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Abstract: Recently, we proposed the spin-selective coherent electron transfer in a silicon-quantum-dot
array. It requires temporal tuning of two pulses of an oscillating magnetic field and gate voltage
control. This paper proposes a simpler method that requires a single pulse of oscillating magnetic
field and gate voltage control. We examined the robustness of the control against the error in the
pulse amplitude and the effect of the excited states relaxation to the control efficiency. In addition,
we propose a novel control method based on a shortcuts-to-adiabaticity protocol, which utilizes two
pulses but requires temporal control of the pulse amplitude for only one of them. We compared their
efficiencies under the effect of realistic pulse amplitude errors and relaxation.
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1. Introduction

Spins in silicon-based quantum dots are a promising candidate for fault-tolerant quantum
information processing (QIP) [1]. Readout and single-qubit gate control fidelities above the surface
code threshold [2] have been experimentally demonstrated by taking advantage of exceptionally
long longitudinal relaxation times [3–5] and transverse relaxation times [6–9]. These are two figures
of merit that are highly desirable for a scalable quantum computer. High fidelity spin readout
has been demonstrated in a CMOS device by its robustness with respect to temperature [10].
Recently, high-fidelity single qubit operations above 1 K have also been demonstrated, potentially
reducing large-scale quantum processor design constraints [11]. It is known that all single-qubit
gates, and one of two-qubit gates that entangles two qubits, such as the CNOT gate, form the
universal set of gates. Entenglement can be introduced only by a non-local operation, such as the
one introduced in [12]. Several types of quantum gate operations, including two-qubit quantum
gates, have been demonstrated [13–15] by employing the exchange interaction between single spins
in isotopically enriched silicon [16]. Furthermore, single electron pumps [17–23] and shuttling of
single electron [24,25] in quantum dot array have been also demonstrated at the level of metrological
accuracy. The coherent spin displacement of individual electrons has been demonstrated in a GaAs
system quantum dot array [26].

Inspired by a theoretical analysis of two-qubit gate implementation employing state-dependent
potentials in cold atom systems in optical fiber array [27–29], we recently proposed a spin-selective
electron transfer method described in [12], which realizes non-local qubit operations in a quantum
dot array. This proposal also offers quantum non-demolition measurement of electron spin [30–32]
provided that the electron position is measured without introducing the dissipation to the electron.
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Quantum non-demolition measurements can be used for improvement of qubit operations. In our
previous method, temporal tuning of two pulses of an oscillating magnetic field was required.

In this paper, we report a simplified and improved method of spin-selective coherent electron
transfer in a silicon-quantum-dot array driven by a single pulse of oscillating magnetic field and
gate voltage control. We examine the robustness of the control against the pulse amplitude error
and the effect of the relaxation to control efficiency. We also propose a method based on the
shortcut-to-adiabaticity (STA) protocol, which utilizes two pulses but requires temporal control of one
of the pulses only.

We present the framework of the spin-selective electron transfer with a single π-pulse in Section 2,
and the adiabatic and the shortcuts-to-adiabaticity controls in Section 3. In Section 4, we compare the
robustness of the controls against the pulse amplitude error, the relaxation of excited states and the
dephasing of a spin.

2. Spin-Selective Electron Transfer with a Single π-Pulse

Figure 1a schematically shows the system under consideration, where two-dimensional electron
gas is in the yz-plane. A stretched quantum dot (Dot 0) is located along the z-axis. We assume that
the confinement of the electron in the y direction is at least twice tighter than the confinement in the
z direction. Thus, the one-dimensional model can approximate a few of the lowest-energy eigenstates
of the dot that we utilize. There is a time-independent uniform magnetic field Bz = (0, 0, Bz) along the
z-axis. A conducting lead (blue line) carries the AC current, Ip, which produces the pump magnetic field
Bp = (Bp, 0, 0) along the x-axis perpendicular to the two-dimensional electron gas. The conducting
lead is separated from the center of Dot 0 by distance r0, and is tilted with respect to the z-axis
by angle θ0 to introduce the spatial inhomogeneity of Bp in Dot 0 [12], which is essential for our
proposal, as shown in Equation (4). We assume that the initial condition of the electron trapped in
Dot 0 is a superposition of the spin-up ground state and the spin-down ground state. The squared
amplitudes of the wave functions of the three low-lying eigenstates for either spin-up or spin-down
are shown in Figure 1b.

Our spin-selective electron transfer protocol is illustrated in Figure 1c. The protocol is composed
of two steps. In Step I the lowest energy spin-down state is transferred to the first spin-up excited
state, while the lowest energy spin-up state is left unchanged. In Step II the center potential barrier
is adiabatically raised to split Dot 0 into two potential wells: Dot 1 and Dot 2. The depths of the
potential wells are tuned so that the bottom of the potential of Dot 2 becomes above that of Dot 1.
As the potential is modified, the wave function of the first spin-up excited state is carried into Dot 2
because the wave function of the instantaneous first excited eigenstate with spin-up is mostly located
in Dot 2. The wave function of the lowest energy spin-up state is loaded into Dot 1. Two states are
individually accessible after the wave function is separated into two Dots. Thus, it can be used for
non-local multi-qubit operation when this scheme is applied to a multi-electron system [12].

Previously, we used another separate dot (Dot 4 in [12]) for Step I to avoid the possible fluctuation
of the separation of the energy levels, which may be caused by the fluctuation of the gate voltages
of the dots [12]. However, in this paper we do not employ such a separate dot in order to make the
scheme simpler by assuming that the fluctuation of the gate voltages is negligible.

2.1. Step I

The electron is initially confined in Dot 0. We use the energy eigenstates of Dot 0 with Bp = 0 as
the basis vectors of the system to explain the schemes of Step I. Figure 1d depicts the energy diagram of
Dot 0. Here, |i, ↓ (↑)〉 for i = 1, 2 and 3 denotes the first three low-lying energy levels with spin-down
(up) along the z direction. The separations of the adjacent energy eigenvalues are nonuniform due
to the anharmonicity of the potential of the dot. The stationary magnetic field Bz causes the Zeeman
splitting with energy difference gµBBz/h̄ between the spin-up and down states, where g is the electron
g-factor and µB is the Bohr magneton.
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Figure 1. (a) Proposed system. The blue line represents the conducting lead carrying the AC control
current Ip producing the magnetic field (pump field) Bp = (Bp, 0, 0) perpendicular to the surface.
The conducting lead is tilted with respect to the z-axis by angle θ0. Here, r0 is the distance of the lead
from the center of Dot 0. The generated AC magnetic field couples the ground state and the first excited
state in the dot. (b) Colors show the square of the amplitude of the wave functions of the three lowest
eigenstates with either spin-up or spin-down in Dot 0. The black curve is the schematic of the potential
of Dot 0. (c) Schematics of the spin-selective electron transfer. The black curves depict the potential
profile of quantum dot(s) at each step. The blue color represents the squared amplitude of the wave
function of an electron whose initial spin was down. (d) Energy diagram of the system in Step I. Here,
|i, ↑ (↓)〉 is the ith instantaneous eigenstate of Dot 0 with spin-up (down). The pump field Bp couples
|1, ↓〉 and |2, ↑〉.

We aim at a spin-selective state transfer in which only the lowest energy spin-down electron
is transferred from |1, ↓〉 to |2, ↑〉, while the lowest energy spin-up electron remains unaffected.
The frequency ωp of the pump field Bp is adjusted to ωp = (E2,↑ − E1,↓)/h̄, where Ei,↑(↓) is the
energy eigenvalue of |i, ↑ (↓)〉, so that Bp couples |1, ↓〉 and |2, ↑〉. Note that |1, ↑〉 is not coupled to
any states by Bp. A typical value of ωp/2π was calculated as 47 GHz in [12].

We consider the dynamics of a state which is in |1, ↓〉 at the initial time. The effective Hamiltonian
of the system is written in terms of the subset {|1, ↓〉, |2, ↑〉} of the states as a basis. The pulsed pump
field Bp employed in Step I is represented as

Bp(t, r) = B(e)
p (t)η(r) cos(ωpt) (1)

with the envelope function B(e)
p (t) of the pump field at the center of Dot 0. The function η(r) is defined

as the ratio of the intensity of the field at r to B(e)
p . In other words, η(r) characterizes the spatial

dependence of the pump magnetic field. The Hamiltonian of the two-level system can be written,
by using the rotating frame and the rotating wave approximation (RWA), as

HRWA(t) =
h̄
2

(
0 Ωp(t)

Ωp(t) 0

)
, (2)
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with the Rabi frequency given by

Ωp(t) =
B(e)

p (t)gµBµp

2h̄
, (3)

and the overlapping factor defined by

µp =
∫

drφ1(r)η(r)φ2(r), (4)

where φi(r) = 〈r, ↓ (↑)|i, ↓ (↑)〉 (see Appendix A of [12] for the derivation of HRWA). If the
pump magnetic field Bp were spatially uniform, µp would vanish because of the orthogonality of
the energy eigenvectors with different eigenvalues and no coupling between the two eigenstates
would be introduced. Thus, the nonuniformity η(r) of the magnetic field is essential to couple the
energy eigenstates.

We take the envelope function B(e)
p as

B(e)
p (t) =

{
B0

p for 0 ≤ t ≤ TstepI,

0 for t < 0 and t > TstepI,
(5)

where B0
p is the rectangular pulse height and TstepI is the pulse width, which defines the duration of

Step I. When the pulse area is π, that is,

B0
p =

2πh̄
gµBµpTstepI

, (6)

the state is transferred from |1, ↓〉 to |2, ↑〉 under the action of the pump pulse. Typical dynamics of the
system are shown for µp = −0.05 in Figure 2.
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Figure 2. Time dependence of the populations for µp = −0.05, B0
p = 0.1 mT and TstepI = 7 µs.

2.2. Step II

As the middle potential barrier, which divides Dot 0 into Dot 1 and Dot 2, is raised, and the
potential depth of Dot 2 is tuned, the wave functions of the ground and the first excited states are
transferred into Dot 1 and Dot 2, respectively. We use the one-dimensional model with the rectangular
potentials illustrated in Figure 3a to simulate Step II. The potentials for dots are approximated by the
rectangular ones for simplicity. Details of the potential profile do not affect the result because this step
employs adiabatic dynamics. Vbi for i = 1, 2, 3 and Vdj for j = 1, 2 denote the barrier heights and the
potential depths of the dots, respectively. The widths of the dots Ld and the widths of the barriers Lb
are all taken as 30 nm. At the initial time (t = TstepI) of Step II, we take Vb2 = Vdj(=1,2) = 0 < Vb1 = Vb3
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so that the two dots are combined to form a single larger dot (Dot 0). The middle barrier height Vb2

and the dot potential depth Vd2 are adiabatically ramped from 0 to V(0)
b2 and V(0)

d2 , respectively, as

Vb2,d2 = V(0)
b2,d2[R(t− TstepI)], TstepI ≤ t ≤ TstepI + TstepII (7)

with R(t) = [t − sin(ω2t)/ω2]/TstepII and ω2 = 2π/TstepII, while the other parameters are kept

constant; Vb1,b3 = V(0)
b1,b3 and Vd1 = 0, where TstepII is the time required for Step II. R interpolates

between 0 and 1 smoothly with R(0) = 0, R(TstepII) = 1 and R′(0) = R′(TstepII) = 0, where prime
denotes the time derivative. Figure 3b depicts the time-evolution of the squared amplitude of the wave
function whose initial state was |1, ↑〉, the spin-up ground state in Dot 0 with TstepII = 0.26 ns. The wave
function is transferred to Dot 1 and is mostly localized within Dot 1 at t = TstepI + TstepII. Figure 3c
depicts the time-evolution of the squared amplitude of the wave function with the initial state |2, ↑〉.
The wave function is transferred to Dot 2 and is mostly localized within Dot 2 at t = TstepI + TstepII.
The fidelity of Step II, defined by the overlap between the state at t = TstepI + TstepII and the target
energy eigenstate, is more than 0.9999 for TstepII > 0.26 ns. This shows that undesirable non-adiabatic
transitions are safely negligible.
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Figure 3. (a) Schematics of Dot 1 and Dot 2 in a one-dimensional model. Vbi and Vdj are the heights of
the potential barriers and the depths of the potential wells, respectively. In this panel the difference in
Vdj is exaggerated for purpose of illustration. The dashed line shows the potential profile at t = TstepI.
The time-evolution of the squared amplitude of the wave functions with initial states |1, ↑〉 (b) and

|2, ↑〉 (c). The parameter set used was Ld = Lb = 30 nm, V(0)
d1 = 0, V(0)

d2 = 179 µeV and V(0)
bi = 3.6 meV.
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3. Adiabatic and Shortcuts-To-Adiabaticity Controls

In this paper, we propose new improved protocols for Step I, which involves three states; namely,
|1, ↓〉, |2, ↑〉 and |3, ↓〉 of Dot 0. The pump field Bp couples |1, ↓〉 and |2, ↑〉 while the Stokes field BS
couples |2, ↑〉 and |3, ↓〉. In contrast with the previous study [12], the envelope function of the Stokes
field is kept constant in this work. Thus, the time-dependent tuning is required only for the pump field.

The schematic of our protocol is illustrated in Figure 4a. In Step I the lowest-energy spin-down
state is transferred to the spin-down second excited state, while the lowest-energy spin-up state is left
unaffected. Figure 4b shows the energy diagram relevant to Step I. In Step II the potential barriers
are adiabatically raised to split Dot 0 to three potential wells: Dots 1, 2 and 3. The depths of the
potential wells are tuned so that Dot 1 and Dot 3 have the lowest and the highest potential minima,
respectively. The wave function of the second spin-down excited state is carried into Dot 3 because
the wave function of the instantaneous second excited eigenstate with spin-down is located in Dot 3.
On the other hand, the wave function of the lowest energy spin-up state is loaded to Dot 1. In the
following, we mainly discuss Step I. See [12] for the numerical simulation for Step II.

pump

I II

(a)

(b)

Stokes

Dot 0 Dot 0 Dot 1 Dot 2 Dot 3

Figure 4. (a) Schematic description of the spin-selective single electron transfer. The black curves show
the potential profiles of the quantum dot(s). The blue color represents the squared amplitude of the
wave function of an electron whose initial spin was down. (b) Energy diagram of the system in Step
I. The AC magnetic field Bp (pump field) couples |1, ↓〉 and |2, ↑〉, while BS (Stokes field) couples
|2, ↑〉 and |3, ↓〉.

We consider the dynamics of the state which is initially |1, ↓〉. A subset of states,
{|1, ↓〉, |2, ↑〉, |3, ↓〉}, is used as the basis. We employ the rotating frame and the RWA to rewrite
the Hamiltonian of the three-level system in the form

HRWA(t) =
h̄
2

 0 Ωp(t) 0
Ωp(t) 0 ΩS

0 ΩS 0

 , (8)

with the Rabi frequencies Ωp in Equation (3) and ΩS given by

ΩS =
B(e)

S gµBµS

2h̄
, (9)

and the overlapping factors defined by

µS =
∫

drφ2(r)η(r)φ3(r). (10)

We use µS = −0.078 in this study. (See Appendix A of [12] for the derivation of HRWA).
We assume that Ωp and ΩS in Equation (8) can be controlled individually using two tone pulses.
Typical frequencies of the pump and the Stokes fields are 47 GHz and 32 GHz, respectively [12].
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3.1. Spin-Selective STIRAP with Constant B(e)
S

We examine a protocol with a linearly increased pump field having recourse to the adiabatic
dynamics of the system. The protocol is called stimulated Raman adiabatic passage (STIRAP) [33–35].
STIRAP has been widely studied for adiabatic transport of electrons [36,37], single atoms [38–43]
and BECs [44–47], and population transfer of molecules [48–55]. It has already been demonstrated
in various areas, such as control of a superconducting qubit [56], chemical reaction dynamics [57],
laser-induced cooling of atomic gases [58], light beams propagating in three evanescently-coupled
optical waveguides [59–62] and sound propagation in sonic crystals [63]. This protocol can be applied
to transfer qubits coherently over long distance in spin-based quantum computing architecture [64].

The envelope functions of the pump and the Stokes fields for t ≤ TstepI are given by

B(e)
p (t) =

{
0 for t ≤ 0,

B0
pt/TstepI for 0 ≤ t ≤ TstepI,

B(e)
S (t) = B0

S. (11)

A time-dependent, field-dressed eigenstate of the system is represented as

|φ0(t)〉 = cos Θ(t)|1, ↓〉 − sin Θ(t)|3, ↓〉, (12)

where Θ(t) is given by

tan Θ(t) =
Ωp(t)

ΩS
. (13)

We assume that the initial state is |1, ↓〉 which is equivalent to |φ0(0)〉 because Ωp(0) = 0 at
the initial time. The quantum adiabatic theorem states that if Ωp,S are changed slowly enough and
the initial state is an eigenstate |φ0〉, the state remains in the same eigenstate during the control.
Therefore, when Ωp increases sufficiently slowly, the population is gradually transferred from |1, ↓〉 to

|3, ↓〉 [34,35]. We take B0
p � B0

S so that |φ0〉 ' |3, ↓〉 at the final time. For t > TstepI, B(e)
S and B(e)

p are to
be gradually decreased to zero. The population of each state (|i, σ〉) is approximately unchanged if the
duration of this process is long enough and B0

p � B0
S because the state remains in |φ0(TstepI)〉.

Figure 5 shows the time dependence of the envelope functions B(e)
p and B(e)

S (Figure 5a,b) and
the corresponding time dependence of the population of each state (Figure 5c,d). We use B0

p = 0.1 mT

and B0
S = 0.0064 mT so that the maximum value of B(e)

p is the same as the one used in π-pulse
control and B0

p � B0
S at t = TstepI. In the control with TstepI = 396 µs, the state deviates from |φ0(t)〉

due to unwanted nonadiabatic population transfer. Thus, the population of |3, ↓〉 at t = TstepI is less
than 0.5. On the other hand, the dynamics are approximated by |φ0(t)〉, and the population of |3, ↓〉
is approximately 0.95 at t = TstepI for TstepI = 3960 µs. However, TstepI required for the adiabatic
dynamics is too long, in which case the efficiency will be degraded by relaxation and decoherence in
actual experiments.
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Figure 5. Envelope functions B(e)
k for k = p, S normalized by B0

p for STIRAP with (a) TstepI = 396 µs and
(b) TstepI = 3960 µs. B0

p is the maximum amplitude of the pump field. The thin dotted line represents 1.
Panels (c,d) are for the time dependencies of the populations corresponding to the envelope functions
in the left panels.

3.2. Shortcuts to Adiabaticity

Shortcuts-to-adiabaticity (STA) protocols or assisted adiabatic transformations have been
developed to reach the same target state as reference adiabatic dynamics starting from the given
initial state, with overall weaker driving fields and/or shorter durations [65,66]. The STA protocols
have been utilized for manipulations of, e.g., spin systems [67–71], electron spin of a single
nitrogen-vacancy center in diamond [72,73], isolated atoms and molecules [74–78] and Bose-Einstein
condensates [79–88]. Several STA protocols have been already demonstrated with STIRAP systems;
for example, Loop STIRAP [89], counter-diabatic [74,75], fast-forward [90] and invariant-based
engineering protocols [75,91].

We show the way to derive Ωp(t) which approximately generates |3, ↓〉 in shorter time than that
required for the adiabatic dynamics in Section 3.1 using the invariant based engineering protocol [75].
It is known that the state |ϕ0(t)〉 of the form

|ϕ0(t)〉 =

 cos γ(t) cos β(t)
−i sin γ(t)

− cos γ(t) sin β(t)

 , (14)

is a solution of the Schrödinger equation when

ΩS = 2(β̇ cot γ cos β− γ̇ sin β),

Ωp = 2(β̇ cot γ sin β + γ̇ cos β). (15)

These equations can be rewritten as

γ̇ =
1
2
(Ωp cos β−ΩS sin β),

β̇ =
1
2

tan γ(ΩS cos β + Ωp sin β). (16)
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We use γ defined by

γ = γ0

[
1− cos

( 2πt
TstepI

)]
+ ε, (17)

where γ0 and ε are constant parameters to be chosen so that

|ϕ0(0)〉 ' |1, ↓〉, (18)

|ϕ0(TstepI)〉 ' −|3, ↓〉. (19)

It is seen from Equation (14) that |ϕ0〉 = |1, ↓〉 if γ = 0 and β = 0, and that |ϕ0〉 = −|3, ↓〉 if γ = 0
and β = π

2 . Thus, we set ε to be small, and set β(0) = 0. β(t) is obtained by integrating Equation (16)

using Equations (15) and (17). γ0 is optimized so that β(TstepI) ' π
2 . Therefore, B(e)

p determined by
Equations (3) and (15) can drive the initial state |1, ↓〉 approximately to the target state |3, ↓〉 up to an
overall phase.

Typical time dependencies of B(e)
p and the population of each state are shown in Figure 6 for

various TstepI. The values of γ0 and ε are chosen so that the maximum value of B(e)
p is the same as

the one used in the π-pulse control. It is seen that population of |2, ↑〉 is small for TstepI = 396 µs.
On the other hand, the population of |2, ↑〉 is sizable around t = TstepI/2 for TstepI = 198 and 132 µs in
contrast to the adiabatic dynamics analyzed in Section 3.1.
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Figure 6. Envelope functions B(e)
k for k = p, S normalized by B0

p for the invariant-based engineering
protocol with (a) TstepI = 396 µs, γ0 = 0.0945 and ε = 0.02; (b) TstepI = 198 µs, γ0 = 0.21 and ε = 0.02;
and (c) TstepI = 132 µs, γ0 = 0.34 and ε = 0.02. B0

p is the maximum amplitude of the pump field.
The thin dotted line represents 1. (d)–(f) Time dependencies of the populations corresponding to the
envelope functions in the left panels.
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For t > TstepI, B(e)
S and B(e)

p are to be gradually decreased to zero. The population of each state is
approximately unchanged under this. This process is insensitive to the details of B0

S and B0
p as long as

B0
S � B0

p, and the duration of the process is much shorter than TstepI. Therefore, the duration of this
process is negligible (see Appendix A).

4. Robustness of Control

Robustness of the control against the pulse amplitude error, the effect of the relaxation of excited
states and the effect of the dephasing of spin to the control efficiency are examined in this section.

4.1. The Effect of the Error of the Pulse Amplitude

We multiply the pump field by λ to analyze the robustness of the control against the pulse
amplitude error. The fidelities of the π-pulse control and the invariant-based engineering protocol
are defined by the population of |2, ↑〉 and the population of |3, ↓〉 at t = TstepI, respectively. Figure 7
shows the fidelity as a function of λ for the π-pulse control and the invariant-based engineering
protocol. It is seen that the fidelity of the latter is higher than the one of the former in a wide range of
λ values, while the maximum value of the fidelity for the former is higher than the one of the latter.
This shows that the invariant-based engineering protocol is robust against the pulse amplitude error
compared to the π-pulse control.
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Figure 7. Dependence of the fidelity at t = TstepI on λ for the π-pulse and the invariant-based
engineering protocols. λ is the multiplicative factor of amplitude error, where λ = 1 corresponds to
no error.

4.2. The Effect of the Relaxation of Excited States

We examine the effect of the relaxation of excited states using the master equation [92]:

dρ

dt
= −i[H, ρ] + L[ρ], (20)

where ρ is the density operator. L[ρ] is given by

L[ρ] =
κ

2

(
[a↓ρ, a†

↓] + [a↓, ρa†
↓]
)

+
κ

2

(
[a↑ρ, a†

↑] + [a↑, ρa†
↑]
)

(21)

with the relaxation rate κ, where a↓(↑) is the annihilation operator represented as

a↓(↑) = |1, ↓ (↑)〉〈2, ↓ (↑)|+
√

2|2, ↓ (↑)〉〈3, ↓ (↑)|. (22)
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a↓(↑) corresponds to spin-down (up) state. We neglect the effect of spin relaxation assuming that the
relaxation rate of excited states is much faster than the spin relaxation rate. The effect of the spin
dephasing effect is studied in the next subsection.

Figure 8 shows the fidelity of the π-pulse control and the invariant-based engineering protocol as
a function of κ. It is seen that the π-pulse control is much more robust against the relaxation than the
invariant-based engineering protocol because its control duration TstepI is much shorter than the one
for the invariant-based engineering protocol.
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Figure 8. Dependence of the fidelity at t = TstepI on κ for the π-pulse and the invariant-based
engineering protocols.

4.3. Effect of Dephasing of Spin

We examine the effect of the dephasing of spin using the master Equation [92]:

dρ

dt
= −i[H, ρ] + Lp[ρ], (23)

where Lp[ρ] is given by

Lp[ρ] = −
γp

4
[
σz, [σz, ρ]

]
(24)

with the dephasing rate γp. We neglect the effect of the other relaxations.
We assume that the initial state is a superposition of spin up and down states represented as

|Ψini〉 =
1√
2
|1 ↓〉+ 1√

2
|1 ↑〉. (25)

The target states for the π-pulse control and the invariant-based engineering protocol are
represented as

|Ψtar〉 = −
i√
2
|2, ↑〉+ 1√

2
|1, ↑〉 (26)

and

|Ψtar〉 = −
1√
2
|3 ↓〉+ 1√

2
|1 ↑〉, (27)



Universe 2020, 6, 2 12 of 18

respectively. Note that the state |1, ↓〉 is transferred to |2, ↑〉 in the π-pulse case without decoherence.
On the other hand, the state |1, ↓〉 is transferred to |3, ↓〉 in the invariant-based engineering protocol if
there is no decoherence. The phases of |2, ↑〉 in Equation (26) and |3 ↓〉 in Equation (27) appear after
the controls without decoherence. We define the fidelity, F, of the controls as

F = 〈Ψtar|ρ(TstepI)|Ψtar〉, (28)

and define the coherence, C, at t = TstepI for the π-pulse control as

C = |〈2 ↑ |ρ(TstepI)|1, ↓〉|. (29)

We define the coherence for the invariant-based engineering protocol as

C = |〈3 ↓ |ρ(TstepI)|1, ↓〉|. (30)

Figure 9a shows the dependence of the fidelity of the the π-pulse and the invariant-based
engineering protocols on γp. It is seen that the fidelity decreases with the increase of γp. Crossings of
the fidelity of the invariant-based engineering protocols are observed when γp increases. Although we
could not have a clear reason for this, we found that the main contribution to the fidelity came from the
diagonal elements of the density matrix, and the off-diagonal elements were approximately vanishing
in that parameter region. Figure 9b shows the dependence of the coherence of the the π-pulse and the
invariant-based engineering protocols on γp. The coherence decreases as γp increases. The fidelity
and coherence of the π-pulse control is higher than the invariant-based engineering protocol because
of the short control time. Increasing the amplitude of the oscillating magnetic field can shorten the
control time, leading to improvement of the control fidelity.
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Figure 9. Dependence of the fidelity (a) and the coherence (b) at t = TstepI on γp for the π-pulse and
the invariant-based engineering protocols.

5. Conclusions

In the research presented, we studied spin-selective coherent electron transfer in a quantum dot
array with time-dependent tuning of the driving field. The electron is excited and transferred into
different quantum dots (Dots 1 and 2 in Figure 1c) depending on the initial electron spin. We have
proposed two different methods: the π-pulse control and the invariant-based engineering protocol.
The π-pulse control offers fast transport, while a robust control against the error of the pulse area of
the control field is achieved by the invariant-based engineering protocol, although the manipulation
time is longer than that of the π-pulse control. We also studied the effect of the relaxation of excited
states and the dephasing of spin to the control efficiency. The π-pulse control offers robustness against
the relaxation of excited states due to its short control time, while the invariant-based engineering
protocol is sensitive to the relaxation and the dephasing rates.
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In Section 3 we studied the effective three-level-system where the constant coupling between
states |2, ↑〉 and |3, ↓〉 is caused by an external field. We emphasize that the control developed with
constant ΩS can also be applied to systems where two degenerate energy levels have an intrinsic fixed
coupling. Such a condition can be realized, e.g., in a cavity QED system where an atom is coupled
to a resonant cavity mode [93], and in a circuit QED system where an artificial atom is coupled to
a tunable resonator mode [94,95].

In our scheme, a combined quantum dot (Dot 0) is used. It is known that making the dot size large
is difficult in silicon, where the electron wave function needs to be tightly confined. In that sense the
π-pulse control is better than the invariant-based engineering protocol, because the former one utilizes
only up to the first excited state which is less spread-out than the second excited state. The smaller
dot size requires the larger frequency of the AC magnetic field in our scheme. Thus, the size of the
dot is limited by the experimental feasibility of the frequency of the AC magnetic field. On the other
hand, the GaAs system can form a large dot, although the short coherence time is problematic [96].
The spin-orbit coupling [97,98] could be problematic in Step II. However, we believe that the study of
clever pulse schemes to mitigate spin-orbit coupling is beyond the scope of the paper. This will indeed
be something of interest for further investigation.
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The following abbreviations are used in this manuscript:

STIRAP stimulated Raman adiabatic passage
STA shortcuts to adiabaticity
RWA rotating wave approximation

Appendix A. End of Step I

For t > TstepI, B(e)
S and B(e)

p are gradually decreased to zero. To simulate this process, we assume

B(e)
S (t) = B0

Se−(t−TstepI)/τ for t > TstepI,

B(e)
p (t) =

{
B0

p for TstepI < t ≤ TstepI + τ,

B0
pe−(t−TstepI−τ)/τ for t > TstepI + τ,

(A1)

where τ characterizes the decay time of the envelope functions. B(e)
S and B(e)

p start to decrease at
t = TstepI and TstepI + τ, respectively.

Figure A1a–c show the envelope functions B(e)
p and B(e)

S for the invariant-based engineering
protocol with TstepI = 198 µs and TstepI = 131 µs. The time dependence of the envelope functions for
t ≤ TstepI are the same as the ones in Figure 6b,c. Figure A1d–f show that the populations are almost

unchanged for t > TstepI, while B(e)
p and B(e)

S are decreased. This process is insensitive to τ, and the
duration of the process can be much shorter than TstepI.
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