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Abstract: Utilizing the tools of tendex and vortex, we study the highly dynamic plunge and merger
phases of several π-symmetric binary black hole coalescences. In particular, we observe a decline of
the strength of the current quadrupole moment compared to that of the mass quadrupole moment
during the merger phase, contrary to a naive estimate according to the dependence of these moments
on the separation between the black holes. We further show that this decline of the current quadrupole
moment is achieved through the remnants of the two individual spins becoming nearly aligned
or anti-aligned with the total angular momentum. We also speculate on the ability to achieve a
consistency between the electric and magnetic parity quasinormal modes.

Keywords: black hole; gravitational wave; general relativity

1. Introduction

Binary black hole (BBH) coalescences constitute one of the most important types of gravitational
wave sources for the network of gravitational-wave detectors, such as the Advanced LIGO [1],
Virgo [2,3], GEO [4], and KAGRA [5], with the first observational detection of gravitational waves
coming from precisely such a binary [6]. Hence, it is important to know what dynamics of the
astronomical system underlies the inspiral, merger and ringdown stages of a BBH waveform, and can
therefore be studied using that waveform. For example, the merger phase (defined here as between the
formation of the common apparent horizon, i.e., merger, and the beginning of the quasinormal mode
ringdown) dynamics are interesting because they reflect strong gravity behaviors and correspond to a
large gravitational wave amplitude.

The particular aspect of the merger phase dynamics we examine is the decline (not necessarily
disappearance) of the current quadrupole moment relative to the mass quadrupole moment in the near
zone. For our study, we will rely on π-symmetric simulations such as the superkick (equal-mass BBH
with anti-aligned spins in the orbital plane) BBH coalescence previously examined in Reference [7] for
demonstration, which we will refer to as the SK simulation. By π-symmetry, we mean that the system
is invariant under a π-rotation around an axis orthogonal to the initial orbital plane [8]. This symmetry
brings about significant simplifications that are useful for us. We will also utilize other π-symmetric
simulations (not necessarily superkick configurations) whose initial parameters are similar to those of
SK, aside from the initial spin orientations. The details of the initial parameters for these simulations
are given in Table 1 (note that these parameters are obtained at the very beginning of the simulation,
on the initial data [9]; once the simulation gets going, there will be a pulse of junk radiation emitted, as
the system settles down from a caricature of the actual binary to a more accurate depiction, which
subsequently leaves the computational domain; the parameters will change slightly after the junk
radiation passes, and the binary will tend to pick up a slight eccentricity. Such changes will not affect
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the qualitative studies that are carried out in this paper, but please refer to [10] for a more quantitative
assessment of the impact of junk radiation; the simulations are carried out with resolutions comparable
to the high resolution runs of the catalogue described in [11]).

Table 1. Initial parameters for the binary black hole (BBH) simulations (these, and the times given in
the figures of this paper, are in code units, or in other words, in arbitrary units; they scale with the
total mass of the binary system according to their units). The symbol Ω refers to the initial angular
frequency, computed with the Newtonian expression below Equation (5), using the initial total mass
and separation of the black holes as inputs. In all the simulations, the black holes are initially on the x
axis, and the orbital plane is spanned by the x and y axes, while the total angular momentum is in the ẑ
direction (the hat signifies unit magnitude). We also include the mass and spin of the final remnant
black holes in the bottom two rows.

Simulation Label SK SK- SK⊥ AA

Initial ADM angular momentum (0,0,0.98) (0,0,0.98) (0,0,0.97) (0,0,0.75)
Initial ADM energy 0.99 0.99 0.99 0.99

Initial Ω 0.027 0.027 0.027 0.027
Initial Christodoulou mass 1 0.5 0.5 0.5 0.5
Initial Christodoulou mass 2 0.5 0.5 0.5 0.5
Initial Dimensionless spin 1 (0.5,0,0) (−0.5,0,0) (0,0.5,0) (0,0,−0.5)
Initial Dimensionless spin 2 (−0.5,0,0) (0.5,0,0) (0,−0.5,0) (0,0,−0.5)
Final Christodoulou mass 0.95 0.95 0.95 0.96
Final Dimensionless spin 0.68 0.68 0.68 0.53

In this paper, weak field and/or perturbative expressions are utilized to help build intuition and
aid in the formulation of qualitative arguments. However, we will use the tools of tendex and vortex,
which are non-perturbative and valid in strong fields, to examine the numerical simulations. We
begin by examining the analytical predictions for the tendex and vortex fields generated by the mass
and current quadrupoles in Section 2. We then use the knowledge gained to study these quantities
in the SK simulation, and show that the current quadrupole declines in relative importance against
the mass quadrupole during the merger phase. In Section 3, we propose the mechanism through
which the current quadrupole makes its exit, namely that the remnants of the individual spins become
(nearly) aligned or anti-aligned with the total angular momentum. In Section 4, we directly visualize
the movements of these remnant spins using the horizon vorticity, which appear to be in agreement
with our proposal. Finally in Section 5, we speculate on the implication of our investigation in
terms of helping the electric and magnetic parity quasinormal modes (QNM) achieve equality in
their frequencies.

Note that the spin-total angular momentum alignment or anti-alignment considered here is not
the same as the spin-flip examined in, for example, References [12,13], which considers the difference
between the spin of the remnant black hole and the pre-merger individual spins (i.e., a comparison
between different entities), and is simply a result of the former acquiring much of the pre-merger
orbital angular momentum [12]. Our discussion is, however, a comparison between the individual
(remnant) spins with their earlier selves.

In the formulas below, the spacetime indices are written in the front part of the Latin alphabet,
while the spatial indices use the middle part of that alphabet. We will use bold-face font for vectors
and tensors, and adopt geometrized units with c = 1 = G. All the simulations and visualizations are
performed with the Spectral Einstein Code (SpEC) [14] infrastructure.
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2. Vorticity from the Mass and Current Quadrupoles

Given a timelike vector field u normal to a foliation of the spacetime by spatial hypersurfaces, the
tendex E and vortexB fields are spatial tensors defined by:

Ekj + iBkj = hk
eh j

f
(
Cec f d − i ∗Cec f d

)
ucud, (1)

where Cabcd is the Weyl curvature tensor, hab = gab + uaub is the projection operator into the spatial
hypersurfaces with gab being the spacetime metric, and the Hodge dual operates on the first two indices.
Because the Weyl curvature tensor can be decomposed into and be reconstructed from the tendex and
vortex fields, we can see these fields as representations of the spacetime geometry. The eigenvalues of
E andB are called tendicities and vorticities. Because the tendex and vortex tensors are 3× 3 matrices
at each field location, there are three branches of tendicities and vorticities. From the discussions in
Section VI of Reference [15], we know that in the wave zone, one of the branches is associated with the
Coulomb background piece of the Weyl curvature tensor, in the sense that the tendicity and vorticity
are the real and imaginary parts of the Newman–Penrose (NP) scalar Ψ2 (see Reference [16] for more
details on interpreting Ψ2 —C(3) in that paper —as the Coulomb background, and Ψ4—C(5) in that
paper—as the outgoing transverse radiation). We will refer to this branch as the Coulomb branch,
even in the near zone. The other two branches weave into the gravitational wavefront in the sense
of Figures 7 and 8 of Reference [15], as well as Reference [17]. Another definition we will need is the
horizon vorticity. Given the spatial normal N to an apparent or event horizon, the horizon vorticity
BNN is defined by BNN ≡ Bi jNiN j.

For the rest of the section, we will mostly specialize to the Coulomb branch vorticity field generated
by the mass and current quadrupoles, although as the discussions are centered on symmetries, they
would work with the other two branches as well. The mass quadrupole contains only orbital motion
contribution; and is given by (for point particles, and for the leading terms in the usual post-Newtonian
approximation; for higher order corrections, please consult, e.g., Reference [18]):

I jk =

∑
A

mAxAjxAk

STF

, (2)

where A ∈ {1, 2} labels the black holes and STF stands for taking the symmetric, trace-free part. The
current quadrupole moment is given by:

S jk =

∑
A

xAj Jtot
Ak

STF

, (3)

with Jtot being the total angular momentum that has two components: The orbital angular momentum
and the spins:

Jtot
A = Jorb

A + Jspin
A = xA × pA + SA. (4)

For the π-symmetric simulations we consider, the Jorb
A are the same for the two black holes, but the

xA are opposite, so the orbital contribution from the two black holes cancel out in Equation (3). The spin
contribution, on the other hand, have opposite PSA for the two black holes (P is the projection operator
into the orbital plane, which for the post-merger context will refer to the equatorial plane of the remnant
black hole), and therefore does not need to vanish. Furthermore, the total orbital angular momentum∑

A Jorb
A and the total spin

∑
A SA are both collinear with Jtot

A .
Note that Equations (2) and (3) are in the STF notation of Reference [19–21], which has been

summed over m. For our simulations, π-symmetry suppresses the m = ±1 modes, and even though
there can be some small m = 0 mode contribution in the waveforms, we are most interested in the
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m = ±2 modes. To approximate the I and S generating such modes in our simulations, we can use
the quasi-Newtonian formula:

I =
MR2

8


cos(2Ωt̃) + 1

3 sin(2Ωt̃) 0
sin(2Ωt̃) − cos(2Ωt̃) + 1

3 0
0 0 −

2
3

 , (5)

on a Cartesian coordinate system (x, y, z) with (x, y) spanning the orbital plane. The quantity M is the
total mass, R is the separation between the black holes, and Ω =

√
M/R3 is the Newtonian orbital

angular frequency. Note that we have replaced the time t in a purely Newtonian expression by the
retarded time t̃. For the current quadrupole, there are a few interesting configurations. First of all,
when the spins are constant, anti-parallel to each other and in the orbital plane, we have:

S =
RS
2


4
3 cos(Ωt̃) sin(Ωt̃) 0
sin(Ωt̃) −

2
3 cos(Ωt̃) 0

0 0 −
2
3 cos(Ωt̃)

 , (6)

where S is the shared magnitude of the individual spins. Note that as the spins don’t precess, there is
only one Ω factor in Equation (6) coming from the xA term in Equation (3), so the current quadrupole
will evolve at the orbital frequency, instead of twice the orbital frequency like the mass quadrupole. If
however, the spins precess also at frequency Ω, we would then have the current quadrupole evolving
at a frequency of 2Ω. For example, in the simple case where the spins are anti-parallel, locked to
orthogonal directions to the line linking the black holes, and confined to the orbital plane, we have:

S =
RS
2


− sin(2Ωt̃) cos(2Ωt̃) 0
cos(2Ωt̃) sin(2Ωt̃) 0

0 0 0

 . (7)

Another useful result is for the case when spin SA is locked to the −xA direction, where:

S = −
RS
2


cos(2Ωt̃) + 1

3 sin(2Ωt̃) 0
sin(2Ωt̃) − cos(2Ωt̃) + 1

3 0
0 0 −

2
3

 . (8)

Finally, we note that if the two spins are aligned with each other, such as in the AA simulation (spins
anti-aligned with the orbital angular momentum), then we suffer from the same effect that diminishes
orbital contribution to S: The SA are the same for the two black holes, while their xA are opposite,
so the overall current quadrupole vanishes. For the SK, SK- and SK⊥ simulations (spins initially in the
orbital plane, see Table 1), the current quadrupole moment is non-vanishing during inspiral, and can
be approximated by Equation (6) during the early part of inspiral. Towards later stages of inspiral, the
spin precession frequency increases and S is somewhere between Equations (6)–(8). We now develop
some tools for tracking how S evolves in, e.g., the SK simulation, during the merger phase.

The tendex and vortex fields corresponding to the current quadrupole S, in weak gravity, with a
source region smaller than the gravitational wavelength, are given in Reference [15] as:

Bi j =
2
3

−
(
Spq

r

)
,pqi j

+ εipq

 S̈pl

r


,qk
ε jlk + 2

 S̈p(i

r


, j)p

−


....
S i j

r


 , (9)

Ei j =
4
3
εpq(i

−
 Ṡpk

r


, j)kq

+


...
S j)p

r


,q

 , (10)
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where repeated indices are summed over, parentheses denote symmetrization, commas signify partial
derivatives, and the overdot denotes time derivatives. Roughly, each time derivative introduces an Ω
factor, while each spatial derivative can introduce either an 1/r factor when operating on explicit r’s in
Equations (9) and (10), or an Ω factor through the retarded time. In the near zone, where r < o (o is the
reduced wavelength), the spatial derivatives that generate 1/r factors are favorable, so terms with more
spatial derivatives are more dominant, and the strength of the tendex and vortex fields are determined
by the first terms in Equations (9) and (10). The ratio of the strength between them is proportional to
o/r. When r > o (in the wave zone), it is preferable for spatial derivatives to introduce an Ω factor
instead, and all the terms in the sums contribute equally. The result in the case of Equation (9) is the
same as a transverse-traceless projection operator acting on the four time derivative term multiplied
by −2. In this case, theB and E fields are of the same strength, as one would expect from them being
sustained by mutual induction in a gravitational wave [15].

The E andB fields generated by the mass quadrupole I have the same form as those due to the
current quadrupole, up to prefactors, but with E andB swapped:

Bi j = εpq(i


 İpk

r


, j)kq
−


...
I j)p

r


,q

 , (11)

Ei j =
1
2

−
(
Ipq

r

)
,pqi j

+ εipq

 Ïpl

r


,qk
ε jlk + 2

 Ïp(i

r


, j)p

−


....
I i j

r


 . (12)

The symmetry between Equations (9), (10) and Equations (11), (12) allows for the definition of a
complex quadrupole moment:

Mkj =
4
3

Skj

r
− i
Ikj

r
, (13)

and then the tendex and vortex fields are given by the unified expression:

Ekj + iBkj = εpq(k

[
−Ṁpl, j)lq +

...
M j)p,q

]
+

i
2

[
−Mpq,pqkj + εkpqM̈pm,qnε jmn + 2M̈p(k, j)p +

....
Mkj

]
. (14)

We now turn to examine the symmetry properties of theB field generated by Equations (9) and
(11). Following Reference [22], we define a positive/negative (abbreviated to +ve/−ve below) parity
tensor field to be one that does not/does change sign under a reflection against the origin. Note that the
parity operation we consider applies to the field location coordinates (e.g., r in Equation (9), and not
the source (black hole) locations or motions e.g., xA or SA in Equation (4), which can be seen formally
as existing in a separate internal vector space. This is akin to applying the parity transformation to
only the x coordinate of a Green function G(x, x′) while leaving x′ unaffected. It is straightforward to
see that both S and I have +ve parity, as doB in Equation (9) and E in Equation (12) that have even
numbers of derivatives, while E in Equation (10) andB in Equation (11) take on −ve parity.

We show in Figure 1 that the Coulomb branch vorticity contours forB as given by Equations (9)
and (11). In addition to parity, our B fields are π-symmetric by construction. So by combining a
π-rotation with a parity transformation, we arrive at reflection anti-symmetry/symmetry about the
orbital plane, for the mass/current quadrupole generated vorticity. Furthermore, for the m = ±2 modes
we are considering, there is a π/2-rotation antisymmetry for both I and S generated vorticity, as
evident from Figure 1. We will call the combination of a parity transformation with a π/2-rotation
the “skew-reflection”, and then the mass/current quadrupole generated vorticity is skew-reflection
symmetric/anti-symmetric. Now consider an axisymmetric dipolar vorticity which also has a −ve
parity, such as that generated by the orbital angular momentum or the spin of the post-merger final
remnant black hole. It would be reflection anti-symmetric, as well as skew-reflection anti-symmetric.
Therefore, a combination of the mass quadrupolar and the dipolar vorticities would have a definitive
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reflection anti-symmetry, but has no definitive skew-reflection symmetry property. Subsequently, the
contours of opposite vorticities will be aligned with each other (in terms of rotation about the Jtot axis)
across the orbital plane. On the other hand, when we combine the current quadrupolar vorticity with
the dipolar vorticity, we will have definite skew-reflection anti-symmetry, but no definitive reflection
symmetry property. Therefore, the contours of opposite vorticities will be misaligned by π/2 instead.

(a) (b)

Figure 1. (a): Two Coulomb branch vorticity contours from the mass quadrupole according to
Equation (5). The red and blue contours correspond to a pair of opposite vorticity values, with the red
being +ve. (b): Coulomb branch vorticity contours from the current quadrupole given by Equation (6).

This conclusion is demonstrated graphically in the top two rows of Figure 2, where contours of
opposite vorticity are represented in red and blue. When constructing this figure, the dipole contribution
is approximated as the vorticity field of a Kerr black hole [23] in the Kerr–Schild coordinates (with
spin 0.7, similar to the final merged hole).When we combine the contributions from both quadrupoles
(with parameters M = 1, R = 2, S = 0.5 and Ω = 0.35) as well as the dipole, the red and blue spiraling
arms subtend a misalignment angle between 0 and π/2 (possessing neither definitive reflection
symmetry nor definitive skew-reflection symmetry), as shown in the third row of Figure 2. Note
that although we have been utilizing weak gravity expressions in this section to construct examples,
the qualitative symmetry considerations should remain valid in strong gravity, where this misalignment
angle can serve as a convenient measure of the relative strength between the two types of quadrupoles.
Aside from a non-vanishing misalignment angle, another indicator for the existence of a current
quadrupole contribution is that the contours can slice through the orbital plane (see Figures 1b and 2e),
which is allowed by the skew-reflection anti-symmetry. On the other hand, reflection antisymmetry
prevents the contours with non-vanishing vorticity from intersecting the orbital plane (see Figures 1a
and 2a). Finally, note that when both types of quadrupoles are present, the red and blue contours
do not need to share the same size and/or shape (see Figure 1e,f), with the difference between them
dependent on the relative strength of these quadrupoles, as well as their relative phase.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. The analytically constructed contours of opposite vorticity (plotted by coding the relevant
equations mentioned below into the numerical grid—no actual simulation took place, the data are from
direct evaluations of analytical expressions; the reason for doing so is to take advantage of the powerful
visualization software Paraview [24], and this approach should not introduce excessive numerical
noises since the expressions are smooth and thus pose no challenge to spectral representations). (a,b):
Two contours of opposite vorticity from the mass quadrupole (Equation (5)) plus a current dipole.
The contours, in particular the spiraling arms, are aligned with each other across the orbital plane.
(c,d): Similar contours from the current quadrupole (Equation (7)) plus the dipole. The contours are
misaligned by π/2, and obey skew-reflection antisymmetry. (e,f): Both current and mass quadrupoles
are included in addition to the dipole. The contours are misaligned by an angle between 0 and π/2,
breaking both reflection and skew-reflection antisymmetry. Left column: Side views of the contours
(not at the same angle). Right column: Top views (looking down Jtot) of the contours.
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We now plot the time evolution (during the merger phase) of the opposite vorticity contours
for the SK simulation in the top two rows of Figure 3, and see an increase of alignment over time,
suggesting a decreasing current quadrupole moment. We also note that the blue spiraling arms in
Figure 3a slice through the orbital plane, while their counterparts in Figure 3c do not behave in the
same way. Furthermore, the blue arms are larger in spatial extent initially, but reduce to be of similar
sizes as the red arms later. These features are also consistent with a declining current quadrupole
contribution. For comparison, we also plot in the bottom row of Figure 3, the contours for the AA
simulation at the same time delay from merger as in Figure 3a,b, where as the current quadrupole
moment vanishes according to Equation (4), the contours are already exactly aligned.

(a) (b)

(c) (d)

Figure 3. Cont.
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(e) (f)

Figure 3. The numerically simulated contours of opposite vorticity in the simulations. (a–d): The time
evolution of the Coulomb branch vorticity during the merger phase for the SK simulation. The blue
and red surfaces are contours of the same absolute vorticity value but of the opposite signs. The rows
correspond to different times. Over time, the red and blue contours become more aligned with each
other in their orientation. (e,f): The Coulomb branch vorticity contours for the AA simulation, at the
same time delay from merger as (a,b). The lack of current quadrupole moment ensures the alignment
of the red and blue contours. Left column: Side views of the contours (not at the same angle). Right
column: Top views (looking down Jtot) of the contours. The grey surface visible in some panels is the
apparent horizon of the merged black hole. For merger times, see the right-most time readings in e.g.,
Figure 6 below.

3. Avenue for the Exit of the Current Quadrupole

If we hold spin magnitude S constant, and keep spin directions tangential to the orbital plane in a
π-symmetry configuration, then a comparison between Equation (5) and Equations (6)–(8) suggests
that as R decreases, the relative strength of S as compared to I should increase. Using the values for
M and S in Table 1, we find that S and I should become similar in magnitude when R ≈ 2, or around
merger time. Furthermore, if r < o for the r range we are interested in (e.g., the range plotted in
Figure 3), then the first terms dominate in Equations (9) and (11), and the ratio ofB field strength as
generated by S to that generated by I is multiplied by a factor of o/r > 1 on top of the strength ratio
between S and I . On the other hand, when r > o, all the terms in Equations (9) and (11) contribute,
so the additional factor is around 1 because all the terms introduce an Ω4 factor. In other words,
the current quadrupole is either more effective or equally effective at generating the vortex field as
compared to the mass quadrupole. This conclusion should remain true in a strong gravitational field,
asB can be seen as the primary field generated byS, while only a secondary field for I that is induced
by the time variation of E (see Section VI C and Section VI D 1 of Reference [15] for further discussions
and examples). Consequently, as the absolute magnitude ofS catches up to or even overtakes that of I
during the merger phase, we should not see its influence in vorticity decline in the fashion of Figure 3.
Therefore, the current quadrupole must somehow diminish during the merger phase. It would vanish
if the equal and opposite spins of the two individual black holes simply annihilate each other, but
this does not explain why spins annihilate faster than the two masses merge (i.e., why the current
quadrupole declines faster than the mass quadrupole). In other words, we need the current quadrupole
to reduce faster than the signature of the individual black holes disappears.

Such a scenario is possible if the individual spins experience a re-orientation into configurations
that produce near-vanishing S, even as the spins themselves are still non-vanishing. This can be
achieved if the spins move to become nearly aligned with each other, which according to Equation (4)
would result in a nearly vanishing S.
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Above, we have used the term “individual spins” in a generalized sense. Even before merger,
the spins of the individual black holes are really reflections of the spacetime dynamics outside of
these holes, as the characteristic modes for the Einstein equation are strictly outgoing at the apparent
horizons (which are inside the event horizons). The merger would not instantaneously remove the
near-zone dynamics that were underlying the individual spins, so one may regard the continuation of
such dynamics as a kind of remnant spin (the word “remnant” will be omitted frequently for brevity).
In the tendex and vortex language, one may say that these remnant spins are the vorticity and tendicity
of the spacetime that were associated with the spins before merger, but would not instantly dissipate
upon the formation of the common apparent horizon. Similarly, the tendicity and the vorticity of the
spacetime that were associated with the orbital motion of the individual black holes before merger
continue to evolve post-merger, and provide a remnant orbital motion. We note that the remnant spins
considered here belong to the defunct individual black holes, and are not the spin of the remnant
black hole.

Due to the lack of analytical descriptions for highly dynamic regimes, we will rely on the available
perturbative expressions to aid our qualitative arguments in the rest of this section. Although we are
likely pushing these expressions beyond their reasonable range of validity, we will only be interested
in the qualitative features of the spacetime they expose, and not their quantitative accuracy.

In order to achieve alignment, it is required that the spins be lifted out of the orbital plane, either
through spin–orbit coupling or spin–spin coupling, because the π-symmetry forbids the spins from
being aligned when they are confined to the orbital plane. The spin–orbit coupling is given by the
leading order PN expression [25–28]:

Ṡ1 =
1

R3

(
2 +

3
2

m2

m1

)
(LN × S1) , (15)

in the center-of-mass frame, where LN is the orbital angular momentum at the Newtonian order:

LN = µR× Ṙ, (16)

with µ being the reduced mass and R = x1 − x2, and also R being the magnitude of R. For the
post-merger context, we will instead take LN to be Jtot minus the remnant individual spins. We note
that the Ṡ1 in Equation (15) cannot point out of the orbital plane and will only generate spin precession
within it.

The spin–spin coupling, on the other hand, can create a torque pointing out of the orbital plane.
The leading order expression for spin–spin coupling is given by [25–28]:

Ṡ1 = −
1

R3
[S2 − 3(n · S2)n] × S1, (17)

in the center-of-mass frame, and n is defined as R/R. For the SK configuration, S2 × S1 = 0 when the
spins are in the orbital plane, as they must be anti-parallel by π-symmetry, but S2 is not required to be
transverse (especially when the spins are not locked to the orbital motion), so n · S2 , 0 and there is
a Ṡ in the direction orthogonal to the orbital plane. Normally, this direction is not constant over an
orbital cycle for a pair of spins not locked to the orbital motion, so the spin–spin coupling effect does
not accumulate significantly during early inspiral, but as the merger phase will not take up a whole
cycle, we need not worry about cancellations. On the other hand, the directions of Ṡ1 and Ṡ2 are the
same, so as desired, the spins for our SK configuration either both move upwards (more aligned with
Jtot) or both move downwards (more anti-aligned with Jtot), retaining the π-symmetry.

According to Equation (17), the spins do not need to move towards spin–spin alignment. In fact,
the π-symmetry enforces PS1 = −PS2, so unless PS1 = PS2 = 0, the spins would never be aligned.
The situation would change however if we include the radiation reaction. Because gravitational waves
drain dynamical energy, radiation reaction should push the spin orientations towards an energetically
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favorable equilibrium configuration, where the spin precession due to both spin–spin and spin–orbit
coupling ceases. From Equation (15), it is clear that the spin–orbit induced precession would shut
off only when S1 and S2 are orthogonal to the orbital plane, or in other words are collinear with Jtot.
Furthermore, Equation (17) shows that the spin–spin coupling generated spin precession also stops for
such configurations. In addition, when the spins are either both aligned or both anti-aligned with Jtot

(henceforth referred to as spin–Jtot alignment or anti-alignment), the current quadrupole will vanish.
For this postulate to work, a necessary condition is that the spin–Jtot alignment or anti-alignment

configuration should correspond to a local minimum in energy. To this end, we note that the potential
energy associated with the spin–spin interaction at leading order is given by References [25–28] as:

USS = −
1

R3
[S1 · S2 − 3 (S1 · n) (S2 · n)] , (18)

while the potential for the spin–orbit coupling is [25–28]:

USO =
1

R3 LN ·

((
2 +

3m1

2m2

)
S2 +

(
2 +

3m2

2m1

)
S1

)
. (19)

The absolute minimum of USS is achieved when S1 and S2 are anti-parallel and collinear with
n, as the second term in the square bracket of Equation (18) favors anti-parallel orientations and
dominates over the parallel-orientation favoring first term, due to its extra factor of 3. This is also an
equilibrium configuration for Equation (17), but does not lead to a small current quadrupole moment,
as shown by Equation (8).

For the spin–Jtot alignment or anti-alignment equilibrium configurations that we are interested in,
we have φ1 = φ2 = 0 or π, and θ1 = θ2 = π/2, with θ1 being the angle S1 spans with n and φ1 the
angle between Jtot and the projection of S1 into the plane orthogonal to n. The angles θ2 and φ2 are
defined similarly for S2. It is easy to verify that all first derivatives of USS against the angles vanish for
these configurations, so they are indeed critical/equilibrium points. However, the eigenvalues of the
Hessian are {0, 2, 3,−1}|S1||S2|/R3 and not all positive, so they are not (local) minima of the potential
energy. When we add in the potential USO, which achieves its absolute minimum at the spin–Jtot

anti-alignment configuration, the eigenvalues of the Hessian (of USO + USS) for this configuration
become:

1
4R3 {7LN, 7LN − 1, 7LN + 2, 7LN + 3} , (20)

where we have taken |S1| = |S2| = 1/2 and LN = LNẑ to simplify expressions. For our M ≈ 1
simulations, and using the Newtonian expression for LN, spin–Jtot anti-alignment configuration is
a local minimum as long as R > 1/49M. The spin–Jtot alignment configuration, on the other hand,
has eigenvalues:

1
4R3 {−7LN,−7LN − 1,−7LN + 2,−7LN + 3} , (21)

and is therefore not a local minimum unless LN is sufficiently negative. When we add in the
next-to-leading-order PN expressions for USO [29–33], we acquire extra multiplicative factors onto LN

that can reverse the sign of the effective LN at small r, and make spin–Jtot alignment configuration a
local minimum (effective LN in USO is reversed, but Jtot is not, so anti-alignment with the effective LN

now results in an alignment with Jtot). The USO that includes both leading and next-to-leading order
PN contributions can be deduced from the spin precession equation (Equations 61-64 in Reference [31];
also note that post-Newtonian derivations with spin all rely on some spin supplementary conditions,
which is an added ambiguity that we inherit):

˙̄S1 = H1 × S̄1, (22)
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in a general frame, where we can regard H1R3/(2 + 3m2/2m1) as an effective LN for S̄1, and S1’s
contribution to USO is H1 · S̄1. The quantities appearing in Equation (22) are:

S̄1 =

1−
v̄2

1

2
−

v̄4
1

8

 S1 +
1
2

v̄1(v̄1 · S1)
(
1 +

1
4

v̄2
1

)
(23)

v̄1 =
(1 + m2/R) v1 − 2(m2/R)v2

1−m2/R
, (24)

and more importantly:

H1 =
m2

R3

[(3
2
+

1
8

v2
1 + v2

2 − v1 · v2 −
9
4
(v2 · n)2 +

1
2R

(m1 −m2)
)

L1

+
(
−2− 2v2

2 + 2v1 · v2 + 3(v2 · n)2 +
1

2R
(2m1 + 3m2)

)
L2 −

1
2
(v2 ·R)v1 × v2

]
, (25)

with L1 = R× v1 and L2 = R× v2. Note L2 is in the opposite direction to particle 2’s orbital angular
momentum, so the (1/2R)(2m1 + 3m2) term in Equation (25) could reverse the direction of the effective
LN when R is small.

Strictly speaking, the difference between S̄1 and S1 can become substantial near merger, and since
it is the latter that we extract from simulations, Equations (22) and (25) can not provide useful simple
intuitions regarding the spin dynamics. Indeed, since radiation reaction becomes significant in that
regime, the quantitative correctness of these conservative expressions is not guaranteed in the first
place (precise analytical expressions are not available for the merger phase, which is one of the reasons
why numerical simulations are indispensable). The reason why we evoke these next-to-leading order
expressions at all is merely because they demonstrate the qualitative behaviour that the effective LN

can have a sign reversal, making alignment a viable local energy minimum. Throwing away the
crutch of perturbative expressions, we really only need the qualitative statements, that the spin–Jtot

near-alignment or near-anti-alignment configurations are energetically favorable for the spin–orbit
coupling, and that mechanisms like the spin–spin coupling exist that can lift the spins out of the orbital
plane (see e.g., [34,35] and Figure 5 of [36] for other studies of this effect in the superkick context), to
remain true in the strong field regime. The perturbative expressions have hinted that it may be possible
to meet these requirements, but strong field expressions are needed for quantitative assessments.

Another condition for our postulate to work is that the remnant spin dynamics should be efficient
radiators during the merger phase, such that the spins experience a significant reaction. In contrast,
when modeling early inspiral, the radiation reaction felt by the spins is usually neglected [28,37]
(see in particular Equation 17 of [37], showing that the radiation reaction torque produces a higher
order effect than the conservative spin precession effects). If we plot the distribution of Ψ4 near the
common apparent horizon, we should see a close association between the high intensity regions of
Ψ4 and entities that can be interpreted as representing the remnant spins. To verify this, we adopt
the quasi-Kinnersley tetrad described in References [38–43]. Our particular version of the tetrad
follows Reference [38] and suffers from some numerical noise because of the third derivative of the
metric required for its construction. However, because we are now examining the region very close
to the remnant black hole, the mixing of Ψ2 into Ψ4 under a simple simulation–coordinate-based
tetrad will overwhelm the interesting features. The quasi-Kinnersley tetrad avoids this problem by
correctly identifying the gravitational wave propagation direction [38]. Specifically, the tetrad bases
correspond directly to the super-Poynting vector, so that the Ψ4 extracted under this tetrad retains a
simple relationship with the energy flux even in the near zone. In Figure 4, we plot a large absolute
value, and thus close to the radiating source, contour of<(Ψ4). It is clear that this contour attaches
to certain blue horizon vorticity patches (contours of even higher |<(Ψ4)| are seen to be confined to
regions closer to these patches), which we will now show (in Section 4) to be direct manifestations of
the remnant spins.
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Figure 4. A contour of<(Ψ4) for the SK simulation immediately after the merger, with Ψ4 extracted
on the quasi-Kinnersley tetrad. Also shown is the common apparent horizon colored by the horizon
vorticity BNN. The<(Ψ4) contour connects to certain blue horizon vorticity patches. These are the
negative BNN counterparts to the C′ patch of Figure 5d below, which we will show in Section 4 to be
a direct manifestation of the remnant spins. Note that there is some visualization complication near
the polar directions, where we don’t have any collocation points, so the contour shown there is an
ill-constructed interpolation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. (a): The inspiral phase of the SK simulation, where the dipolarBNN patterns on each individual
horizon can be used to identify the spin direction. The red color corresponds to +ve BNN, and the spin
of each black hole points from the blue patch towards the red patch. (b): The post-merger BNN for
the AA simulation. In addition to the dipolar patch F due to the spin of the remnant black hole, the
individual remnant spin patches D and E are also clearly visible, which shows that the spins remain in the
anti-aligned orientation as expected. These spin patches retain this orientation throughout the merger
phase. (c): Immediately before the merger in the SK simulation. Note that there are two patches on the
inside identified as A and B, which do not have counterparts in panel (a) for the inspiral phase. (d): Same
as (c) but includes the common apparent horizon as a semi-transparent surface. The patch C′ on the
common horizon corresponds to the patch C on the individual horizons. (e,f): Similar to (c,d), but for the
SK- simulation instead of the SK simulation. (g,h): Similar to (c), but for the SK⊥ simulation. (g) is the
front view showing the +ve BNN spin patch, while (h) is the side view showing the −ve BNN spin patch.
The white curves are the contours of BNN, and we have drawn a thick black line connecting the centers of
the two spin patches. The orientation of this line is used as an approximate measure of the spin direction.
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4. Visualizing the Remnant Spins

One possible way to visualize the (remnant) spins directly is through the horizon vorticity
BNN. This quantity is closely related to the spin measurement expressed as an integral over the
horizon [44–46], namely [23]:

S =
1

8π

∮
XζdA, (26)

where dA is the area element on the horizon, and for the event horizons, X is −2BNN plus some
spin coefficient corrections that vanish in a stationary limit (see References [7,23]). We will use the
apparent horizons in this paper, which coincide with the event horizons in the stationary limit [47],
but are not teleological and therefore more widely utilized in numerical simulations. The quantity ζ
in Equation (26) is determined by an eigenvalue problem on the horizon, and is essentially an l = 1
spherical harmonic [48]. In other words, the spin is given by the dipole part of the horizon vorticity
BNN. For example, during early inspiral, the BNN pattern on each individual horizon is dominated
by the spin of that black hole, forming a dipolar shape like those seen for the Kerr black holes in
Reference [23]. This is shown in Figure 5a, and can be used to identify the spin directions.

Close to and past merger, aside from the overall l = 1 harmonic-weighted integral in Equation (26),
there are many interesting finer details that can be seen from the BNN plots for our various simulations
shown in Figure 5. The panels (c)–(d), (e)–(f) and (g)–(h) of this figure depict the horizon vorticity
patterns for the SK, SK- and SK⊥ simulations, respectively, while panel (b) shows the pattern for the
AA simulation. The panels (b), (d) and (f) of Figure 5 show the common apparent horizon, while the
rest of the panels are for the two individual horizons. At the end of the inspiral stage, the horizon
vorticity picks up visible new patches (e.g., A and B in Figure 5c for the SK simulation) that are absent
during the inspiral phase, while the spin contributions are also present e.g., patch C and a blue patch at
the back that is blocked from view in Figure 5c).

Post-merger, the horizon vorticity for the SK simulation is shown in Figure 5d, where in addition
to a dipolar contribution from the spin of the remnant black hole (similar to the F patch in Figure 5b for
the AA simulation), there are also visible patches that can be interpreted as the continuation of the
pre-merger spin patches. For example, the region C′ in Figure 5d corresponds to patch C in Figure 5c,
while the patches D and E in Figure 5b correspond to the continuation of the pre-merger individual
spins in the AA simulation that were anti-aligned with Jtot. Such finer details in BNN on the common
apparent horizon thus provide us with a more concrete manifestation of the abstract remnant spins
discussed earlier.

We can now use the spin patches to track the pre- and post-merger (remnant) spin dynamics.
First of all, we note that the SK- simulation is the same as the SK simulation aside from a reversal of
the individual spins. Since Equation (17) is invariant under S1 → −S1 and S2 → −S2, we should see
the spins lifting up into the same side of the orbital plane for these two simulations1. A comparison
between Figure 5c–f confirms this expectation, and provides us with some confidence that the spin–spin
coupling is indeed responsible for generating the Sz

1 and Sz
2 components at merger.

Using the numerical values for the spins (measured with Equation (26) on each individual apparent
horizon) and the numerical trajectories of the black holes in the simulation coordinates, we can further
make a prediction for the z components of the spins by integrating Equations (15) and (17). Namely,
we calculate the Ṡz

1 values at a dense collection of times for one of the spins according to lEquations (15)
and (17), using the numerically measured S1, S2 and n, before adding these Ṡz

1 increments up into a
predicted history for Sz

1. The results are shown in Figure 6. We see a steep rise of Sz
1 for the SK, SK-

and SK⊥ simulations towards merger, matching what is seen in the BNN spin patch. In particular, the

1 Provided that the black holes merge at similar orbital configurations for the two simulations, which appears to be the case.
For example, the merger time is the same as shown in the time labels of Figure 5c–f
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prediction is for a dimensionless spin with Sz
1 ≈ 0.2 just before the merger for all three simulations,

which translates into an angle of sin−1(0.2/0.5) ≈ 0.4 that S1 spans with the orbital plane. Taking
the SK⊥ simulation for example, the line connecting the centers of the +ve BNN and −ve BNN spin
patches for this simulation (see Figure 5g,h) spans an angle of 0.368 with the orbital plane, which is
fairly close to the prediction. The closeness between these two numbers is somewhat surprising, in
that the simulation gauge is not the same as the harmonic gauge used for the PN calculations, and
that we are operating in a regime close to merger. To further test the quality of the PN prediction, we
produce the predicted histories for Sx

1 and Sy
1 using the same prescription, and compare them to their

numerically computed counterparts in Figure 6, which also show general agreement.
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(c) (d)

Figure 6. The analytically predicted (thick lines) vs. the numerically computed (thin lines) S1 for the
SK (a), SK- (b) and SK⊥ (c) simulations. The red, blue and black lines correspond to Sx

1, Sy
1 and Sz

1,
respectively. We focus on the last 50M before merger. Panel (d) shows the analytical predictions for Ṡz

1
of the SK/SK- (both correspond to the black curve) and the SK⊥ (red curve) simulations.

The situation is different when we compare the predicted and the numerically computed Sz
1, as

the latter lacks the steep rise just before merger that is also seen in spin patches. To understand this,
recall that the numerical spin values are calculated as integral Equation (26). Such an integration over
the entire horizon does not distinguish the spin patches like C and G in Figure 5c,e from the mass
quadrupole induced patches A and B as in Figure 5c. As the mass quadrupole patches on each apparent
horizon resembles a spin pointing in the −ẑ direction at merger time (see Figure 5c,e,g,h), the numerical
spin measurement Sz

1 according to Equation (26) could be negative even when the post-Newtonian
equivalent spin is positive. On the other hand, the measurements on Sx

1 and Sy
1 are less affected by

this contamination. Furthermore, it is required that the first derivative of the scalar ζ in Equation (26)
should be a rotation generating approximate Killing vector [49–52], which may not be applicable when
we approach the highly non-stationary merger phase.

One interesting feature we have seen with our simulations is that at the merger, the spins seem
to have been preferentially lifted out of the orbital plane towards the spin–Jtot alignment side (see
Figure 6d). This trend also continues post-merger, as shown in Figure 7 for the SK simulation (similar
behavior is seen for SK- and SK⊥), until a spin–Jtot near-alignment is achieved, in agreement with our
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proposal in Section 3. The SK⊥ simulation is particularly interesting in that its initial spin orientations
are chosen such that if the black holes merge at exactly the same orbital configuration as the SK and
SK- cases, we would have Ṡz

1 < 0 at merger according to Equation (17). Instead, the black holes merge
with Ṡz

1 > 0 (see Figures 5g,h and 6c,d) at an earlier time. Therefore, based on our small sample of
simulations, there appears to be a preference towards spin–Jtot alignment at merger, which is not
reversed post-merger. The exceptional case is the AA simulation, where the spins remain anti-aligned
with Jtot throughout the inspiral and merger phases, perhaps because the spins are stuck in a (possibly
unstable) equilibrium configuration.

(a) (b)

Figure 7. The post-merger (during the merger phase) time evolution of the horizon vorticity BNN for
the SK simulation, with (a,b) showing two different times. The white curves are the contours of BNN .
We have also drawn black lines connecting the centers of the spin patches for both remnant spins. Over
time, the spin patches become more aligned with the Jtot direction.

One possible explanation for the preference at merger time is provided by the spins’ influence on
the orbital motion, through the extra acceleration [25–28,53–55]:

a = −
3
µR4

[n(S1 · S2) + S1(n · S2) + S2(n · S1) − 5n(n · S1)(n · S2)] . (27)

In Equation (27), we have only shown the spin–spin contribution, as we are interested in the
beginning of the final ascent of Sz

1 and Sz
2, and the spin–orbit contribution is small for our π-symmetric

simulations when Sz
1 and Sz

2 are still small (i.e., S1 + S2 ≈ 0). It is plausible that the BBH coalescence
progresses quickly towards merger when an ≡ a · n < 0 (radially pulling the black holes closer) and
at ≡ a · (ẑ × n) < 0 (slowing down the transverse orbital motion of the black holes), such that the
instantaneous impact parameter is altered in the direction conducive to merger. We note that only the
second and third terms in the square bracket of Equation (27) contribute to at, and these two terms
have the same value in our S1 ≈ −S2 context. Therefore we have:

at = −
6
µR4

[(ẑ× n) · S1] (n · S2)

= −
6
µR4

ẑ · [(n · S2)n× S1] . (28)

Comparing Equation (28) with Equation (17), we arrive at:

at = −
2
µR

Ṡz
1, (29)
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so that regions of at < 0 always correspond to Ṡz
1 > 0, and there would subsequently be a preference for

spin–Jtot alignment at merger.

5. Discussion

We note that an observation in this paper may help achieve a consistency between the QNM
frequencies. First recall that an electric/magnetic parity quasinormal mode is defined to be one whose
corresponding metric perturbation has the parity matching the sign of (−1)l/(−1)l+1. Because the
B/E field has the opposite/same parity to the underlying metric perturbations [22], the mass/current
quadrupole would then excite the electric/magnetic parity l = 2 QNMs (see also Reference [56], as well
as Reference [22] for discussions on the similarities between the mass/current quadrupole generated E
andB fields and those associated with the electric/magnetic parity QNMs). The parity properties of
the various quantities are summarized in Table 2.

Table 2. The parity of various quantities generated by the mass and current quadrupole moments.

Quad. Moment E B Metric Pert. Excited l = 2 QNMs

Mass + - + Electric
Current - + - Magnetic

The electric and magnetic parity QNMs are degenerate in that they share the same complex
frequency (see e.g., Section IC3 of Reference [22] and Section VB1 of Reference [56]). This has an
interesting consequence, as was noted by Reference [56] when motivating spin-locking in the superkick
configurations. Namely, when QNMs of both parities are present, the current quadrupole should
evolve at the same frequency as the mass quadrupole at the end of merger (just before the onset of the
QNM ringdown phase). For the superkick configurations, because the mass quadrupole evolves at
twice the orbital frequency, while the current quadrupole’s frequency is essentially a sum of the orbital
and the spin precession frequencies, this further implies that the spin precession frequency must lock
onto the orbital frequency [56].

A robust mechanism must be present for this locking to occur. A calculation using the leading
order PN spin–orbit coupling expression (15) for a π-symmetric superkick configuration yields [8,56]:

β̇(t) =
7M

8R(t)
Ω(t), (30)

where β̇ is the spin precession frequency. Therefore, as the black holes move closer to each other, β̇ can
approach Ω and equalize with it [8]. However, this equality is broken again when R(t) reduces further.
So instead of locking, we have only a momentary coincidence. Another mechanism for locking is
proposed by Reference [56], which considers geodetic precession in black hole perturbation theory.
This alternative provides a stronger precession:

β̇(t) =
3M
R(t)

Ω(t), (31)

but is otherwise similar to the leading order PN spin–orbit coupling result. Without invoking further
dynamics, one would then be forced to make the inference that the BBH QNM ringdown begins, and
that the spacetime dynamics that can be construed as two individual black holes approaching each
other, ceases, precisely at the R(t) that gives β̇ = Ω. Note that Equations (30) and (31) do not depend
on the magnitude of the spins, so infinitesimal spins would appear to still play a vital role in the
transition into the QNM ringdown phase. So additional dynamics are likely involved. For example,
if the magnetic parity QNMs are completely absent, so that their frequencies become irrelevant, then
the consistency would be achieved by default. Perhaps more interestingly, as discussed in relation to
the next-to-leading-order PN corrections to USO in Section 3, the energetically favorable orientation of
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the spins have a frame-dependent offset from the directions of ±Jtot. As this offset can evolve at the
frequency of Ω when the precession of S1 is locked onto the orbital motion, we could in principle have
a self-consistent sustained locking (as opposed to a momentary coincidence) scenario if the spins are
kept in these orientations by, for example, the same dynamics that drove them there in the first place.
In other words, the mechanism responsible for the decline of the current quadrupole moment may also
be responsible for locking its frequency to the desired value. In this case, the magnetic parity QNMs
will not need to vanish in the ringdown waveform. However, we are operating in a regime where
the PN expressions are not expected to remain fully valid. To see whether similar effects are actually
present in a strong field and fast motion setting, we plan to carry out further studies at a later date.

Finally, we note that in this paper, we have intentionally neglected to discuss gravitational
waveforms, even though the wave modes are obviously quite directly connected to the multipole
moments discussed here (see e.g., Reference [57] for an example discussing the current quadrupole
specifically). The reason is that while the multipolar evolutions investigated in the paper are
concentrated into the merger phase, there is a regridding (bringing in with it some associated
gauge dynamics) happening at the merger within the simulations carried out in this study, so the
minute features seen in the waveform could possibly have been numerical in nature instead, or
contain a nontrivial distortion of the real physics. More specifically, the waveform, as a spherical
harmonic decomposition mode of the Ψ4 component of the Weyl curvature tensor, is sensitively
dependent on the coordinate choice both locally and globally. Locally, the dependence comes in via the
fixing of the coordinate tetrad (physically corresponding to fixing the orientation, velocity, etc. of a
gravitational-wave detector; a local coordinate transformation will change the tetrad and alter what
content of the Weyl tensor is called Ψ4). The regridding gauge wave will shake the “virtual detector”
in the numerical simulation in unphysical ways, resulting in it registering spurious oscillations due to
this shaking and not the actual spacetime rippling. Furthermore, the waveforms are presented as only
one or very few modes in the spherical harmonic decomposition (this projection already makes the
effects of the spin dynamics difficult to decipher since any projection necessarily mix many different
influences), but the definition of the harmonics depends on the global coordinates. The author had
not been able to properly remove the effects of the gauge dynamics in the highly nonlinear merger
regime, and thus does not feel confident making any firm assertions/connections. Instead, our study
here had intentionally avoided doing any projections (the price we pay is that the time-varying three
dimensional data then cannot be easily condensed into time series of numbers and our discussions
are qualitative), and used the eigenvalues of spatial curvature tensors (tendexes and vortexes), which
although are still dependent on how the spatial slicing is done, are invariant under spatial triad changes.
Nevertheless, given the explosive growth of gravitational wave astronomy, including actual data, it is
worth investigating whether the qualitative conclusions made in this paper can be extracted out of
enhanced observational data, e.g., by stacking the data of multiple events.
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