-decay half-lives were calculated by summing all transition probabilities to daughter excited states
lying within the Qβ value

T1/2 = ( ∑
0≤Ex≤Qβ

1/tx)
−1, (9)
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where tx are the partial half-lives:

tx =
C

(gA/gv)2FA/V B(Ex)
. (10)

In “Equation (10)”, C is a constant whose value was taken as 6143 s [22], for the weak interaction
gA, gv denotes axial-vector and vector coupling constants, respectively, having gA/gv= −1.2694 [23],
while Ex is the daughter excitation energy. FA/V are the PSFs discussed above. B(Ex) are the reduced
transition probabilities for the Fermi and Gamow–Teller (GT) transitions. We can express these reduced
transition probabilities in the form of NMEs, as follows:

BF(Ex) =
1

2Ii + 1
|< x ‖ MF ‖ i >|2, (11)

BGT(Ex) =
1

2Ii + 1
|< x ‖ MGT ‖ i >|2 . (12)

In “Equations (11) and (12)”, Ii represents the spin of the parent state, and MF and MGT denote
the Fermi and GT transition operators, respectively. A detailed description about the computation of
NMEs using the pn-QRPA theory can be seen in Refs. [24,25].

We further explored the effect of pairing gaps on calculated PSFs and β-decay half-lives.
The pairing gap computation proved crucial for the current calculation. For the calculation of the
pairing gap, in units of MeV, we employed the so-called three-point formulae. These formulae are a
function of neutron and proton separation energies, as shown in Equations (13) and (14)

∆pp =
1
4
(−1)Z+1[Sp(A + 1, Z + 1)− 2Sp(A, Z) + Sp(A− 1, Z− 1)] (13)

∆nn =
1
4
(−1)A−Z+1[Sn(A + 1, Z)− 2Sn(A, Z) + Sn(A− 1, Z)]. (14)

For further details of the calculation of PSFs and NMEs, we refer to [16,26].

3. Results

Table 1 shows the PSFs computed with the current and GM recipes for the six even–even selected
nuclei. Q-values were taken from Ref. [27]. The two results differ at the maximum by 10 percent.

A comparison between the measured and calculated values of β-decay half-lives for the six
selected nuclei are shown in Table 2. Measured half-lives appearing in the second column were taken
from [27]. Computed half-lives in the third column were obtained using the traditional PSF recipe
of GM and associated NMEs from the pn-QRPA model. The last column presents the calculated
half-lives employing the newly introduced PSFs and labeled (C) (current). The associated NMEs were
calculated within the framework of the pn-QRPA model. Half-life values in Table 2 are stated in units
of seconds. One notes that the GM half-life values are systematically bigger than those calculated
using the current recipe. It is noted that the calculated half-lives using the new prescription of PSFs are
in better agreement with the experimental data. This is an important finding of the current work.

Table 3 presents the state-by-state computation of partial half-lives for 20O (the largest difference
between the two calculations as noted in Table 2) and 34Si (the smallest difference between the
two calculations). The values of the pn-QRPA model calculated daughter excitation energies (Ex),
Qβ− (= mp −md − Ex), PSFs, NMEs, and branching ratios I(β−) are also given in Table 3. For the case
of 20O, we note that the partial half-lives and branching ratios to the last four levels contribute to the
big difference between the two calculations. The computed branching ratios and partial half-lives are
in decent agreement for all states in the case of 34Si.
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Table 1. Calculated total phase space factors Fβ− for β− decay, with Q-values from [27].

Nucleus Qβ− (MeV) [27] F(GM)
β− [17] F(C)

β−

20O 3.81366 5864.37 5849.69
24Ne 2.46630 70.6367 70.4907
34Si 4.59170 5531.61 6167.34
54Ti 4.27300 26816.4 26556.5
62Fe 2.54600 2452.09 2422.20
98Zr 2.23800 3372.44 3294.33

Table 2. Comparison of measured [27] and computed half-lives using PSFs by GM prescription of [17]
and by newly introduced recipe (C) [16]. Half-life values are stated in units of s.

Nucleus T(EXP)
1/2 (s) [27] T(GM)

1/2 (s) [17] T(C)
1/2 (s)

20O (1.351±0.005) E+01 2.12E+01 1.49E+01
24Ne (2.028±0.012) E+02 2.26E+02 2.05E+02
34Si (2.770±0.200) E+00 3.01E+00 2.87E+00
54Ti (2.100±1.000) E+00 3.14E+00 2.41E+00
62Fe (6.800±0.200) E+01 9.24E+01 7.68E+01
98Zr (3.070±0.040) E+01 4.06E+01 3.33E+01

Table 3. State-by-state comparison of computed β-decay half-lives using the GM and newly introduced
recipes for computation of PSFs. The daughter energy levels, NMEs, Q values, partial half-lives t f and
branching ratio I(β−) for β−-decay to calculated daughter states are also shown.

20O

Ex (MeV) NME Qβ− (MeV) F(GM)
β− [17] F(C)

β− t(GM)
f [17] t(C)

f I(GM)
(β−)

[17] I(C)
(β−)

0.00400 0.00000 3.80967 1689.06 1684.56 1.40644E+06 4.87374E+05 0.0020 0.0030
0.24900 0.01929 3.56411 1252.16 1249.04 1.65717E+02 4.16003E+01 12.810 17.260
0.26200 0.03908 3.55175 1232.83 1229.70 8.30920E+01 4.80330E+01 25.549 35.898
0.54200 0.09132 3.27209 854.878 852.899 5.12796E+01 9.48294E+01 41.399 31.091
0.55800 0.04569 3.25521 835.436 833.484 1.04884E+02 6.66259E+03 20.240 15.748

34Si

0.70800 0.26574 3.88335 2167.55 2414.32 6.94985E+00 6.65015E+00 43.421 43.163
0.84300 0.00000 3.74878 1850.47 2062.28 1.54665E+08 1.60074E+08 0.0000 0.0000
1.07200 0.53771 3.51923 1395.43 1557.01 5.33510E+00 5.05171E+00 56.563 56.821
2.66400 0.00000 1.92758 102.739 115.983 2.09311E+09 1.19578E+09 0.0000 0.0000
3.47600 0.01324 1.11531 11.0202 12.6278 2.74395E+04 2.64834E+04 0.0110 0.0110
3.82500 0.00000 0.76635 2.57740 2.99066 4.10905E+11 3.83127E+11 0.0000 0.0000
3.96800 0.05621 0.62359 1.19018 1.39208 5.98407E+04 5.67186E+04 0.0050 0.0050
4.06900 0.00000 0.52264 0.62227 0.73302 3.54261E+12 3.28252E+12 0.0000 0.0000

4. Conclusions

In this paper, the newly introduced prescription of PSFs were applied to compute β-decay
half-lives of even–even nuclei. The required NMEs were computed within the framework of the
pn-QRPA model. A small difference between the traditionally and newly introduced recipe of PSFs
was noted. A similar difference was also reported for the computed values of β-decay half-lives using
the two recipes of PSFs. The newly introduced recipe of PSFs resulted in calculated β-decay half-lives
that was in better agreement with the measured ones. In the future, we plan to expand our study of
beta-decay half-life values to a large pool of nuclei undergoing β−, β+, and electron capture decays.
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We also plan to study the effect of introducing the new recipe of PSFs on double-beta decay half-lives
and beta decays in a stellar environment.
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